class summary for 33,34,35 done
This commit is contained in:
parent
90138bcc30
commit
9169bad2b2
|
@ -0,0 +1,16 @@
|
||||||
|
Undecidability of validity problem in FOL
|
||||||
|
|
||||||
|
PCP - examples
|
||||||
|
PCP to validity reduction
|
||||||
|
|
||||||
|
Let x and y be the strings over {0,1}.
|
||||||
|
Let K be an instance of PCP.
|
||||||
|
That is ((x_1,y_1),(x_2,y_2).....(x_k,y_k))
|
||||||
|
where for all i \in {1,..,k} x_i, y_i are strings over {0,1}.
|
||||||
|
Then the set of indices i_1,i_2,..i_n \in {1,..,k} is a solution if
|
||||||
|
x_{i_1}x_{i_2}...x_{i_n}= y_{i_1}y_{i_2}...y_{i_n}.
|
||||||
|
|
||||||
|
|
||||||
|
From instance k construct \phi_k.
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,4 @@
|
||||||
|
Correctness of PCP to validity problem reduction
|
||||||
|
|
||||||
|
K has a solution iff \phi_k is valid.
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
midsem answersheets
|
||||||
|
|
Loading…
Reference in New Issue