Indian Institute of Technology Dharwad

CS 621 Logic and Applications

Assignment 2 : Programming Assignment
Date of submission: 26 Oct 2023 (5pm)
Mode of submission : email, with subject line - "CS 621: Assignment2"

- Model the puzzle and solve it using Z3
- Your submission must include a ReadMe file, with instructions on how to execute your code.
- You can choose either Z3cpp or Z3py interfaces.
- You can read the input from file/command line or write the output to a file/command line, however you want to, there are no other restrictions.

1. Given an 8 litre bucket of water (say A), and two empty buckets (say B and C) which can contain 5 and 3 litres respectively, you are asked to distribute the water such that there is 4 litres in A, and 4 litres in B.
What is the minimum number of transfers of water between buckets? Show the stepwise transfers.
Encode this using satisfiability constraints and solve them using Z3.

Expected Output:

```
step 0: A:8 B:0 C:0
transfer from A to C
step 1: A:3 B:0 C:5
step n: A:4 B:4 C:0
```

2. Definition (Graph colouring) : Given Graph $G=(V, E)$ a valid colouring of a graph is an assignment of colours to the vertices of the graph so that no two adjacent vertices have the same colour.
Write a program that can assign colours to each vertex in G.

Input:

- A set of vertices $V=[A, B, C, D]$
- Pairs of edges $E=[(A, B),(A, C),(A, D),(B, D),(C, D)]$

Expected Output:

- Total number of colours required in a valid colouring of $G: 3$
- A valid assignment of colours to all vertices in V (say) $A: 0, B: 1, C$: $1, D: 2$
The naive approach would be to assign a different colour to each vertex, which is not interesting. This approach will not be accepted as a valid solution. One should give the least possible number of colors possible.

3. Scheduling Problem An employer needs to interview N candidates, and therefore makes N interview slots. Every person has a free-busy schedule for those slots.
(a) Can you schedule the interview, such that there is exactly one candidate allocated for a timeslot, for each of the N candidates?
(b) How many such schedules can you make?

- Input: The input to your program, can be a binary matrix of this form, where columns represent candidates C_{0}, \cdots, C_{N-1} and rows represent time slots T_{0}, \cdots, T_{N-1}.
If a candidate is free, it is represented by 1 . If the candidate is busy, it is represented by 0 .

	C0	C1	C2
TS0	1	0	0
TS1	0	0	0
TS2	1	1	1

In the above figure, in timeslot T_{0}, only candidate C_{0} is free; in timeslot $T S_{2}$, all candidates are busy.

- Expected Output:
(a) For (a), if satisfiable, display the interview schedules
(b) For (b) Count how many such schedules are possible? Print all possible solutions.
Note: Your program has to work for any given $N \times N$ binary matrix as input.

