BPM_Plot/main.c

171 lines
4.3 KiB
C
Raw Normal View History

2024-12-01 09:49:22 +05:30
#include <stdint.h>
#include "tm4c123gh6pm.h"
#define RED_LED (1U << 1) // PF1 for the red LED
void PortF_Init(void);
void ADC0_Init(void);
uint16_t ADC0_Read(void);
char string(int x);
void print_UART(uint16_t x);
int main(void) {
uint16_t adc_value;
uint8_t high_state = 0; // 0: Below 10mV, 1: Above 30mV
SYSCTL_RCGCUART_R |= ( 1 << 0);
SYSCTL_RCGC2_R |= (1 << 0);
GPIO_PORTA_LOCK_R = 0x4C4F434B;
GPIO_PORTA_CR_R = (1 << 1) | ( 1 << 0);
GPIO_PORTA_DEN_R = (1 << 1) | ( 1 << 0);
GPIO_PORTA_AFSEL_R = (1 << 1) | ( 1 << 0);
GPIO_PORTA_PCTL_R = (1 << 0) | ( 1 << 4);
UART0_CTL_R &= ~(1 << 0);
UART0_IBRD_R = 104;
UART0_FBRD_R = 0x11;
UART0_LCRH_R = (0x3 << 5) ;//|(1 << 1)|(1 << 7);
UART0_CC_R = 0x0;
UART0_CTL_R = (1 << 0)|(1 << 8)|(1 << 9);
PortF_Init(); // Initialize LED
ADC0_Init(); // Initialize ADC
// Ensure LED is off by default
GPIO_PORTF_DATA_R &= ~RED_LED;
while (1) {
adc_value = ADC0_Read()*0.8; // Read ADC value
print_UART(adc_value);
}
}
void PortF_Init(void) {
SYSCTL_RCGCGPIO_R |= (1U << 5); // Enable clock for Port F
//while ((SYSCTL_PRGPIO_R & (1U << 5)) == 0); // Wait for Port F to be ready
GPIO_PORTF_DIR_R |= RED_LED; // Set PF1 as output
GPIO_PORTF_DEN_R |= RED_LED; // Enable digital function for PF1
GPIO_PORTF_DATA_R &= ~RED_LED; // Ensure LED is off initially
}
void ADC0_Init(void) {
SYSCTL_RCGCADC_R |= 1; // Enable ADC0 clock
SYSCTL_RCGCGPIO_R |= 0x10; // Enable clock for Port E
//while ((SYSCTL_PRGPIO_R & (1U << 4)) == 0); // Wait for Port E to be ready
GPIO_PORTE_AFSEL_R |= (1U << 3); // Enable alternate function on PE3
GPIO_PORTE_DEN_R &= ~(1U << 3); // Disable digital I/O on PE3
GPIO_PORTE_AMSEL_R |= (1U << 3); // Enable analog function on PE3
ADC0_ACTSS_R &= ~8; // Disable sample sequencer 3
ADC0_EMUX_R |= 0xF000; // always sample for SS3
ADC0_SSMUX3_R = 0; // Set channel AIN0 (PE3)
ADC0_SSCTL3_R = 6; // End of sequence and enable interrupt
ADC0_ACTSS_R |= 8; // Enable sample sequencer 3
}
uint16_t ADC0_Read(void) {
ADC0_PSSI_R = 8; // Start sampling on SS3
while ((ADC0_RIS_R & 8) == 0); // Wait for conversion to complete
uint16_t result = ADC0_SSFIFO3_R & 0xFFF; // Read 12-bit ADC value
ADC0_ISC_R = 8; // Clear the completion flag
return result;
}
void print_UART(uint16_t x)
{
//int number= 12345678;
int y= 1;
int number_copy;
int length=0;
number_copy=x;
while(number_copy>=y)
{
length++;
y=y*10;
}
char char_num[20];
int place_value=10;
int rem;
int index=0;
while(number_copy>=place_value)
{
rem=number_copy%place_value;
char_num[index]=string(rem);
number_copy=number_copy-rem;
number_copy=number_copy/10;
index++;
}
char_num[length-1]=string(number_copy);
//char_num[length+1]='/n';
int a=length-1;
while(a>=0)
{
UART0_DR_R = char_num[a];
while (UART0_FR_R & 0x08)
{
; // wait till transmission is complete
}
a--;
}
UART0_DR_R = '\n';
while (UART0_FR_R & 0x08){
; // wait till transmission is complete
}
UART0_DR_R = '\r';
while (UART0_FR_R & 0x08){
; // wait till transmission is complete
}
}
char string(int x)
{
char num;
switch(x)
{
case 1:
num= '1';
break;
case 2:
num= '2';
break;
case 3:
num= '3';
break;
case 4:
num= '4';
break;
case 5:
num= '5';
break;
case 6:
num= '6';
break;
case 7:
num= '7';
break;
case 8:
num= '8';
break;
case 9:
num= '9';
break;
case 0:
num= '0';
break;
}
return num;
}