15 lines
506 B
Plaintext
15 lines
506 B
Plaintext
|
Semantic notions for a set of formulas:
|
||
|
|
||
|
\Sigma - satisfiable, examples.
|
||
|
|
||
|
Logical implication \Sigma \entails \alpha
|
||
|
|
||
|
complete -- \Sigma \entails \alpha (inclusive OR) \Sigma \entails (\neg \alpha)
|
||
|
|
||
|
\Sigma is satisfiable and complete then
|
||
|
\Sigma \entails \alpha (XOR) \Sigma \entails (\neg \alpha)
|
||
|
|
||
|
Maximum Satisfiability
|
||
|
In addition to being satisfiable, Sigma has the following property:
|
||
|
\neg( \Sigma \entails \alpha) \implies \Sigma \cup \{ \alpha\} is not satisfiable.
|