Logic and applications

Ramchandra Phawade Department of Computer Science and Engineering IIT Dharwad, India

06 Nov 2023

A 3 >

Given α what is α_x^t ? Replace free occurrences of x by t in α .

- 3 ► ►

990

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

- α is an atomic formula, then α^t_x is the term obtained by replacing each free occurrence of x by term t.
- $[\neg(\alpha)]_x^t = \neg[\alpha]_x^t$

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

•
$$[\neg(\alpha)]_x^t = \neg[\alpha]_x^t$$

•
$$[\alpha \implies \beta]_x^t = [\alpha]_x^t \implies [\beta]_x^t$$

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

•
$$[\neg(\alpha)]_x^t = \neg[\alpha]_x^t$$

•
$$[\alpha \implies \beta]_x^t = [\alpha]_x^t \implies [\beta]_x^t$$

•
$$[\forall y \alpha]_x^t =$$

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

•
$$[\neg(\alpha)]_x^t = \neg[\alpha]_x^t$$

•
$$[\alpha \implies \beta]_x^t = [\alpha]_x^t \implies [\beta]_x^t$$

•
$$[\forall y \alpha]_x^t =$$

 $\forall y \alpha \text{ if } y = x,$

Given α what is α_x^t ? Replace free occurrences of x by t in α .

Definition

•
$$[\neg(\alpha)]_x^t = \neg[\alpha]_x^t$$

•
$$[\alpha \implies \beta]_x^t = [\alpha]_x^t \implies [\beta]_x^t$$

•
$$[\forall y \alpha]_x^t =$$

$$\forall y \alpha \text{ if } y = x,$$

$$\forall y[\alpha]_x^\iota \text{ if } y \neq x$$

Given α what is α_x^t ? Replace free occurrences of x by t in α .

- 3 ► ►

990

Given α what is α_x^t ? Replace free occurrences of x by t in α .

•
$$\forall x \neg (\forall y(x = y)) \implies [\neg (\forall y(x = y))]_x^y$$

becomes

•
$$\forall x \neg (\forall y(x = y)) \implies \neg (\forall y(y = y))$$

- 3 ► ►

990

Image: A matrix

t is substitutable for x in α iff,

• α is an atomic formula, then x is always substitutable by t in α .

- α is an atomic formula, then x is always substitutable by t in α .
- x is substitutable by t in $\neg \alpha$ iff x is substitutable by t in α .

- α is an atomic formula, then x is always substitutable by t in α .
- x is substitutable by t in $\neg \alpha$ iff x is substitutable by t in α .
- x is substitutable by t in ($\alpha \implies \beta$) iff
 - x is substitutable by t in α , and
 - x is substitutable by t in β .

- α is an atomic formula, then x is always substitutable by t in α .
- x is substitutable by t in $\neg \alpha$ iff x is substitutable by t in α .
- x is substitutable by t in $(\alpha \implies \beta)$ iff
 - x is substitutable by t in α , and
 - x is substitutable by t in β .
- x is substitutable by t in $\forall y \alpha$ iff

- α is an atomic formula, then x is always substitutable by t in α .
- x is substitutable by t in $\neg \alpha$ iff x is substitutable by t in α .
- x is substitutable by t in $(\alpha \implies \beta)$ iff
 - x is substitutable by t in α , and
 - x is substitutable by t in β .
- x is substitutable by t in $\forall y \alpha$ iff
 - Either x is not free in α

- α is an atomic formula, then x is always substitutable by t in α .
- x is substitutable by t in $\neg \alpha$ iff x is substitutable by t in α .
- x is substitutable by t in $(\alpha \implies \beta)$ iff
 - x is substitutable by t in α , and
 - x is substitutable by t in β .
- x is substitutable by t in $\forall y \alpha$ iff
 - Either x is not free in α
 - Or y does not occur in α and t is substitutable for x in α .

??

996

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• Axiom Groups and Axioms

• Axiom Groups and Axioms

(AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.

• Axiom Groups and Axioms

(AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.

(AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .

- Axiom Groups and Axioms
- (AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.
- (AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .
- $(\mathsf{AxG3}) \ \forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta)$

→ ∃ →

• Axiom Groups and Axioms

- (AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.
- (AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .

$$(\mathsf{A}\mathsf{x}\mathsf{G3}) \ \forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta)$$

(AxG4)
$$\alpha \implies \forall x\alpha$$
, when $x \notin FV(\alpha)$.

• Axiom Groups and Axioms

- (AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.
- (AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .

$$(\mathsf{AxG3}) \ \forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta)$$

(A×G4) $\alpha \implies \forall x\alpha$, when $x \notin FV(\alpha)$.

$$Axioms = I(\{Axg1, Axg2, Axg3, Axg4\}, \{\forall x, ...\}).$$

→ ∃ →

• Axiom Groups and Axioms

- (AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.
- (AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .

$$(\mathsf{AxG3}) \ \forall x(\alpha \Longrightarrow \beta) \Longrightarrow (\forall x\alpha \Longrightarrow \forall x\beta)$$

AxG4)
$$\alpha \implies \forall x \alpha$$
, when $x \notin FV(\alpha)$.

$$Axioms = I(\{Axg1, Axg2, Axg3, Axg4\}, \{\forall x, ...\}).$$

• Deduction Rules : Modus Ponens

Assumption :
$$\alpha, \alpha \implies \beta$$

Conclusion: β

• Axiom Groups and Axioms

- (AxG1) propositional tautologies where, propositional variables can be substituted by wffs of FOL.
- (AxG2) $\forall x \alpha \implies \alpha_x^t$ whenever t is substitutable for x in α .

$$\begin{array}{l} (\mathsf{A}\mathsf{x}\mathsf{G3}) \ \forall x(\alpha \Longrightarrow \beta) \Longrightarrow (\forall x\alpha \Longrightarrow \forall x\beta) \\ (\mathsf{A}\mathsf{x}\mathsf{G4}) \ \alpha \Longrightarrow \forall x\alpha, \text{ when } x \notin FV(\alpha). \end{array}$$

$$Axioms = I(\{Axg1, Axg2, Axg3, Axg4\}, \{\forall x, ...\})$$

• Deduction Rules : Modus Ponens

Assumption : $\alpha, \alpha \implies \beta$ Conclusion: β

• α has a proof iff $\alpha \in I(\{Axioms\}, \{MP\})$.

.

・ロト ・四ト ・ヨト ・ヨト

$\mathsf{STP} \ (\vdash P(x) \implies \neg(\forall x \neg P(x))$

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{aligned} \text{STP} & (\vdash P(x) \implies \neg(\forall x \neg P(x)) \\ (1) & \vdash (\forall x \neg P(x) \implies \neg P(x)) \\ \text{Axg2 where } t = x. \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{aligned} \text{STP} &(\vdash P(x) \implies \neg(\forall x \neg P(x)) \\ (1) &\vdash (\forall x \neg P(x) \implies \neg P(x)) \\ \text{Axg2 where } t = x. \\ (2) &\vdash ((\forall x \neg P(x) \implies \neg P(x)) \implies (P(x) \implies \neg(\forall x \neg P(x))) \\ \text{Axg1} \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{aligned} \text{STP} &(\vdash P(x) \implies \neg(\forall x \neg P(x)) \\ (1) &\vdash (\forall x \neg P(x) \implies \neg P(x)) \\ \text{Axg2 where } t = x. \\ (2) &\vdash ((\forall x \neg P(x) \implies \neg P(x)) \implies (P(x) \implies \neg(\forall x \neg P(x))) \\ \text{Axg1} \\ (3) &\vdash (P(x) \implies \neg(\forall x \neg P(x))) \end{aligned}$$

$$(3) \vdash (P(x) \implies \neg(\forall x \neg P(x)))$$

MP, (1),(2)

イロト イヨト イヨト イヨト

* ロ > * 個 > * 注 > * 注 >

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

Image: A matching of the second se

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

```
(b1) : \alpha \in \Gamma
Easy case.
```

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

- (b1) : $\alpha \in \Gamma$ Easy case.
- (b2) : α ∈ Axioms Requires induction on structure of Axioms itself.
 (b2-bc1) α is in Axg1

```
(b2-bc1) \alpha is in Axg1
(b2-bc2) \alpha is in Axg2
(b2-bc3) \alpha is in Axg3
(b2-bc4) \alpha is in Axg4
(b2-ind) \alpha = \forall x\beta, where \beta is an axiom.
```

A = > 4
Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

- (b1) : $\alpha \in \Gamma$ Easy case.
- (b2) : $\alpha \in Axioms$ Requires induction on structure of Axioms itself.

```
(b2-bc1) \alpha is in Axg1
(b2-bc2) \alpha is in Axg2
(b2-bc3) \alpha is in Axg3
(b2-bc4) \alpha is in Axg3
(b2-ind) \alpha = \forall x\beta, where \beta is an axiom.
(ind) : \alpha result of application of MP.
```

★ ∃ ► ★

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

Image: A matching of the second se

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc1) α is in Axg1

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

-

• • • • • • • • • • • •

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

***** TP :
$$\vDash \forall x \alpha \implies \alpha_x^t$$

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- Suppose not.
 Then there exists a structure M and an assignment s such that

$$M \vDash_{s} \forall x \alpha \text{ and } (M \nvDash_{s} \alpha_{x}^{t}).$$

★
$$\bar{s}(t) = b$$
 where $b \in \mathcal{U}^{M}$.

.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

★
$$\bar{s}(t) = b$$
 where $b \in \mathcal{U}^{M}$

★ $(M \nvDash_s \forall x\alpha)$ because we have $M \nvDash_{s(x|b)} \alpha$.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

★
$$\bar{s}(t) = b$$
 where $b \in \mathcal{U}^{M}$.

- ★ $(M \nvDash_s \forall x\alpha)$ because we have $M \nvDash_{s(x|b)} \alpha$.
- ***** but we have $M \vDash_s \forall x \alpha$ which is a contradiction.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

★
$$\bar{s}(t) = b$$
 where $b \in U^M$.

- ★ $(M \nvDash_s \forall x\alpha)$ because we have $M \nvDash_{s(x|b)} \alpha$.
- ***** but we have $M \vDash_s \forall x \alpha$ which is a contradiction.

 $M \vDash_{s} \forall x \alpha$ iff for every $d \in \mathcal{U}^{M}$, we have $M \vDash_{s(x|d)} \alpha$.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

★
$$\bar{s}(t) = b$$
 where $b \in \mathcal{U}^M$.

- ★ $(M \nvDash_s \forall x\alpha)$ because we have $M \nvDash_{s(x|b)} \alpha$.
- ***** but we have $M \vDash_s \forall x \alpha$ which is a contradiction.

 $M \vDash_{s} \forall x \alpha$ iff for every $d \in \mathcal{U}^{M}$, we have $M \vDash_{s(x|d)} \alpha$. What is this *new* function?

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc2) α is in Axg2

- ***** TP : $\vDash \forall x \alpha \implies \alpha_x^t$
- ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \forall x \alpha$ and $(M \nvDash_s \alpha_x^t)$.

★
$$\bar{s}(t) = b$$
 where $b \in \mathcal{U}^M$.

- ★ $(M \nvDash_s \forall x\alpha)$ because we have $M \nvDash_{s(x|b)} \alpha$.
- ***** but we have $M \vDash_s \forall x \alpha$ which is a contradiction.

 $M \vDash_{s} \forall x \alpha$ iff for every $d \in \mathcal{U}^{M}$, we have $M \vDash_{s(x|d)} \alpha$. What is this *new* function? s(x|d)(y) = s(y) if $y \neq x$, s(x|d)(y) = d if y = x.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

• • • • • • • • • • • •

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc3) α is in Axg3

Ramchandra Phawade

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc3) α is in Axg3 (TP) $\Gamma \vDash (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc3) α is in Axg3 (TP) $\Gamma \vDash (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$ * Suppose not. Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \vDash_s (\forall x(\alpha \implies \beta))$ and $(M \nvDash_s (\forall x\alpha \implies \forall x\beta))$.

- 4 🗇 🕨 4 🖻 🕨 4 🖻 🕨

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc3) α is in Axg3 (TP) $\Gamma \models (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$ * Suppose not. Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \vDash_s (\forall x(\alpha \implies \beta))$ and $(M \nvDash_s (\forall x\alpha \implies \forall x\beta))$. * So, $M \vDash_s \forall x\alpha$ and $M \nvDash_s \forall x\beta$.

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc3) α is in Axg3 (TP) $\Gamma \models (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$ * Suppose not. Then there exists a structure *M* and an assignment *s* such that

 $M \vDash_{\mathfrak{s}} \Gamma \text{ and } M \vDash_{\mathfrak{s}} (\forall x(\alpha \implies \beta)) \text{ and } (M \nvDash_{\mathfrak{s}} (\forall x\alpha \implies \forall x\beta)).$ * So, $M \vDash_{\mathfrak{s}} \forall x\alpha$ and $M \nvDash_{\mathfrak{s}} \forall x\beta$.

★ so we get an element *b*, for which β is false. i.e., $M \nvDash_{s(x|b)} \beta$.

一回 ト イ ヨ ト イ ヨ ト

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc3) α is in Axg3

 $(\mathsf{TP}) \ \ \mathsf{\Gamma} \vDash (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$

★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \vDash_s (\forall x(\alpha \Longrightarrow \beta))$ and $(M \nvDash_s (\forall x\alpha \Longrightarrow \forall x\beta))$.

- ★ So, $M \vDash_s \forall x \alpha$ and $M \nvDash_s \forall x \beta$.
- ★ so we get an element *b*, for which β is false. i.e., $M \nvDash_{s(x|b)} \beta$.
- ★ Since $M \vDash_s \forall x \alpha$, for element *b*, $M \vDash_{s(x|b)} \alpha$.

一回 ト イ ヨ ト イ ヨ ト

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$

(b2-bc3) α is in Axg3

 $(\mathsf{TP}) \ \ \mathsf{\Gamma} \vDash (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$

★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \vDash_s (\forall x(\alpha \implies \beta))$ and $(M \nvDash_s (\forall x\alpha \implies \forall x\beta))$.

- ★ So, $M \vDash_s \forall x \alpha$ and $M \nvDash_s \forall x \beta$.
- ★ so we get an element *b*, for which β is false. i.e., $M \nvDash_{s(x|b)} \beta$.
- ★ Since $M \vDash_s \forall x \alpha$, for element *b*, $M \vDash_{s(x|b)} \alpha$.
- * therefore, $\alpha \implies \beta$ is not true in M under s i.e., $(M \nvDash_s \forall x(\alpha \implies \beta)).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

- (b2) : $\alpha \in Axioms$
 - (b2-bc3) α is in Axg3

$$(\mathsf{TP}) \ \ \mathsf{\Gamma} \vDash (\forall x(\alpha \implies \beta) \implies (\forall x\alpha \implies \forall x\beta))$$

★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \vDash_s (\forall x(\alpha \implies \beta))$ and $(M \nvDash_s (\forall x\alpha \implies \forall x\beta))$.

- ★ So, $M \vDash_s \forall x \alpha$ and $M \nvDash_s \forall x \beta$.
- ★ so we get an element *b*, for which β is false. i.e., $M \nvDash_{s(x|b)} \beta$.
- ★ Since $M \vDash_s \forall x \alpha$, for element *b*, $M \vDash_{s(x|b)} \alpha$.
- * therefore, $\alpha \implies \beta$ is not true in M under s i.e., $(M \nvDash_s \forall x(\alpha \implies \beta)).$
- * which is a contradiction to $M \vDash_{s} (\forall x (\alpha \implies \beta))$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

A D > A A > A > A

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

(b2) : $\alpha \in Axioms$ (b2-bc4) α is in Axg4

< A > < < > >

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

```
(b2) : \alpha \in Axioms
(b2-bc4) \alpha is in Axg4
(TP) \Gamma \vDash \alpha \implies \forall x\alpha, when x \notin FV(\alpha).
```

.

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

```
(b2) : \alpha \in Axioms

(b2-bc4) \alpha is in Axg4

(TP) \Gamma \vDash \alpha \implies \forall x \alpha, when x \notin FV(\alpha).

* Suppose not.

Then there exists a structure M and an assignment s such that

M \vDash_s \Gamma and M \vDash_s \alpha and M \nvDash_s (\forall x \alpha).
```

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

```
(b2) : \alpha \in Axioms

(b2-bc4) \alpha is in Axg4

(TP) \Gamma \vDash \alpha \implies \forall x \alpha, when x \notin FV(\alpha).

* Suppose not.

Then there exists a structure M and an assignment s such that

M \vDash_s \Gamma and M \vDash_s \alpha and M \nvDash_s (\forall x \alpha).

* Using M \nvDash_s \forall x \alpha.
```

.

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

- (b2) : α ∈ Axioms
 (b2-bc4) α is in Axg4
 (TP) Γ ⊨ α ⇒ ∀xα, when x ∉ FV(α).
 ★ Suppose not. Then there exists a structure M and an assignment s such that M ⊨_s Γ and M ⊨_s α and M ⊭_s (∀xα).
 ★ Using M ⊭_s ∀xα.
 ★ we get an element b in the universe for which α is false. That is
 - ★ we get an element *b* in the universe, for which α is false. That is $M \nvDash_{s(x|b)} \alpha$.

.

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

- (b2) : $\alpha \in Axioms$
- (b2-bc4) α is in Axg4
 - (TP) $\Gamma \vDash \alpha \implies \forall x \alpha$, when $x \notin FV(\alpha)$.
 - ★ Suppose not.

Then there exists a structure M and an assignment s such that $M \vDash_s \Gamma$ and $M \nvDash_s \alpha$ and $M \nvDash_s (\forall x \alpha)$.

- ★ Using $M \nvDash_s \forall x \alpha$.
- ★ we get an element *b* in the universe, for which α is false. That is $M \nvDash_{s(x|b)} \alpha$.
- ★ but x in not free in α , therefore, s(x|b) is same as s for any $y \neq x$. Hence, $M \nvDash_s \alpha$, which is a contradiction.

A (10) < A (10) < A (10) </p>

Proof by induction on structure of α . $\alpha \in I(Axioms \cup \Gamma, \{MP\}).$

A D > A A > A > A

```
Proof by induction on structure of \alpha.

\alpha \in I(Axioms \cup \Gamma, \{MP\}).

(b1) : \alpha \in \Gamma
```

```
(b2) : \alpha \in Axioms
```

A D > A A > A > A

```
Proof by induction on structure of \alpha.
\alpha \in I(Axioms \cup \Gamma, \{MP\}).
```

- (b1) : $\alpha \in \Gamma$
- (b2) : $\alpha \in Axioms$
- (ind) : α result of MP routine (like PL).

- **-** E

Application of soundness

イロト イヨト イヨト

Application of soundness

• Example : TP: $\exists x P(x) \nvDash P(x)$.

Image: A match a ma

590

Application of soundness

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.

Image: A match a ma
- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2
- $M \vDash_{s} P(x)$ iff *n* is odd.

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2
- $M \vDash_s P(x)$ iff *n* is odd.
- $M \nvDash_{s(x)=2} P(x)$.

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2
- $M \vDash_{s} P(x)$ iff *n* is odd.
- $M \nvDash_{s(x)=2} P(x)$.
- M ⊨_{s(x)=2} ∃xP(x) because there exists an n (say 3) which makes ∃xP(x) true.

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_s \exists x P(x)$ and $M \nvDash_s P(x)$.
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2
- $M \vDash_{s} P(x)$ iff *n* is odd.
- $M \nvDash_{s(x)=2} P(x)$.
- M ⊨_{s(x)=2} ∃xP(x) because there exists an n (say 3) which makes ∃xP(x) true.

 $M \vDash_{s} \exists x \alpha$ iff for some $d \in \mathcal{U}^{M}$, we have $M \vDash_{s(x|d)} \alpha$.

.

- Example : TP: $\exists x P(x) \nvDash P(x)$.
- By soundness STP: $\exists x P(x) \nvDash P(x)$.
- Come up with a structure M and an assignment s such that $M \vDash_{s} \exists x P(x) \text{ and } M \nvDash_{s} P(x).$
- $M = \langle \mathcal{N}, odd \rangle$ and s(x) = 2
- $M \vDash_{s} P(x)$ iff *n* is odd.
- $M \nvDash_{s(x)=2} P(x)$.
- $M \vDash_{s(x)=2} \exists x P(x)$ because there exists an *n* (say 3) which makes $\exists x P(x)$ true.

 $M \vDash_{s} \exists x \alpha$ iff for some $d \in \mathcal{U}^{M}$, we have $M \vDash_{s(x|d)} \alpha$. Where. s(x|d)(y) = s(y) if $y \neq x$, s(x|d)(y) = d if y = x.

.

Deduction Theorem for FOL

Theorem

For all Γ - a set of wffs, α and β ,

 $\Gamma \cup \{\alpha\} \vdash \beta \text{ iff } \Gamma \vdash (\alpha \implies \beta)$

• • • • • • • • • • • •

Deduction Theorem for FOL

Theorem

For all Γ - a set of wffs, α and β ,

$$\mathsf{\Gamma} \cup \{\alpha\} \vdash \beta \text{ iff } \mathsf{\Gamma} \vdash (\alpha \implies \beta)$$

Proof.

Exercise.

Hint: Same on the lines of proof of deduction theorem for PL.

.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$, Then $\Gamma \vdash \forall x \alpha$.

- ∢ ∃ ▶

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$, Then $\Gamma \vdash \forall x \alpha$.

Proof.

Rephrase the above statement as follows: If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds:

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$, Then $\Gamma \vdash \forall x \alpha$.

Proof.

Rephrase the above statement as follows: If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$, Then $\Gamma \vdash \forall x \alpha$.

Proof.

Rephrase the above statement as follows: If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$. So proof by structural induction on α .

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

Image: A math a math

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

(Base case 1) : α ∈ Axiom
 Then ∀xα ∈ Axioms, by structure of Axioms.

• • • • • • • • • • • •

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

- (Base case 1) : α ∈ Axiom
 Then ∀xα ∈ Axioms, by structure of Axioms.
- (Base case 2) : α ∈ Γ

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

(Base case 1) : α ∈ Axiom
 Then ∀xα ∈ Axioms, by structure of Axioms.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

- (Base case 1) : α ∈ Axiom
 Then ∀xα ∈ Axioms, by structure of Axioms.
- (Base case 2) : α ∈ Γ
 We know that x ∉ FV(Γ), therefore, x ∉ FV(α)

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

- (Base case 1) : $\alpha \in Axiom$ Then $\forall x \alpha \in Axioms$, by structure of Axioms.
- (Base case 2) : $\alpha \in \Gamma$ We know that $x \notin FV(\Gamma)$, therefore, $x \notin FV(\alpha)$ Hence Axg4, $\Gamma \vdash \alpha \implies \forall x\alpha$

(I) < (II) < (II) < (II) < (II) < (II) < (III) </p>

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

- (Base case 1) : $\alpha \in Axiom$ Then $\forall x \alpha \in Axioms$, by structure of Axioms.
- (Base case 2) : $\alpha \in \Gamma$ We know that $x \notin FV(\Gamma)$, therefore, $x \notin FV(\alpha)$ Hence Axg4, $\Gamma \vdash \alpha \implies \forall x\alpha$ Since $\Gamma \vdash \alpha$ (by IH).

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

• (Base case 1) : $\alpha \in Axiom$ Then $\forall x \alpha \in Axioms$, by structure of Axioms.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

 (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

- (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.
- (by IH we have) : $\Gamma \vdash \forall x \beta$, $\Gamma \vdash \forall x (\beta \implies \alpha)$.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

- (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.
- (by IH we have) : $\Gamma \vdash \forall x \beta$, $\Gamma \vdash \forall x (\beta \implies \alpha)$.
- (TP) : $\Gamma \vdash \forall x \alpha$.

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

- (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.
- (by IH we have) : $\Gamma \vdash \forall x \beta$, $\Gamma \vdash \forall x (\beta \implies \alpha)$.
- (TP) : $\Gamma \vdash \forall x \alpha$.

•
$$\Gamma \vdash \forall x (\beta \implies \alpha) \implies (\forall x \beta \implies \forall x \alpha) Axg3.$$

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

- (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.
- (by IH we have) : $\Gamma \vdash \forall x \beta$, $\Gamma \vdash \forall x (\beta \implies \alpha)$.
- (TP) : $\Gamma \vdash \forall x \alpha$.
- $\Gamma \vdash \forall x (\beta \implies \alpha) \implies (\forall x \beta \implies \forall x \alpha) Axg3.$
- $\Gamma \vdash (\forall x \beta \implies \forall x \alpha)$ (MP).

Theorem

If Γ - a set of wffs, α is a wff, such that $x \notin FV(\Gamma)$. Then following holds: If $\alpha \in I(\Gamma \cup Axioms, \{MP\})$ Then $\forall x \alpha \in I(\Gamma \cup Axioms, \{MP\})$.

Proof.

- (induction case): α is result of application of MP. That is we have Γ ⊢ β, Γ ⊢ β ⇒ α, then Γ ⊢ α.
- (by IH we have) : $\Gamma \vdash \forall x \beta$, $\Gamma \vdash \forall x (\beta \implies \alpha)$.
- (TP) : $\Gamma \vdash \forall x \alpha$.
- $\Gamma \vdash \forall x (\beta \implies \alpha) \implies (\forall x \beta \implies \forall x \alpha) Axg3.$
- $\Gamma \vdash (\forall x \beta \implies \forall x \alpha)$ (MP).
- $\Gamma \vdash (\forall x \alpha)$ (MP).

< 150 ►

Example : TP: $\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$

A D > A B > A B >

Example : TP: $\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$ STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$ (by DT).

A D > A A > A > A

Example : TP:
$$\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$$

STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$

(by DT). (Assumption).

Image: A matrix and a matrix

Example : TP:
$$\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$$

STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$

(by DT). (Assumption). (Axg2).

A (□) ► A □ ► ►

Example : TP:
$$\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$$

STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$

(by DT). (Assumption). (Axg2). (MP).

A D > A B > A B >

Example : TP:
$$\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$$

STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$

$$\forall x \forall y R(x, y) \vdash \forall x \forall y R(x, y)$$

- $\exists \forall x \forall y R(x,y) \vdash \forall y R(x,y)$

(by DT). (Assumption). (Axg2). (MP). (Axg2).
Application of generalization theorem

Example : TP:
$$\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$$
STP: $\forall x \forall y R(x, y) \vdash \forall y \forall x R(x, y)$ (by DT).(by DT). $\forall x \forall y R(x, y) \vdash \forall x \forall y R(x, y)$ (Assumption). $\forall x \forall y R(x, y) \vdash \forall x \forall y R(x, y) \implies \forall y R(x, y)$ (Axg2). $\forall x \forall y R(x, y) \vdash \forall y R(x, y)$ (MP). $\forall x \forall y R(x, y) \vdash \forall y R(x, y) \implies R(x, y)$ (MP). $\forall x \forall y R(x, y) \vdash R(x, y)$

Image: A math a math

990

Application of generalization theorem

Example : TP: $\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$	
$STP: \ \forall x \forall y R(x,y) \vdash \forall y \forall x R(x,y)$	(by DT).
$ \forall x \forall y R(x, y) \vdash \forall x \forall y R(x, y) $	(Assumption).
	(Axg2).
	(MP).
	(Axg2).
	(MP).
• $\forall x \forall y R(x, y) \vdash \forall x R(x, y)$	(GenThm as $x \notin FV(\Gamma)$).

Image: A math a math

990

Application of generalization theorem

Example : TP: $\forall x \forall y R(x, y) \implies \forall y \forall x R(x, y)$	
$STP: \ \forall x \forall y R(x,y) \vdash \forall y \forall x R(x,y)$	(by DT).
	(Assumption).
	(Axg2).
$ \forall x \forall y R(x,y) \vdash \forall y R(x,y) $	(MP).
	(Axg2).
	(MP).
• $\forall x \forall y R(x, y) \vdash \forall x R(x, y)$	(GenThm as $x \notin FV(\Gamma)$).
$ \forall x \forall y R(x,y) \vdash \forall y \forall x R(x,y) $	(GenThm as $y \notin FV(\Gamma)$).

Image: A math a math

990