Initial Commit
This commit is contained in:
parent
e3ad08a3cf
commit
3d80aff565
|
@ -0,0 +1,126 @@
|
|||
%\documentclass[addpoints]{exam}
|
||||
\documentclass[addpoints, answers]{exam}
|
||||
%& -job-name=XYZ
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{cleveref}
|
||||
\usepackage[siunitx, american]{circuitikz}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{lastpage}
|
||||
%\input{cedtcommands.tex}
|
||||
|
||||
\footer{}{\thepage/\pageref{LastPage}}{}
|
||||
%\boxedpoints
|
||||
\bracketedpoints
|
||||
\pointsinrightmargin
|
||||
|
||||
%-------------------------------------------------------------
|
||||
\begin{document}
|
||||
%This code creates the text before the first question
|
||||
%-------------------------------------------------------------------
|
||||
\pagenumbering{arabic} \setcounter{page}{1}
|
||||
|
||||
\vspace{-10mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.5\textwidth]{Logo-BW_-Wide.png}
|
||||
\end{center}
|
||||
\begin{center}\textbf{\LARGE{EE101 Spring 2021 Exam 1} }\end{center}
|
||||
\begin{center}{Instructor: Dr. Abhijit Kshirsagar \\({username@domain.academic})}\end{center}
|
||||
\small
|
||||
\begin{center}
|
||||
%Date and Time
|
||||
March 16, 2020, 8am - 10am
|
||||
\end{center}
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
\makebox[\textwidth]{\large Full Name (all caps):\hspace{2mm}\enspace\hrulefill}
|
||||
|
||||
\vspace{7mm}
|
||||
|
||||
\makebox[\textwidth]{\large Roll Number / ID (all caps):\enspace\hrulefill}
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
{
|
||||
\large
|
||||
\textbf{Instructions:}
|
||||
\normalsize
|
||||
\begin{enumerate}
|
||||
\item Modify this text block to add all the instructions.
|
||||
\item The front page is designed to have just the instructions - questions begin on the next page.
|
||||
\item Put away all bags, books, notebooks, cellphones, laptops, tablets, smartwatches, etc.
|
||||
\item Only ONE A4 or letter sized crib sheet for formulae or notes is allowed.
|
||||
\item Scientific/programmable calculators are allowed.
|
||||
\item Write your answers clearly and legibly in the space provided.
|
||||
\item Points will be awarded for correct formulae, intermediate steps and working.
|
||||
\item Use the provided paper for rough work if needed.
|
||||
\item If any data are missing, make reasonable assumptions and state the same with justification.
|
||||
\item This exam booklet has a total of {\numquestions}~questions on \pageref{LastPage} pages.
|
||||
\item The exam consists of three sections worth 25 points, 25 points and 50 points respectively.
|
||||
\item Points for each question are indicated in square brackets in the right margin.
|
||||
\item For multiple choice questions, select the \textbf{best option} or \textbf{all correct answers}, as appropriate,
|
||||
and write your response in the space below each question, e.g. \textbf{A} or \textbf{A,B,D}
|
||||
\item For fill-in-the-blank questions write the answer in the corresponding blank space.
|
||||
\end{enumerate}
|
||||
}
|
||||
\normalsize
|
||||
|
||||
\clearpage
|
||||
%-------------------------------------------------------------------
|
||||
|
||||
%Here, the questions begin
|
||||
\begin{questions}
|
||||
\fullwidth{\Large \textbf{Section 1: \pointsinrange{grsec1} Points}}
|
||||
\begingradingrange{grsec1}
|
||||
\input{section1}
|
||||
\endgradingrange{grsec1}
|
||||
|
||||
%\clearpage
|
||||
\fullwidth{\Large \textbf{Section 2: \pointsinrange{grsec2} Points}}
|
||||
\begingradingrange{grsec2}
|
||||
\input{section2}
|
||||
\endgradingrange{grsec2}
|
||||
|
||||
\clearpage
|
||||
\fullwidth{\Large \textbf{Section 3: \pointsinrange{grsec3} Points}}
|
||||
\begingradingrange{grsec3}
|
||||
\input{section3}
|
||||
\endgradingrange{grsec3}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\clearpage
|
||||
\begin{center}
|
||||
\Large{\textbf{Do not write on this page.}}\\
|
||||
\vspace{10mm}
|
||||
\hrule
|
||||
\vspace{0.25in}
|
||||
|
||||
|
||||
\underline{Section 1}\\
|
||||
\vspace{5mm}
|
||||
\setlength{\doublerulesep}{0.25in}
|
||||
\multirowpartialgradetable{2}{grsec1}[questions]
|
||||
|
||||
|
||||
\vspace{0.25in}
|
||||
%\hrule
|
||||
\vspace{0.25in}
|
||||
|
||||
\underline{Section 2}\\
|
||||
\vspace{5mm}
|
||||
\multirowpartialgradetable{1}{grsec2}[questions]
|
||||
|
||||
\vspace{0.25in}
|
||||
%\hrule
|
||||
\vspace{0.25in}
|
||||
|
||||
\underline{Section 3}\\
|
||||
\vspace{5mm}
|
||||
\multirowpartialgradetable{1}{grsec3}[questions]
|
||||
|
||||
\end{center}
|
||||
\cfoot{{\thepage/\pageref{LastPage}} \\ This exam was created with the `exam' class of \LaTeX}
|
||||
\end{document}
|
Binary file not shown.
After Width: | Height: | Size: 37 KiB |
|
@ -0,0 +1,45 @@
|
|||
%\fullwidth{
|
||||
%Instructions:
|
||||
%
|
||||
%For multiple choice questions select the \textbf{best option} or \textbf{all correct answers}, as appropriate.
|
||||
%and write your response in the space below each question, e.g. \textbf{A} or \textbf{A,B,D}
|
||||
%\\For fill-in-the blank questions write the answer in the space provided.
|
||||
%}
|
||||
%
|
||||
%\vspace{5mm}
|
||||
%}
|
||||
%Concept:
|
||||
\question[1]This a multiple-choice question with a single answer. Which among the following is the largest integer?
|
||||
\begin{choices}
|
||||
\choice 1
|
||||
\choice 2
|
||||
\choice 3
|
||||
\CorrectChoice 4
|
||||
\end{choices}
|
||||
\answerline
|
||||
% \vspace{1mm}
|
||||
|
||||
\question[1]This is a True / False Question. Is two greater than one?:
|
||||
\begin{choices}
|
||||
\CorrectChoice True
|
||||
\choice False
|
||||
\end{choices}
|
||||
\answerline
|
||||
%\vspace{5mm}
|
||||
|
||||
\question[1] Multiple-choice questions can have more than one correct option also. Identify all the positive number from the following:
|
||||
\begin{choices}
|
||||
\CorrectChoice 1
|
||||
\choice -1
|
||||
\CorrectChoice 2
|
||||
\choice -2
|
||||
\end{choices}
|
||||
\answerline
|
||||
\vspace{5mm}
|
||||
|
||||
\question[1] This is a fill-the-blanks question. Complete the following series:
|
||||
One, three, \fillin[five][1in], seven, \fillin[nine][1in], eleven.
|
||||
%\begin{solutionbox}[2in]
|
||||
%Acceptable answers: Transmission, Distribution, Protection or any other reasonable answer.
|
||||
%\end{solutionbox}
|
||||
\vspace{5mm}
|
|
@ -0,0 +1,8 @@
|
|||
\question[1]These are some examples of numerical problems. A 1\si{\kilo\watt} load runs continuously for one day. Find the total energy drawn in \si{\kilo\joule}.
|
||||
\begin{solutionorbox}[2in]
|
||||
Total Energy = Power x time\\
|
||||
$=1\si{\kilo\watt}\times24\si{\hour}$\\
|
||||
$=1000\si{\watt}\times24\times60\times60\si{\sec}$\\
|
||||
$=86400\si{\kilo\joule}$
|
||||
\end{solutionorbox}
|
||||
|
|
@ -0,0 +1,89 @@
|
|||
\question[10] These are some ``long form" questions. A PV Panel is found to have a maximum power point of 34.1V and 9.83A when tested at STC (1kW/m\textsuperscript{2}), and has a stated efficiency of 19.6\%.
|
||||
Estimate the active area of this panel (i.e. the area of semiconductor that light falls on) in \si{\meter\squared}.
|
||||
|
||||
\begin{solutionorbox}[7.75in]
|
||||
At Standard test conditions, the incident radiant energy is 1kW/m\textsuperscript{2}.
|
||||
Assume that the area of the panel is $A$. The radiant power falling on this panel, i.e. incident power, is therefore:
|
||||
\begin{equation*}
|
||||
P_\text{incident}= 1\text{kW}/m^2 * A
|
||||
\end{equation*}
|
||||
The output power is just the incident power times the efficiency:
|
||||
\begin{equation*}
|
||||
P_\text{output}= 1\text{kW}/m^2 * A * \eta
|
||||
\end{equation*}
|
||||
Where efficiency $\eta=(19.6/100)$.
|
||||
|
||||
The maximum output power can be determined from the maximum power point details:
|
||||
Pout
|
||||
\begin{equation*}
|
||||
P_\text{out}= V_{oc}*I_{sc}.
|
||||
\end{equation*}
|
||||
Thus, equating the two values of P\textsubscript{out}, we can calculate $A$:
|
||||
|
||||
\begin{equation*}
|
||||
A= (V_{oc}*I_{sc})/(\eta * 1kW/m^2) = 1.71 m^2 = 18\text{\ square feet}.
|
||||
\end{equation*}
|
||||
\end{solutionorbox}
|
||||
|
||||
\clearpage
|
||||
|
||||
\question[10] This is a question that requres a graph / plot as the response. The graph can be generated in \TeX. A PV Panel has a maximum power point of 34.1V and 9.83A when tested at STC (standard testing conditions) and a fill factor of 83.8\%. The open circuit voltage is found to be 40\si{\volt}. Compute the short circuit current for this panel and then sketch the VI curve, and label the maximum power point.
|
||||
\fillwithgrid{8in}
|
||||
\clearpage
|
||||
|
||||
\question This is an example of a complex, multi-part question with multiple types of sub-parts. A user wants to connect an inductive load (Z) with a rating of 10kW and a power factor of 0.5 to the utility supply, as shown in the figure below. The supply voltage is $v_g(t) = 170\sin({\omega t + 0^\circ})$ , with a frequency of 60Hz.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\begin{circuitikz}[scale=0.7]
|
||||
\draw
|
||||
(0,0) to[sinusoidal voltage source, , v_<=$v_g(t)$] (0,4)
|
||||
to[short,i=${i_g(t)}$] (5,4)
|
||||
%(5,0) to[I, color=blue, *-*, l=$i_c(t)$] (5,4)
|
||||
(5,4) -- (7,4)
|
||||
to[european resistor, l=$Z$] (7,0) -- (0,0);
|
||||
\end{circuitikz}
|
||||
%\caption*{Problem 1}
|
||||
\label{fig:prob1}
|
||||
\end{figure}
|
||||
\begin{parts}
|
||||
\part[5] Calculate values of P, Q and S (with the appropriate units):
|
||||
\begin{solutionorbox}[4in]
|
||||
Given that P is 10kW and $cos\theta=0.5$ therefore current lags voltage by $60^\circ$.
|
||||
|
||||
Magnitude of apparent power is therefore P/$\cos60^\circ$=20kVA.
|
||||
|
||||
Therefore $Q=S\sin\theta=17.32\text{kVAR}$.
|
||||
|
||||
Since the load is inductive, Q has a positive value.
|
||||
\end{solutionorbox}
|
||||
\vspace{5mm}
|
||||
P = \fillin[10kW][2in]
|
||||
\vspace{2mm}
|
||||
|
||||
Q = \fillin[17.32kVAr][2in]
|
||||
\vspace{2mm}
|
||||
|
||||
S = \fillin[20kVA][2in]
|
||||
|
||||
\part[5]Draw the power triangle for this load. You can change the spacing of the grid too:
|
||||
\vspace{5mm}
|
||||
\setlength{\gridsize}{\dimexpr.025\linewidth-41\gridlinewidth}
|
||||
\fillwithgrid{3in}
|
||||
\clearpage
|
||||
|
||||
\part[5] Calculate the net impedance now.
|
||||
\begin{solutionorbox}[3.5in]
|
||||
The net impedance is the parallel combination of the capacitor's impedance and the existing load.
|
||||
We found that $Z=0.181 +0.313j$. The impedance of the newly added capacitor is:
|
||||
\[X_C = \cfrac{1}{j\omega C} = -0.4171j \Omega \]
|
||||
Therefore net impedance is:
|
||||
\[ X_C || Z = \cfrac{ZX_C}{Z+X_C} = 0.7222 - 0.0027j\Omega \approx 0.7222\Omega \]
|
||||
\end{solutionorbox}
|
||||
|
||||
\part[5] What is the power factor seen by the grid after the capacitor is installed?
|
||||
\begin{solutionorbox}[2in]
|
||||
The power factor is now nearly unity.
|
||||
|
||||
Phase angle is about 0.2 degrees which for all practical purposes is almost zero.
|
||||
\end{solutionorbox}
|
||||
\end{parts}
|
Loading…
Reference in New Issue