19 lines
744 B
Plaintext
19 lines
744 B
Plaintext
|
Class 14 : *** Proof system for logic
|
||
|
|
||
|
** Desirable properties of a proof system
|
||
|
** Proof systems has a set of axioms (AXIOMS) and rules (R).
|
||
|
** Set of formulas provable in the system = I(AXIOMS, R).
|
||
|
Alternatively, provable formulas have legal construction sequences over AXIOMS and R.
|
||
|
|
||
|
** Hilbert's proof system for Propositional Logic:
|
||
|
* Axioms :
|
||
|
* Ax1 : (\alpha --> (\beta --> \alpha))
|
||
|
* Ax2 : ( (\alpha --> (\beta --> \gamma)) --> ((\alpha --> \beta) --> (\alpha --> \gamma)) )
|
||
|
* Ax3 : ( (\neg \beta --> \neg \alpha) --> (\alpha --> \beta) )
|
||
|
* Rules : Modus Ponens
|
||
|
If we have proofs of \alpha, \(alpha --> \beta)
|
||
|
then we can derive \beta
|
||
|
|
||
|
** Example : proved (\alpha --> \alpha) in Hilbert's proof system.
|
||
|
|