Logicandapplications2023/class_14_07092023/summary.txt

19 lines
744 B
Plaintext

Class 14 : *** Proof system for logic
** Desirable properties of a proof system
** Proof systems has a set of axioms (AXIOMS) and rules (R).
** Set of formulas provable in the system = I(AXIOMS, R).
Alternatively, provable formulas have legal construction sequences over AXIOMS and R.
** Hilbert's proof system for Propositional Logic:
* Axioms :
* Ax1 : (\alpha --> (\beta --> \alpha))
* Ax2 : ( (\alpha --> (\beta --> \gamma)) --> ((\alpha --> \beta) --> (\alpha --> \gamma)) )
* Ax3 : ( (\neg \beta --> \neg \alpha) --> (\alpha --> \beta) )
* Rules : Modus Ponens
If we have proofs of \alpha, \(alpha --> \beta)
then we can derive \beta
** Example : proved (\alpha --> \alpha) in Hilbert's proof system.