Validation_codes/correspondence_matrix.f90

81 lines
3.2 KiB
Fortran
Raw Normal View History

2024-03-22 18:31:13 +05:30
program corresponcence_matrix
implicit none
integer, dimension(4) :: &
active = [6,0,6,0], &
potential = [6,6,6,6]
real, dimension(3) :: &
direction, normal
real, dimension(3,12) :: normal_vector
real :: cOverA = 1.6235
real, dimension(8,24) :: &
system = reshape(real([&
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
-1, 0, 1, 1, 1, 0, -1, 2, & !
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
! tension in Co, Re, and Zr
-1, -1, 2, 6, 1, 1, -2, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! compression in Mg
1, 0, -1, -2, 1, 0, -1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
! compression in Ti and Zr
1, 1, -2, -3, 1, 1, -2, 2, &
-1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
2, -1, -1, -3, 2, -1, -1, 2 &
]),shape(system))
integer :: &
a, & !< index of active system
p, & !< index in potential system matrix
f, & !< index of my family
s !< index of my system in current family
a = 0
do f = 1, size(active,1) !< Loops 1 to 4 for hP
do s = 1, active(f) !< 1 to 6 two times
a = a + 1
p = sum(potential(1:f-1))+s !< 1 to 6 and 13 to 18
direction = [ system(1,p)*1.5, &
(system(1,p)+2.0*system(2,p))*sqrt(0.75), &
system(4,p)*cOverA ] ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(p/a)])
normal = [ system(5,p), &
(system(5,p)+2.0*system(6,p))/sqrt(3.0), &
system(8,p)/cOverA ] ! plane (hkil)->(h (h+2k)/sqrt(3) l/(p/a))
normal_vector(1:3,a) = normal /norm2(normal)
write(6,*)'normal vector', normal_vector
end do
end do
do f = 1,size(active,1)
enddo
end program corresponcence_matrix