MTech_Thesis_Achal/Appendix_Correspondence_Mat...

246 lines
9.0 KiB
TeX

The correspondence matrix method allows predicting how crystallographic directions and planes transform during twinning. This approach is crucial for analyzing defects inherited from twinning, interactions between slip dislocations and twin boundaries, incorporating parent dislocations into the twinned lattice, and dealing with twin-twin intersections and double twinning. According to Niewczas \cite{Niewczas121}, most current continuum models for plastic deformation of crystals treat twinning incorrectly by only considering rotations, missing important aspects of the lattice transformation. Correspondence matrix approach (an example given in Table \ref{tab:Shear and correspondence matrices for Mg}) is implemented in DAMASK and utilized in the discrete twinning model.
\begin{table}[H]
\centering
\caption{Characteristic Shear and Correspondence matrices for different twinning modes of Mg with c/a=1.624.}
\begin{tabular}{ccc}
\hline
$K_1 / \eta_1$ & Magnitude of shear $s$ & Correspondence matrix $C$ \\
\hline
$( \bar{1} 0 1 2 ) [1 0 \bar{1} 1] $ & 0.128917 & $\begin{bmatrix} -0.25 & 0.433 & -0.924 \\ 0.433 & -0.75 & -0.533 \\ -0.812 & -0.47 & 0 \end{bmatrix}$ \\
$( 1 0 \bar{1} 1 ) [1 0 \bar{1} \bar{2}] $ & 0.137717 & $\begin{bmatrix} 0.125 & 0.65 & 0.693 \\ 0.65 & -0.625 & 0.4 \\ 0.812 & 0.47 & -0.5 \end{bmatrix}$ \\
$( 1 0 \bar{2} \bar{2} ) [1 1 \bar{2} \bar{3}] $ & 0.261649 & $\begin{bmatrix} -0.67 & 0.577 & 0.411 \\ 0.577 & 0 & 0.711 \\ 0.54 & 0.937 & -0.333 \end{bmatrix}$ \\
$( 1 1 \bar{2} 1) [\bar{1}\bar{1} 2 6] $ & 0.615764 & $\begin{bmatrix} -0.5 & 0.866 & 0.308 \\ 0.866 & 0.5 & 0.533 \\ 0.0 & 0.0 & -1.0 \end{bmatrix}$ \\
\hline
\end{tabular}
\label{tab:Shear and correspondence matrices for Mg}
\end{table}
\begin{minted}[fontsize=\scriptsize, frame=single]{fortran}
module math
implicit none
contains
function math_axisAngleToR(axis,omega) result(math_axisAngleToR1)
!------------------------------------------------
!> Function to generate rotation matrix around
!> arbitrary direction and arbitrary angle
!------------------------------------------------
implicit none
real, dimension(3), intent(in) :: axis
real, intent(in) :: omega
real, dimension(3) :: n
real :: norm,s,c,c1
real, dimension(3,3), parameter :: &
I3 = real(reshape([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],shape(I3))) !< 3x3 Identity
real, dimension(3,3) :: math_axisAngleToR1
norm = norm2(axis)
wellDefined: if (norm > 1.0e-8) then
n = axis/norm ! normalize axis to be sure
s = sin(omega)
c = cos(omega)
c1 = 1.0 - c
math_axisAngleToR1(1,1) = c + c1*n(1)**2.0
math_axisAngleToR1(1,2) = c1*n(1)*n(2) - s*n(3)
math_axisAngleToR1(1,3) = c1*n(1)*n(3) + s*n(2)
math_axisAngleToR1(2,1) = c1*n(1)*n(2) + s*n(3)
math_axisAngleToR1(2,2) = c + c1*n(2)**2.0
math_axisAngleToR1(2,3) = c1*n(2)*n(3) - s*n(1)
math_axisAngleToR1(3,1) = c1*n(1)*n(3) - s*n(2)
math_axisAngleToR1(3,2) = c1*n(2)*n(3) + s*n(1)
math_axisAngleToR1(3,3) = c + c1*n(3)**2.0
else wellDefined
math_axisAngleToR1 = I3
endif wellDefined
end function
end module math
program corresponcence_matrix
use math
implicit none
integer, dimension(4) :: &
active = [6,6,6,6], & !< number of active twin systems
potential = [6,6,6,6] !< all the potential twin systems
real, dimension(3) :: &
direction, normal
real, dimension(3,24) :: normal_vector, direction_vector
real, dimension(3,3,24) :: SchmidMatrix, corresponcenceMatrix
real, dimension(24) :: characteristicShear
real :: cOverA = 1.6235
real :: pi = 3.14159274
real, dimension(8,24) :: &
system = reshape(real([&
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
-1, 0, 1, 1, 1, 0, -1, 2, & !
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
! tension in Co, Re, and Zr
-1, -1, 2, 6, 1, 1, -2, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! compression in Mg
1, 0, -1, -2, 1, 0, -1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
! compression in Ti and Zr
1, 1, -2, -3, 1, 1, -2, 2, &
-1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
2, -1, -1, -3, 2, -1, -1, 2 &
]),shape(system))
real, dimension(3,3), parameter :: &
I3 = real(reshape([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],shape(I3))) !< 3x3 Identity
integer :: &
a, & !< index of active system
p, & !< index in potential system matrix
f, & !< index of my family
s, & !< index of my system in current family
f1, s1, e1, i, j, k !< indices for similar loops
!-----------------------------------------------------------
!> Normal vector to twin plane and direction vector
!> of the twin
!-----------------------------------------------------------
a = 0
do f = 1, size(active,1) !< Active Twin Modes
do s = 1, active(f) !< Active twin systems
a = a + 1
p = sum(potential(1:f-1))+s
! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(p/a)])
direction = [ system(1,p)*1.5, &
(system(1,p)+2.0*system(2,p))*sqrt(0.75), &
system(4,p)*cOverA ]
! plane (hkil)->(h (h+2k)/sqrt(3) l/(p/a))
normal = [ system(5,p), &
(system(5,p)+2.0*system(6,p))/sqrt(3.0), &
system(8,p)/cOverA ]
normal_vector(1:3,a) = normal /norm2(normal)
direction_vector(1:3,a) = direction / norm2(direction)
end do
end do
!-----------------------------------------------------------
!> Magnitude of Characteristic shear for twinning modes
!-----------------------------------------------------------
do f1 = 1,size(active,1) !< Active twin modes
s1 = sum(active(:f1-1)) + 1
e1 = sum(active(:f1))
select case(f1)
case (1)
characteristicShear(s1:e1) = (3.0-cOverA**2)/sqrt(3.0)/cOverA
case (2)
characteristicShear(s1:e1) = 1.0/cOverA
case (3)
characteristicShear(s1:e1) = (4.0*cOverA**2-9.0)/sqrt(48.0)/cOverA
case (4)
characteristicShear(s1:e1) = 2.0*(cOverA**2-2.0)/3.0/cOverA
end select
enddo
!> Write results for characteristic shear
write(6,*)'characteristic shear, for [1, 0, -1, 1],(-1, 0, 1, 2)'
write(6,*)characteristicShear(4)
write(6,*)'characteristic shear, for [-1, -1, 2, 6],(1, 1, -2, 1)'
write(6,*)characteristicShear(7)
write(6,*)'characteristic shear, for [1, 0, -1, -2],(1, 0, -1, 1)'
write(6,*)characteristicShear(13)
write(6,*)'characteristic shear, for [1, 1, -2, -3],(1, 1, -2, 2)'
write(6,*)characteristicShear(19)
!---------------------------------------------------------------
!> SchmidMatrix = Outer product of direction and normal vectors.
!---------------------------------------------------------------
do i = 1, sum(active)
forall(j=1:3, k=1:3) &
SchmidMatrix(j,k,i) = direction_vector(j,i) * &
normal_vector(k,i)
enddo
!--------------------------------------------------------------
!> Correspondence Matrix = Reorientation * Shear
!--------------------------------------------------------------
do i = 1, sum(active)
corresponcenceMatrix(1:3,1:3,i) = matmul(math_axisAngleToR &
(normal_vector(1:3,i),pi),&
I3+characteristicShear(i) &
*SchmidMatrix(1:3,1:3,i))
enddo
!> Write results for Correspondence Matrix
write(6,*)'correspondence matrix for [1, 0, -1, 1],(-1, 0, 1, 2)'
write(6,*)corresponcenceMatrix(1:3,1:3,4)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [-1, -1, 2, 6],(1, 1, -2, 1)'
write(6,*)corresponcenceMatrix(1:3,1:3,7)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [1, 0, -1, -2],(1, 0, -1, 1)'
write(6,*)corresponcenceMatrix(1:3,1:3,13)
write(6,*)'oxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxox'
write(6,*)'correspondence matrix for [1, 1, -2, -3],(1, 1, -2, 2)'
write(6,*)corresponcenceMatrix(1:3,1:3,19)
end program corresponcence_matrix
\end{minted}