logic and applications repo initiated
This commit is contained in:
parent
9c737b9b2a
commit
a42072e028
Binary file not shown.
|
@ -0,0 +1,5 @@
|
||||||
|
Inductive definition of sets
|
||||||
|
separation property : to prove that some element is not element of
|
||||||
|
this set.
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,7 @@
|
||||||
|
Definition of inductive sets
|
||||||
|
Definition of wffs
|
||||||
|
Definition of T1 : last symbol from right should be a ')' or a
|
||||||
|
proposition.
|
||||||
|
|
||||||
|
violating example : (p and q)^r
|
||||||
|
|
|
@ -0,0 +1,7 @@
|
||||||
|
Property T2 : : equal number of ('s and )'s
|
||||||
|
Some example ((p)()
|
||||||
|
Satisfies T2 but not T1
|
||||||
|
|
||||||
|
Definition of PIS : proper initial segment
|
||||||
|
Also called proper prefix.
|
||||||
|
|
|
@ -0,0 +1,5 @@
|
||||||
|
initial proper segment contd.
|
||||||
|
It captures mismatched parenthesis
|
||||||
|
)(()
|
||||||
|
this example satisfies property T2 : equal number of ('s and )'s
|
||||||
|
|
|
@ -0,0 +1,15 @@
|
||||||
|
Semantics of propositional logic
|
||||||
|
|
||||||
|
Valuation
|
||||||
|
Satisfiability
|
||||||
|
unѕatisfiable
|
||||||
|
validity
|
||||||
|
contradiction
|
||||||
|
tautology
|
||||||
|
logical implication
|
||||||
|
logical equivalence
|
||||||
|
|
||||||
|
claim : \alpha logically implies \beta Iff (\alpha \implies \beta) is a tautology.
|
||||||
|
claim : If \alpha is a contradiction then for any \beta, \alpha logically implies \beta.
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
Semantic notions for a set of formulas:
|
||||||
|
|
||||||
|
\Sigma - satisfiable, examples.
|
||||||
|
|
||||||
|
Logical implication \Sigma \entails \alpha
|
||||||
|
|
||||||
|
complete -- \Sigma \entails \alpha (inclusive OR) \Sigma \entails (\neg \alpha)
|
||||||
|
|
||||||
|
\Sigma is satisfiable and complete then
|
||||||
|
\Sigma \entails \alpha (XOR) \Sigma \entails (\neg \alpha)
|
||||||
|
|
||||||
|
Maximum Satisfiability
|
||||||
|
In addition to being satisfiable, Sigma has the following property:
|
||||||
|
\neg( \Sigma \entails \alpha) \implies \Sigma \cup \{ \alpha\} is not satisfiable.
|
|
@ -0,0 +1,19 @@
|
||||||
|
Thm : \Sigma is Maximum Satisfiability
|
||||||
|
iff
|
||||||
|
\Sigma is satisfiable and complete.
|
||||||
|
Proof of above theorem.
|
||||||
|
|
||||||
|
Claim: \Sigma \entails \alpha Iff \Sigma \cup \{ \neg \alpha\} is Not satisfiable.
|
||||||
|
|
||||||
|
|
||||||
|
Finite models theorem: (FMT)
|
||||||
|
A set \Sigma \entails some wff \alpha
|
||||||
|
implies
|
||||||
|
there is a finite subset of \Sigma which \entails \alpha.
|
||||||
|
|
||||||
|
Proof of FMT using claim above.
|
||||||
|
|
||||||
|
Claim : \Sigma is maximally satisfiable Iff
|
||||||
|
\Sigma has a unique valuation.
|
||||||
|
Left as an exercise.
|
||||||
|
|
|
@ -0,0 +1,11 @@
|
||||||
|
Finite satisfiability
|
||||||
|
Statement of Compactness theorem
|
||||||
|
Proof :
|
||||||
|
Godel Numbering
|
||||||
|
Construction of \Delta from \Sigma
|
||||||
|
Proving that \Delta is satisfiable.
|
||||||
|
Lemma : Given \Sigma is FS. Then for any formula \alpha
|
||||||
|
\Sigma \cup \{ \alpha \} is satisfiable OR
|
||||||
|
\Sigma \cup \{ \neg \alpha \} is satisfiable.
|
||||||
|
Proof of this lemma is remaining.
|
||||||
|
|
|
@ -0,0 +1,15 @@
|
||||||
|
Applications of compactness theorem:
|
||||||
|
2-colorability of graphs
|
||||||
|
|
||||||
|
Goal: Given a graph G=(V,E) it is 2-colorable iff every finite subset of G is 2-colorable.
|
||||||
|
|
||||||
|
Proof outline:
|
||||||
|
Given a graph G=(V,E) construct a set \Sigma of wffs such that
|
||||||
|
G is 2-colorable
|
||||||
|
iff (step 1)
|
||||||
|
\Sigma is satisfiable.
|
||||||
|
iff
|
||||||
|
(by CT) \Sigma is finitely satisfiable
|
||||||
|
iff (step 2)
|
||||||
|
Each finite subset of G is 2-colorable.
|
||||||
|
|
Loading…
Reference in New Issue