Logicandapplications2023/class_07_21082023/summary.txt

15 lines
506 B
Plaintext

Semantic notions for a set of formulas:
\Sigma - satisfiable, examples.
Logical implication \Sigma \entails \alpha
complete -- \Sigma \entails \alpha (inclusive OR) \Sigma \entails (\neg \alpha)
\Sigma is satisfiable and complete then
\Sigma \entails \alpha (XOR) \Sigma \entails (\neg \alpha)
Maximum Satisfiability
In addition to being satisfiable, Sigma has the following property:
\neg( \Sigma \entails \alpha) \implies \Sigma \cup \{ \alpha\} is not satisfiable.