Indian Institute of Technology Dharwad

CS 621 Logic and Applications

Assignment 2 : Programming Assignment : Solution
Date of submission: 26 Oct 2023 (5pm)
Mode of submission : email, with subject line – "CS 621: Assignment2"

- Model the puzzle and solve it using **Z3**
- Your submission must include a ReadMe file, with instructions on how to execute your code.
- You can choose either Z3cpp or Z3py interfaces.
- You can read the input from file/command line or write the output to a file/command line, however you want to, there are no other restrictions.
- 1. Given an 8 litre bucket of water (say A), and two empty buckets (say B and C) which can contain 5 and 3 litres respectively, you are asked to distribute the water such that there is 4 litres in A, and 4 litres in B.

What is the minimum number of transfers of water between buckets? Show the stepwise transfers.

Encode this using satisfiability constraints and solve them using Z3.

Expected Output:

```
step 0: A:8 B:0 C:0 transfer from A to C step 1: A:5 B:0 C:3 ... step n: A:4 B:4 C:0
```

Answer:

Solution found at iteration 8:

Step 0 : [8, 0, 0]
Step 1 : [3, 5, 0]
Step 2 : [3, 2, 3]
Step 3 : [6, 2, 0]
Step 4 : [6, 0, 2]
Step 5 : [1, 5, 2]
Step 6 : [1, 4, 3]
Step 7 : [4, 4, 0]

Marking Scheme:

- Encoding the problem: 5 marks
- Minimum number of steps:8 (2 mark)
- Stepwise transfer 3 marks

2. **Definition (Graph colouring)**: Given Graph G = (V, E) a valid colouring of a graph is an assignment of colours to the vertices of the graph so that no two adjacent vertices have the same colour.

Write a program that can assign colours to each vertex in ${\cal G}.$

Input:

- A set of vertices V = [A, B, C, D]
- Pairs of edges E = [(A, B), (A, C), (A, D), (B, D), (C, D)]

Expected Output:

- Total number of colours required in a valid colouring of G:3
- A valid assignment of colours to all vertices in V (say) A:0,B:1,C:1,D:2

The naive approach would be to assign a different colour to each vertex, which is not interesting. This approach will not be accepted as a valid solution. One should give the *least possible number* of colors possible.

Marking Scheme:

- Encoding the graph colouring problem (5 marks)
- Valid assignment of colours for test inputs(4 marks)
- total number of colours (1 mark)

- Scheduling Problem An employer needs to interview N candidates, and therefore makes N interview slots. Every person has a free-busy schedule for those slots.
 - (a) Can you schedule the interview, such that there is exactly one candidate allocated for a timeslot, for each of the N candidates?
 - (b) How many such schedules can you make?
 - **Input:** The input to your program, can be a binary matrix of this form, where columns represent candidates C_0, \dots, C_{N-1} and rows represent time slots T_0, \dots, T_{N-1} .

If a candidate is free, it is represented by 1. If the candidate is busy, it is represented by 0.

	C0	C1	C2
TS0	1	0	0
TS1	0	0	0
TS2	1	1	1

In the above figure, in timeslot T_0 , only candidate C_0 is free; in timeslot TS_2 , all candidates are busy.

- Expected Output:

- (a) For (a), if satisfiable, display the interview schedules
- (b) For (b) Count how many such schedules are possible? Print all possible solutions.

Note: Your program has to work for any given $N \times N$ binary matrix as input. Answer:

Input:

Expected Output:

Solution 1 [0, 1, 3, 2, 4] Solution 2 [0, 1, 3, 4, 2] Number of solutions is 2

Marking Scheme:

- The program is expected to work for any input $N \times N$ binary matrix, if not, marks will be awarded accordingly.
- Encoding the problem: 5 marks
- Display schedules 4 marks
- Count how many solutions are possible 1 mark
- The program is checked with several test cases, if it fails, then marks will be awarded accordingly.