Logic and applications

Ramchandra Phawade Department of Computer Science and Engineering IIT Dharwad, India

25 and 26 Sep 2023

< 47 ▶

э

Proof system : A syntactic construct

Components of a proof system :

• Axioms

$$(\alpha \implies (\beta \implies \alpha)) (\alpha \implies (\beta \implies \gamma)) \implies ((\alpha \implies \beta) \implies (\alpha \implies \gamma)) (\neg \alpha \implies \neg \beta) \implies (\beta \implies \alpha)$$

• Deduction Rules : Modus Ponens

Assumption :
$$\alpha, \alpha \implies \beta$$

Conclusion: β

Consistency

Definition (Consistency 1)

A set of wffs Σ is consistent if, there $\nexists \alpha$ such that $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$.

Definition (Consistency 2)

 Σ is consistent iff $\exists \alpha$ such that $\Sigma \nvDash \alpha$.

A 🖓

consistency and satisfiability -01

Using Soundness theorem ($\Sigma \vdash \alpha \implies \Sigma \vDash \alpha$).

Theorem

 Σ is satisfiable $\implies \Sigma$ is consistent.

- \emptyset is consistent
- $\Sigma = \{p_i \implies p_j \mid p_i, i \in \mathbf{N}\}$ is consistent.
- Set of all wffs is not consistent

consistency and satisfiability -02

Theorem

 Σ is consistent $\implies \Sigma$ is satisfiable .

э

Image: Image:

consistency and satisfiability -02

Theorem

 Σ is consistent $\implies \Sigma$ is satisfiable .

The rest of the lecture is about proving this theorem.

- Σ is consistent
- Σ' is Maximally consistent ($\Sigma \subseteq \Sigma'$)
- Prove that Σ' is satisfiable
- Σ is satisfiable.

A set of wffs $\boldsymbol{\Sigma}$ is maximally consistent if,

- Σ is consistent
- Maximality condition:

For all α , either $\Sigma \vdash \alpha$ or $\Sigma \cup \{\alpha\}$ is not consistent.

A set of wffs Σ is maximally consistent if,

- Σ is consistent
- Maximality condition:

For all α , either $\Sigma \vdash \alpha$ or $\Sigma \cup \{\alpha\}$ is not consistent.

Claim

 $\Sigma = \{p_1\}$ over the variables p_1, p_2, \ldots is consistent but not maximally consistent.

A set of wffs Σ is maximally consistent if,

- Σ is consistent
- Maximality condition:

For all α , either $\Sigma \vdash \alpha$ or $\Sigma \cup \{\alpha\}$ is not consistent.

Claim

 $\Sigma = \{p_1\}$ over the variables p_1, p_2, \ldots is consistent but not maximally consistent.

To prove that it is not maximally consistent, rule out both the cases in the second condition.

Come up with such an α .

A set of wffs Σ is maximally consistent if,

- Σ is consistent
- Maximality condition:

For all α , either $\Sigma \vdash \alpha$ or $\Sigma \cup \{\alpha\}$ is not consistent.

Claim

 $\Sigma = \{p_1\}$ over the variables p_1, p_2, \ldots is consistent but not maximally consistent.

To prove that it is not maximally consistent, rule out both the cases in the second condition.

Come up with such an α .

Take $\alpha = p_3$.

- Σ ⊭ {p₃}.
 Otherwise we get a contradiction using soundness.
- $\{p_1, p_3\}$ is consistent as it is satisfiable.

For any consistent set of wffs Σ , there exists Σ' such that $\Sigma \subseteq \Sigma'$ and Σ' is maximally consistent.

Image: Image:

э

For any consistent set of wffs Σ , there exists Σ' such that $\Sigma \subseteq \Sigma'$ and Σ' is maximally consistent.

• Enumerate all wffs $\alpha_1, \alpha_2, \ldots$

For any consistent set of wffs Σ , there exists Σ' such that $\Sigma \subseteq \Sigma'$ and Σ' is maximally consistent.

- Enumerate all wffs $\alpha_1, \alpha_2, \ldots$
- Define $\Sigma_0 = \Sigma$

э

< 47 ▶

For any consistent set of wffs Σ , there exists Σ' such that $\Sigma \subseteq \Sigma'$ and Σ' is maximally consistent.

- Enumerate all wffs $\alpha_1, \alpha_2, \ldots$
- Define $\Sigma_0 = \Sigma$
- Define

$$\Sigma_{i+1} = \begin{cases} \Sigma_i & \text{if } \Sigma_i \vdash \neg(\alpha_{i+1}) \\ \Sigma_i \cup \{\alpha_{i+1}\} & \text{otherwise.} \end{cases}$$

< 47 ▶

э

For any consistent set of wffs Σ , there exists Σ' such that $\Sigma \subseteq \Sigma'$ and Σ' is maximally consistent.

- Enumerate all wffs $\alpha_1, \alpha_2, \ldots$
- Define $\Sigma_0 = \Sigma$
- Define

$$\Sigma_{i+1} = \begin{cases} \Sigma_i & \text{if } \Sigma_i \vdash \neg(\alpha_{i+1}) \\ \Sigma_i \cup \{\alpha_{i+1}\} & \text{otherwise.} \end{cases}$$

• Define
$$\Sigma' = \bigcup_{i \in \mathbf{N}}^{\infty} \Sigma_i$$

Now we prove that Σ' is maximally consistent.

Properties of the sets used to construct Σ' : (Step 1)

$$\Sigma_{i+1} = \begin{cases} \Sigma_i & \text{if } \Sigma_i \vdash \neg(\alpha_{i+1}) \\ \Sigma_i \cup \{\alpha_{i+1}\} & \text{otherwise.} \end{cases}$$

- each Σ_{i+1} is consistent
- for every *i* (index of enumeration of wffs) Either $\Sigma_{i+1} \vdash \alpha_{i+1}$ or $\Sigma_{i+1} \vdash \neg(\alpha_{i+1})$

Proving condition (2) is very easy. Proving condition (1) is little bit tedious. Assume that each Σ_i satisfies both these conditions, and prove that Σ' is Maximally consistent.

Proving that Σ_{i+1} is consistent

$$\Sigma_{i+1} = \begin{cases} \Sigma_i & \text{if } \Sigma_i \vdash \neg(\alpha_{i+1}) \\ \Sigma_i \cup \{\alpha_{i+1}\} & \text{otherwise.} \end{cases}$$

- Case 1: Σ_{i+1} = Σ_i.
 by IH we know that Σ_i is consistent.
- Case 2: $\Sigma_{i+1} = \Sigma_i \cup \{\alpha_{i+1}\}$.

3. 3

< A → < 3

Proof by contradiction.

• $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent

3

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$

3

< □ > < 同 > < 三 > < 三 >

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- Solution In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$

3

< 回 > < 三 > < 三 >

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- Solution In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$
- by Deduction theorem $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1}))$

- 34

A (10) < A (10) < A (10) </p>

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- Solution In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$
- by Deduction theorem $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1}))$

- 34

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$
- by Deduction theorem $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1}))$

(Exercise)

• put $\gamma = \alpha_{i+1}$ to get $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1})) \implies \neg(\alpha_{i+1})$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$
- by Deduction theorem $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1}))$

(Exercise)

• put $\gamma = \alpha_{i+1}$ to get $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1})) \implies \neg(\alpha_{i+1})$ • $\Sigma_i \vdash \neg(\alpha_{i+1})$ MP, 4, 6

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof by contradiction.

- $\Sigma_i \cup \{\alpha_{i+1}\}$ is not consistent
- $2 \Sigma_i \cup \{\alpha_{i+1}\} \vdash \beta$
- In particular $\beta = \neg(\alpha_{i+1})$, so $\Sigma_i \cup \{\alpha_{i+1}\} \vdash \neg(\alpha_{i+1})$
- by Deduction theorem $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1}))$

(Exercise)

- put $\gamma = \alpha_{i+1}$ to get $\Sigma_i \vdash (\alpha_{i+1} \implies \neg(\alpha_{i+1})) \implies \neg(\alpha_{i+1})$
- $\Sigma_i \vdash \neg(\alpha_{i+1})$ MP, 4, 6
- **8** but then $\Sigma_{i+1} = \Sigma_i$, a contradiction.

Prove that Σ' is maximally consistent

- Prove that Σ' is consistent
- Prove that Σ' satisfies the maximality condition :
 For all α, either Σ ⊢ α or Σ ∪ {α} is not consistent.

Ramchandra Phawade

Logic and applications

25 and 26 Sep 2023 12 / 1

э

Proof by contradiction.

э

Image: A matrix

Proof by contradiction.

• Assume that Σ' is inconsistent.

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.
- All assumptions used in $\Sigma' \vdash \alpha$ belong to some Σ_i .

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.
- All assumptions used in $\Sigma' \vdash \alpha$ belong to some Σ_i .
- All assumptions used in $\Sigma' \vdash \neg \alpha$ belong to some Σ_j .

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.
- All assumptions used in $\Sigma' \vdash \alpha$ belong to some Σ_i .
- All assumptions used in $\Sigma' \vdash \neg \alpha$ belong to some Σ_j .
- $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots \subseteq \Sigma_i \ldots \subseteq \Sigma_j \ldots \subseteq \Sigma_k \ldots$

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.
- All assumptions used in $\Sigma' \vdash \alpha$ belong to some Σ_i .
- All assumptions used in $\Sigma' \vdash \neg \alpha$ belong to some Σ_j .
- $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots \subseteq \Sigma_i \ldots \subseteq \Sigma_j \ldots \subseteq \Sigma_k \ldots$
- $\Sigma_k \vdash \alpha$ and $\Sigma_k \vdash \neg \alpha$

- Assume that Σ' is inconsistent.
- For some wff α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$.
- Proof are finite.
- All assumptions used in $\Sigma' \vdash \alpha$ belong to some Σ_i .
- All assumptions used in $\Sigma' \vdash \neg \alpha$ belong to some Σ_j .
- $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots \subseteq \Sigma_i \ldots \subseteq \Sigma_j \ldots \subseteq \Sigma_k \ldots$
- $\Sigma_k \vdash \alpha$ and $\Sigma_k \vdash \neg \alpha$
- A contradiction, as Σ_k is inconsistent now.

э

Image: A matrix

For all α , either $\Sigma' \vdash \alpha$ or $\Sigma' \cup \{\alpha\}$ is not consistent.

For all α , either $\Sigma' \vdash \alpha$ or $\Sigma' \cup \{\alpha\}$ is not consistent.

• $\alpha = \alpha_i$ for some *i*.

For all α , either $\Sigma' \vdash \alpha$ or $\Sigma' \cup \{\alpha\}$ is not consistent.

- $\alpha = \alpha_i$ for some *i*.
- Σ_i satisfies Conditions (1) and conditions (2): $\Sigma_i \vdash \alpha_i$ or $\Sigma_i \vdash \neg \alpha_i$

For all α , either $\Sigma' \vdash \alpha$ or $\Sigma' \cup \{\alpha\}$ is not consistent.

- $\alpha = \alpha_i$ for some *i*.
- Σ_i satisfies Conditions (1) and conditions (2):
 Σ_i ⊢ α_i or Σ_i ⊢ ¬α_i
 i.e., Σ_i ⊢ α or Σ_i ⊢ ¬α
- $\Sigma' \vdash \alpha$ or $\Sigma' \vdash \neg \alpha$

Proving that Σ' is satisfiable

▶ < ∃ >

э

Proving that Σ' is satisfiable

Define a valuation function as follows:

$$V_{\Sigma'}(p) = egin{cases} {True,} & ext{if} \ \ \Sigma' dash p \ False, & ext{otherwise.} \end{cases}$$

э

Proving that Σ' is satisfiable

Define a valuation function as follows:

$$V_{\Sigma'}(p) = egin{cases} True, & ext{if} \ \ \Sigma' dash p \ False, & ext{otherwise}. \end{cases}$$

Claim (Sufficient to prove that Σ' is satisfiable) For all α , $\Sigma' \vdash \alpha$ iff $V_{\Sigma'}(\alpha) = True$

Ramchandra Phawade

人口下 人間下 人居下 人居下 二日

Proof is by structural induction on all wffs.

3

Proof is by structural induction on all wffs.

• Base case: $\gamma = p$ $\Sigma' \vdash p$ iff $V_{\Sigma'}(p) = True$. By definition of valuation function.

・ 何 ト ・ ヨ ト ・ ヨ ト

Proof is by structural induction on all wffs.

- Base case: $\gamma = p$ $\Sigma' \vdash p$ iff $V_{\Sigma'}(p) = True$. By definition of valuation function.
- Induction step (1) : $\gamma = (\neg \alpha)$

< 回 > < 三 > < 三 >

Proof is by structural induction on all wffs.

- Base case: $\gamma = p$ $\Sigma' \vdash p$ iff $V_{\Sigma'}(p) = True$. By definition of valuation function.
- Induction step (1) : $\gamma = (\neg \alpha)$
- Induction step (2) : $\gamma = (\alpha \implies \beta)$

We use adequacy of set $\{\neg, \Longrightarrow\}$ for the propositional logic.

- 4 回 ト 4 三 ト 4 三 ト

人口下 人間下 人居下 人居下 一居

Induction step (1) : $\gamma = (\neg \alpha)$

3

Induction step (1) : $\gamma = (\neg \alpha)$

- Assume : $\Sigma' \vdash (\neg \alpha)$
- iff $\Sigma' \nvDash \alpha$
- iff $V_{\Sigma'}(\alpha) = False$
- iff $V_{\Sigma'}(\neg \alpha) = True$

(consistency of Σ') (Induction Hypothesis) (\neg truth table)

- 34

Induction step (1) : $\gamma = (\neg \alpha)$

- Assume : $\Sigma' \vdash (\neg \alpha)$
- iff $\Sigma' \nvDash \alpha$
- iff $V_{\Sigma'}(\alpha) = False$
- iff $V_{\Sigma'}(\neg \alpha) = True$
- Assume : $\Sigma' \nvDash (\neg \alpha)$
- iff $\Sigma' \vdash \alpha$
- iff $V_{\Sigma'}(\alpha) = True$
- iff $V_{\Sigma'}(\neg \alpha) = False$

(consistency of Σ') (Induction Hypothesis) (\neg truth table)

(maximality of Σ') (Induction Hypothesis) (¬ truth table)

Induction step (1) : $\gamma = (\neg \alpha)$

- Assume : $\Sigma' \vdash (\neg \alpha)$
- iff $\Sigma' \nvDash \alpha$
- iff $V_{\Sigma'}(\alpha) = False$

• iff
$$V_{\Sigma'}(\neg \alpha) = True$$

- Assume : $\Sigma' \nvDash (\neg \alpha)$
- iff $\Sigma' \vdash \alpha$
- iff $V_{\Sigma'}(\alpha) = True$ (Induction Hypothesis)
- iff $V_{\Sigma'}(\neg \alpha) = False$

 $(\neg$ truth table)

(maximality of Σ')

(consistency of Σ')

 $(\neg$ truth table)

(Induction Hypothesis)

(contrapositive statement of reverse direction is proved).

See that both directions of the claim are proved simultaneously so far.

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

A D N A (B) N A B N A B N B

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

• by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$

3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

- 31

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

- 3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

 $\bullet \ \mathbf{\Sigma'} \vdash \alpha$

(Assumption)

3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

- $\Sigma' \vdash \alpha$
- $\Sigma' \vdash (\alpha \implies \beta)$

(Assumption) (Assumption)

3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

• $\Sigma' \vdash \alpha$ (Assumption) • $\Sigma' \vdash (\alpha \implies \beta)$ (Assumption) • $\Sigma' \vdash \beta$ (MP 1,2)

- 34

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

• $\Sigma' \vdash \alpha$	(Assumption)
• $\Sigma' \vdash (\alpha \implies \beta)$	(Assumption)
• $\Sigma' \vdash \beta$	(MP 1,2)
• Now	

• $\Sigma' \vdash \alpha$ iff $V_{\Sigma'}(\alpha) = True$ (IH)

- 3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

• $\Sigma' \vdash \alpha$	(Assumption)
• $\Sigma' \vdash (\alpha \implies \beta)$	(Assumption)
• $\Sigma' \vdash \beta$	(MP 1,2)
• Now	
• $\Sigma' \vdash \alpha$ iff $V_{\Sigma'}(\alpha) = True$	(IH)

• $\Sigma' \vdash \beta$ iff $V_{\Sigma'}(\beta) = True$ (IH)

- 3

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (1) : $\Sigma' \vdash \alpha$

• $\Sigma' \vdash \alpha$	(Assumption)
• $\Sigma' \vdash (\alpha \implies \beta)$	(Assumption)
• $\Sigma' \vdash \beta$	(MP 1,2)
Now	
• $\Sigma' \vdash \alpha$ iff $V_{\Sigma'}(\alpha) = True$	(IH)
• $\Sigma' \vdash \beta$ iff $V_{\Sigma'}(\beta) = True$	(IH)
• iff $V_{\Sigma'}(\alpha \implies \beta) = True$	(truth table of \implies)
	<日 > < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < = < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < < 回 > < < = < < 回 > < < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < = < < =

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

A D N A (B) N A B N A B N B

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

• by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$

- 34

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

(4) (日本)

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (2) : $\Sigma' \vdash \neg \alpha$

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (2) : $\Sigma' \vdash \neg \alpha$

• $\Sigma' \nvDash \alpha$

(Consistency of Σ')

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (2) : $\Sigma' \vdash \neg \alpha$

- $\Sigma' \nvDash \alpha$ (Consistency of Σ')
- iff $V_{\Sigma'}(\alpha) = False$ (by IH, as α is subformula of γ)

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \vdash (\alpha \implies \beta)$ one direction of claim

- by Maximality of Σ' , either $\Sigma' \vdash \alpha$ or $\Sigma' \vdash (\neg \alpha)$
- In both cases we have to prove that $V_{\Sigma'}(\gamma) = True$.

Case (2) : $\Sigma' \vdash \neg \alpha$

- $\Sigma' \nvDash \alpha$ (Consistency of Σ')
- iff $V_{\Sigma'}(\alpha) = False$

• iff
$$V_{\Sigma'}(\alpha \implies \beta) = True$$

(by IH, as α is subformula of γ)

 $(truth table of \implies)$

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

A D N A (B) N A B N A B N B

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

• We have $\Sigma' \nvDash \beta$

3

(日)

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

- We have $\Sigma' \nvDash \beta$
 - Otherwise we have $\Sigma' \vdash \beta$

(maximality)

< □ > < 同 > < 三 > < 三 >

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

- We have $\Sigma' \nvDash \beta$
 - Otherwise we have $\Sigma' \vdash \beta$

•
$$\Sigma' \vdash (\beta \implies (\alpha \implies \beta))$$

(maximality) (Axiom 1)

< □ > < 同 > < 三 > < 三 >

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

- We have $\Sigma' \nvDash \beta$
 - Otherwise we have $\Sigma' \vdash \beta$

•
$$\Sigma' \vdash (\beta \implies (\alpha \implies \beta))$$

•
$$\Sigma' \vdash (\alpha \implies \beta)$$
 (contradiction)

(maximality) (Axiom 1) (MP)

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvdash (\alpha \implies \beta)$ other direction of claim : contrapositive

We have Σ' ⊭ β Otherwise we have Σ' ⊢ β Σ' ⊢ (β ⇒ (α ⇒ β)) Σ' ⊢ (α ⇒ β) (contradiction) iff V_{Σ'}(β) = False

(maximality) (Axiom 1) (MP) (by IH)

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

• We have
$$\Sigma' \nvDash \beta$$

• Otherwise we have $\Sigma' \vdash \beta$ (maximality)
• $\Sigma' \vdash (\beta \implies (\alpha \implies \beta))$ (Axiom 1)
• $\Sigma' \vdash (\alpha \implies \beta)$ (contradiction) (MP)
• iff $V_{\Sigma'}(\beta) = False$ (by IH)
• $V_{\Sigma'}(\alpha \implies \beta) = False$ unless $V_{\Sigma'}(\alpha) = False$.

A D N A (B) N A B N A B N B

Induction step (2) :
$$\gamma = (\alpha \implies \beta)$$

Assume : $\Sigma' \nvDash (\alpha \implies \beta)$ other direction of claim : contrapositive

• We have
$$\Sigma' \nvDash \beta$$

• Otherwise we have $\Sigma' \vdash \beta$ (maximality)
• $\Sigma' \vdash (\beta \Longrightarrow (\alpha \Longrightarrow \beta))$ (Axiom 1)
• $\Sigma' \vdash (\alpha \Longrightarrow \beta)$ (contradiction) (MP)
• iff $V_{\Sigma'}(\beta) = False$ (by IH)
• $V_{\Sigma'}(\alpha \Longrightarrow \beta) = False$ unless $V_{\Sigma'}(\alpha) = False$.

• We rule out the case
$$V_{\Sigma'}(\alpha) = False$$
.

A D N A (B) N A B N A B N B

э

• Assume : $V_{\Sigma}(\alpha) = False$.

< □ > < 同 > < 三 > < 三 >

э

- Assume : $V_{\Sigma}(\alpha) = False$.
- iff $\Sigma' \nvDash \alpha$

(by IH).

< □ > < 同 > < 三 > < 三 >

э

- Assume : $V_{\Sigma}(\alpha) = False$.
- iff $\Sigma' \nvDash \alpha$
- $\Sigma' \vdash \neg \alpha$

(by IH). (by maximality).

3

< □ > < 同 > < 三 > < 三 >

- Assume : $V_{\Sigma}(\alpha) = False$.
- iff $\Sigma' \nvDash \alpha$
- $\Sigma' \vdash \neg \alpha$
- $\Sigma' \cup \{\alpha\} \cup \{\neg \alpha\} \vdash \beta$

(by IH). (by maximality). (LHS is inconsistent)

3

< 回 > < 三 > < 三 >

- Assume : $V_{\Sigma}(\alpha) = False$.
- iff $\Sigma' \nvDash \alpha$
- $\Sigma' \vdash \neg \alpha$
- $\Sigma' \cup \{\alpha\} \cup \{\neg \alpha\} \vdash \beta$
- $\Sigma' \cup \{\neg \alpha\} \vdash (\alpha \implies \beta)$

(by IH). (by maximality). (LHS is inconsistent) (deduction theorem)

3

▶ < ∃ >

< A > < E

- Assume : $V_{\Sigma}(\alpha) = False$.
- iff $\Sigma' \not\vdash \alpha$
- $\Sigma' \vdash \neg \alpha$
- $\Sigma' \cup \{\alpha\} \cup \{\neg \alpha\} \vdash \beta$
- $\Sigma' \cup \{\neg \alpha\} \vdash (\alpha \implies \beta)$

(deduction theorem) • $\Sigma' \vdash (\alpha \implies \beta)$ (contradiction) (Since $\Sigma' \vdash \neg \alpha$ and monotonicity)

< A > <

(by IH).

(by maximality).

(LHS is inconsistent)

consistency and satisfiability

Theorem Σ is satisfiable $\implies \Sigma$ is consistent. Theorem Σ is consistent $\implies \Sigma$ is satisfiable.

- Σ is consistent
- Σ' is Maximally consistent $(\Sigma \subseteq \Sigma')$
- Prove that Σ' is satisfiable
- Σ is satisfiable.

Completeness theorem : $\Sigma \vDash \alpha \implies \Sigma \vdash \alpha$

Proof by contradiction:

- Assumption : $\Sigma \nvDash \alpha$
- iff $\Sigma \cup \{\neg \alpha\}$ is consistent
- iff $\Sigma \cup \{\neg \alpha\}$ is satisfiable
- iff $\Sigma \nvDash \alpha$

(Last result). (definition of ⊨).

э

▶ < ∃ >

< A > < E

Applications

- compactness theorem
- maximal satisfiability iff maximal consistency

3

4 E

Compactness theorem : one more proof

- Σ is satifiable iff $\forall A \subseteq_{fin} \Sigma$ is satisfiable.
 - Σ is satisfiable
 - iff Σ is consistent
 - iff $A \subseteq_{fin} \Sigma$ is consistent
 - iff $A \subseteq_{fin} \Sigma$ is satisfiable

(Thm: satisfiablity ⇒ consistency)
(inconsistency is due to finite subsets)
(Thm: satisfiablity ⇐ consistency)

Thm: Σ maximally satisfiable iff Σ maximally consistent

 Σ maximally satisfiable $\implies \Sigma$ maximally consistent

- Assumption: Σ maximally satisfiable
- Σ is satisfiable
- Σ is consistent
- $\forall \alpha$, either $\Sigma \vDash \alpha$ or $\Sigma \vDash \neg \alpha$
- $\forall \alpha$, either $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$
- Σ is maximally consistent, as required.

(by Thm proved earlier -1). (maximal satisfiability) (by completeness theorem) Thm: Σ maximally satisfiable iff Σ maximally consistent

 Σ maximally satisfiable $\Leftarrow \Sigma$ maximally consistent

- Assumption: Σ maximally consistent
- Σ is consistent
- Σ is satisfiable
- $\forall \alpha$, either $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$
- $\forall \alpha$, either $\Sigma \vDash \alpha$ or $\Sigma \vDash \neg \alpha$
- Σ is maximally satisfiable, as required.
- (by Thm proved earlier -1). (maximal consistency) (by soundness theorem)