5343 lines
228 KiB
Fortran
5343 lines
228 KiB
Fortran
! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced Material Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!--------------------------------------------------------------------------------------------------
|
|
!* $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Krishna Komerla, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
|
|
module mesh
|
|
use, intrinsic :: iso_c_binding
|
|
use prec, only: pReal, pInt
|
|
|
|
implicit none
|
|
private
|
|
|
|
integer(pInt), public, protected :: &
|
|
mesh_NcpElems, & !< total number of CP elements in mesh
|
|
mesh_NelemSets, &
|
|
mesh_maxNelemInSet, &
|
|
mesh_Nmaterials, &
|
|
mesh_Nnodes, & !< total number of nodes in mesh
|
|
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
|
|
mesh_Ncells, & !< total number of cells in mesh
|
|
mesh_maxNnodes, & !< max number of nodes in any CP element
|
|
mesh_maxNips, & !< max number of IPs in any CP element
|
|
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
|
|
mesh_maxNsharedElems, & !< max number of CP elements sharing a node
|
|
mesh_maxNcellnodes, & !< max number of cell nodes in any CP element
|
|
mesh_Nelems !< total number of elements in mesh
|
|
|
|
integer(pInt), dimension(:,:), allocatable, public, protected :: &
|
|
mesh_element, & !< FEid, type(internal representation), material, texture, node indices as CP IDs
|
|
mesh_sharedElem, & !< entryCount and list of elements containing node
|
|
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
|
|
|
|
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
|
|
|
|
real(pReal), dimension(:,:), allocatable, public :: &
|
|
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
|
|
real(pReal), dimension(:,:), allocatable, public, protected :: &
|
|
mesh_ipVolume, & !< volume associated with IP (initially!)
|
|
mesh_node0 !< node x,y,z coordinates (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
|
|
mesh_ipArea !< area of interface to neighboring IP (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
|
|
|
|
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
|
|
|
|
logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
|
|
|
|
#ifdef Marc
|
|
integer(pInt), private :: &
|
|
hypoelasticTableStyle, & !< Table style (Marc only)
|
|
initialcondTableStyle !< Table style (Marc only)
|
|
#endif
|
|
|
|
integer(pInt), dimension(2), private :: &
|
|
mesh_maxValStateVar = 0_pInt
|
|
|
|
character(len=64), dimension(:), allocatable, private :: &
|
|
mesh_nameElemSet, & !< names of elementSet
|
|
mesh_nameMaterial, & !< names of material in solid section
|
|
mesh_mapMaterial !< name of elementSet for material
|
|
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
mesh_cellnodeParent, & !< cellnode's parent element ID, cellnode's intra-element ID
|
|
mesh_mapElemSet !< list of elements in elementSet
|
|
|
|
integer(pInt), dimension(:,:), allocatable, target, private :: &
|
|
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
|
|
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
|
|
|
|
integer(pInt),dimension(:,:,:), allocatable, private :: &
|
|
mesh_cell !< cell connectivity for each element,ip/cell
|
|
|
|
integer(pInt), dimension(:,:,:), allocatable, private :: &
|
|
FE_nodesAtIP, & !< map IP index to node indices in a specific type of element
|
|
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
|
|
FE_cell, & !< list of intra-element cell node IDs that constitute the cells in a specific type of element geometry
|
|
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
FE_cellnodeParentnodeWeights !< list of node weights for the generation of cell nodes
|
|
|
|
integer(pInt), dimension(:,:,:,:), allocatable, private :: &
|
|
FE_subNodeOnIPFace
|
|
|
|
|
|
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
|
|
|
|
#ifdef Spectral
|
|
include 'fftw3.f03'
|
|
real(pReal), dimension(3), public, protected :: &
|
|
geomdim, & !< physical dimension of volume element per direction
|
|
scaledDim !< scaled dimension of volume element, depending on selected divergence calculation
|
|
integer(pInt), dimension(3), public, protected :: &
|
|
res !< resolution, e.g. number of Fourier points in each direction
|
|
real(pReal), public, protected :: &
|
|
wgt
|
|
integer(pInt), public, protected :: &
|
|
res1_red, &
|
|
homog
|
|
#endif
|
|
|
|
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
|
|
! Hence, I suggest to prefix with "FE_"
|
|
|
|
integer(pInt), parameter, public :: &
|
|
FE_Nelemtypes = 13_pInt, &
|
|
FE_Ngeomtypes = 10_pInt, &
|
|
FE_Ncelltypes = 4_pInt, &
|
|
FE_maxNnodes = 20_pInt, &
|
|
FE_maxNips = 27_pInt, &
|
|
FE_maxNipNeighbors = 6_pInt, &
|
|
FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP
|
|
FE_maxNmatchingNodesPerFace = 4_pInt, &
|
|
FE_maxNfaces = 6_pInt, &
|
|
FE_maxNcellnodes = 64_pInt, &
|
|
FE_maxNcellnodesPerCell = 8_pInt, &
|
|
FE_maxNcellfaces = 6_pInt, &
|
|
FE_maxNcellnodesPerCellface = 4_pInt
|
|
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
3, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 54 (2D 8node 4ip)
|
|
5, & ! element 134 (3D 4node 1ip)
|
|
6, & ! element 157 (3D 5node 4ip)
|
|
6, & ! element 127 (3D 10node 4ip)
|
|
7, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
9, & ! element 7 (3D 8node 8ip)
|
|
9, & ! element 57 (3D 20node 8ip)
|
|
10 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_celltype = & !< cell type that is used by each geometry type
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
2, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
4, & ! element 136 (3D 6node 6ip)
|
|
4, & ! element 117 (3D 8node 1ip)
|
|
4, & ! element 7 (3D 8node 8ip)
|
|
4 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of geometry type
|
|
int([ &
|
|
2, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
2, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 134 (3D 4node 1ip)
|
|
3, & ! element 127 (3D 10node 4ip)
|
|
3, & ! element 136 (3D 6node 6ip)
|
|
3, & ! element 117 (3D 8node 1ip)
|
|
3, & ! element 7 (3D 8node 8ip)
|
|
3 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< number of nodes that constitute a specific type of element
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
6, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
8, & ! element 27 (2D 8node 9ip)
|
|
8, & ! element 54 (2D 8node 4ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
5, & ! element 157 (3D 5node 4ip)
|
|
10, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
20, & ! element 57 (3D 20node 8ip)
|
|
20 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nfaces = & !< number of faces of a specific type of element geometry
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
5, & ! element 136 (3D 6node 6ip)
|
|
6, & ! element 117 (3D 8node 1ip)
|
|
6, & ! element 7 (3D 8node 8ip)
|
|
6 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
8 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_maxNfaces,FE_Ngeomtypes), parameter, private :: &
|
|
FE_NmatchingNodesPerFace = & !< number of matching nodes per face in a specific type of element geometry
|
|
reshape(int([ &
|
|
2,2,2,0,0,0, & ! element 6 (2D 3node 1ip)
|
|
2,2,2,0,0,0, & ! element 125 (2D 6node 3ip)
|
|
2,2,2,2,0,0, & ! element 11 (2D 4node 4ip)
|
|
2,2,2,2,0,0, & ! element 27 (2D 8node 9ip)
|
|
3,3,3,3,0,0, & ! element 134 (3D 4node 1ip)
|
|
3,3,3,3,0,0, & ! element 127 (3D 10node 4ip)
|
|
3,4,4,4,3,0, & ! element 136 (3D 6node 6ip)
|
|
4,4,4,4,4,4, & ! element 117 (3D 8node 1ip)
|
|
4,4,4,4,4,4, & ! element 7 (3D 8node 8ip)
|
|
4,4,4,4,4,4 & ! element 21 (3D 20node 27ip)
|
|
],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes])
|
|
|
|
integer(pInt), dimension(FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes), &
|
|
parameter, private :: FE_face = & !< List of node indices on each face of a specific type of element geometry
|
|
reshape(int([&
|
|
1,2,0,0 , & ! element 6 (2D 3node 1ip)
|
|
2,3,0,0 , &
|
|
3,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 125 (2D 6node 3ip)
|
|
2,3,0,0 , &
|
|
3,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 11 (2D 4node 4ip)
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 27 (2D 8node 9ip)
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 134 (3D 4node 1ip)
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 127 (3D 10node 4ip)
|
|
1,4,2,0 , &
|
|
2,4,3,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 136 (3D 6node 6ip)
|
|
1,4,5,2 , &
|
|
2,5,6,3 , &
|
|
1,3,6,4 , &
|
|
4,6,5,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,4 , & ! element 117 (3D 8node 1ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 7 (3D 8node 8ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 21 (3D 20node 27ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 &
|
|
],pInt),[FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes])
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_Ncellnodes = & !< number of cell nodes in a specific geometry type
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
7, & ! element 125 (2D 6node 3ip)
|
|
9, & ! element 11 (2D 4node 4ip)
|
|
16, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
15, & ! element 127 (3D 10node 4ip)
|
|
21, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
27, & ! element 7 (3D 8node 8ip)
|
|
64 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
|
|
int([ &
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
8 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
|
|
int([&
|
|
2, & ! (2D 3node)
|
|
2, & ! (2D 4node)
|
|
3, & ! (3D 4node)
|
|
4 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< number of IPs in a specific type of element
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
9, & ! element 27 (2D 8node 9ip)
|
|
1, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
1, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
27 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, public :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
|
|
int([&
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
6 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< maximum number of parent nodes that belong to an IP for a specific type of element
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
1, & ! element 125 (2D 6node 3ip)
|
|
1, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
1, & ! element 127 (3D 10node 4ip)
|
|
1, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
1, & ! element 7 (3D 8node 8ip)
|
|
4 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: MESH_VTKELEMTYPE = &
|
|
int([ &
|
|
5, & ! element 6 (2D 3node 1ip)
|
|
22, & ! element 125 (2D 6node 3ip)
|
|
9, & ! element 11 (2D 4node 4ip)
|
|
23, & ! element 27 (2D 8node 9ip)
|
|
23, & ! element 54 (2D 8node 4ip)
|
|
10, & ! element 134 (3D 4node 1ip)
|
|
10, & ! element 157 (3D 5node 4ip)
|
|
24, & ! element 127 (3D 10node 4ip)
|
|
13, & ! element 136 (3D 6node 6ip)
|
|
12, & ! element 117 (3D 8node 1ip)
|
|
12, & ! element 7 (3D 8node 8ip)
|
|
25, & ! element 57 (3D 20node 8ip)
|
|
25 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: MESH_VTKCELLTYPE = &
|
|
int([ &
|
|
5, & ! (2D 3node)
|
|
9, & ! (2D 4node)
|
|
10, & ! (3D 4node)
|
|
12 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
|
|
public :: &
|
|
mesh_init, &
|
|
mesh_FEasCP, &
|
|
mesh_build_cellnodes, &
|
|
mesh_build_ipVolumes, &
|
|
mesh_build_ipCoordinates, &
|
|
mesh_cellCenterCoordinates, &
|
|
mesh_init_postprocessing, &
|
|
mesh_get_Ncellnodes, &
|
|
mesh_get_nodeAtIP
|
|
#ifdef Spectral
|
|
public :: &
|
|
mesh_regrid, &
|
|
mesh_nodesAroundCentres, &
|
|
mesh_deformedCoordsFFT, &
|
|
mesh_deformedCoordsLinear, &
|
|
mesh_volumeMismatch, &
|
|
mesh_shapeMismatch
|
|
#endif
|
|
|
|
private :: &
|
|
#ifdef Spectral
|
|
mesh_spectral_getGrid, &
|
|
mesh_spectral_getSize, &
|
|
mesh_spectral_getHomogenization, &
|
|
mesh_spectral_count_nodesAndElements, &
|
|
mesh_spectral_count_cpElements, &
|
|
mesh_spectral_map_elements, &
|
|
mesh_spectral_map_nodes, &
|
|
mesh_spectral_count_cpSizes, &
|
|
mesh_spectral_build_nodes, &
|
|
mesh_spectral_build_elements, &
|
|
mesh_spectral_build_ipNeighborhood, &
|
|
#endif
|
|
#ifdef Marc
|
|
mesh_marc_get_tableStyles, &
|
|
mesh_marc_count_nodesAndElements, &
|
|
mesh_marc_count_elementSets, &
|
|
mesh_marc_map_elementSets, &
|
|
mesh_marc_count_cpElements, &
|
|
mesh_marc_map_Elements, &
|
|
mesh_marc_map_nodes, &
|
|
mesh_marc_build_nodes, &
|
|
mesh_marc_count_cpSizes, &
|
|
mesh_marc_build_elements, &
|
|
#endif
|
|
#ifdef Abaqus
|
|
mesh_abaqus_count_nodesAndElements, &
|
|
mesh_abaqus_count_elementSets, &
|
|
mesh_abaqus_count_materials, &
|
|
mesh_abaqus_map_elementSets, &
|
|
mesh_abaqus_map_materials, &
|
|
mesh_abaqus_count_cpElements, &
|
|
mesh_abaqus_map_elements, &
|
|
mesh_abaqus_map_nodes, &
|
|
mesh_abaqus_build_nodes, &
|
|
mesh_abaqus_count_cpSizes, &
|
|
mesh_abaqus_build_elements, &
|
|
#endif
|
|
mesh_get_damaskOptions, &
|
|
mesh_build_cellconnectivity, &
|
|
mesh_build_ipAreas, &
|
|
mesh_build_nodeTwins, &
|
|
mesh_build_sharedElems, &
|
|
mesh_build_ipNeighborhood, &
|
|
mesh_tell_statistics, &
|
|
FE_mapElemtype, &
|
|
mesh_faceMatch, &
|
|
mesh_build_FEdata, &
|
|
mesh_write_cellGeom, &
|
|
mesh_write_elemGeom, &
|
|
mesh_write_meshfile, &
|
|
mesh_read_meshfile
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief initializes the mesh by calling all necessary private routines the mesh module
|
|
!! Order and routines strongly depend on type of solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_init(ip,el)
|
|
|
|
use DAMASK_interface
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use IO, only: &
|
|
IO_timeStamp, &
|
|
IO_error, &
|
|
IO_write_jobFile, &
|
|
#ifdef Abaqus
|
|
IO_abaqus_hasNoPart, &
|
|
#endif
|
|
#ifdef Spectral
|
|
IO_open_file
|
|
use numerics, only: &
|
|
divergence_correction
|
|
#else
|
|
IO_open_InputFile
|
|
#endif
|
|
use numerics, only: &
|
|
usePingPong
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
calcMode, &
|
|
lastMode, &
|
|
modelName
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: fileUnit = 222_pInt
|
|
integer(pInt), intent(in) :: el, ip
|
|
integer(pInt) :: j
|
|
|
|
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
|
|
if (allocated(mesh_mapFEtoCPelem)) deallocate(mesh_mapFEtoCPelem)
|
|
if (allocated(mesh_mapFEtoCPnode)) deallocate(mesh_mapFEtoCPnode)
|
|
if (allocated(mesh_node0)) deallocate(mesh_node0)
|
|
if (allocated(mesh_node)) deallocate(mesh_node)
|
|
if (allocated(mesh_element)) deallocate(mesh_element)
|
|
if (allocated(mesh_cell)) deallocate(mesh_cell)
|
|
if (allocated(mesh_cellnode)) deallocate(mesh_cellnode)
|
|
if (allocated(mesh_cellnodeParent)) deallocate(mesh_cellnodeParent)
|
|
if (allocated(mesh_ipCoordinates)) deallocate(mesh_ipCoordinates)
|
|
if (allocated(mesh_ipArea)) deallocate(mesh_ipArea)
|
|
if (allocated(mesh_ipAreaNormal)) deallocate(mesh_ipAreaNormal)
|
|
if (allocated(mesh_sharedElem)) deallocate(mesh_sharedElem)
|
|
if (allocated(mesh_ipNeighborhood)) deallocate(mesh_ipNeighborhood)
|
|
if (allocated(mesh_ipVolume)) deallocate(mesh_ipVolume)
|
|
if (allocated(mesh_nodeTwins)) deallocate(mesh_nodeTwins)
|
|
if (allocated(FE_nodesAtIP)) deallocate(FE_nodesAtIP)
|
|
if (allocated(FE_ipNeighbor)) deallocate(FE_ipNeighbor)
|
|
if (allocated(FE_cellnodeParentnodeWeights)) deallocate(FE_cellnodeParentnodeWeights)
|
|
if (allocated(FE_subNodeOnIPFace)) deallocate(FE_subNodeOnIPFace)
|
|
call mesh_build_FEdata ! get properties of the different types of elements
|
|
#ifdef Spectral
|
|
call IO_open_file(fileUnit,geometryFile) ! parse info from geometry file...
|
|
res = mesh_spectral_getGrid(fileUnit)
|
|
res1_red = res(1)/2_pInt + 1_pInt
|
|
wgt = 1.0/real(product(res),pReal)
|
|
geomdim = mesh_spectral_getSize(fileUnit)
|
|
homog = mesh_spectral_getHomogenization(fileUnit)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and reso-
|
|
! lution-independent divergence
|
|
if (divergence_correction == 1_pInt) then
|
|
do j = 1_pInt, 3_pInt
|
|
if (j /= minloc(geomdim,1) .and. j /= maxloc(geomdim,1)) scaledDim = geomdim/geomdim(j)
|
|
enddo
|
|
elseif (divergence_correction == 2_pInt) then
|
|
do j = 1_pInt, 3_pInt
|
|
if (j /= minloc(geomdim/res,1) .and. j /= maxloc(geomdim/res,1)) scaledDim = geomdim/geomdim(j)*res(j)
|
|
enddo
|
|
else
|
|
scaledDim = geomdim
|
|
endif
|
|
write(6,'(a,3(i12 ))') ' grid a b c: ', res
|
|
write(6,'(a,3(f12.5))') ' size x y z: ', geomdim
|
|
write(6,'(a,i5,/)') ' homogenization: ', homog
|
|
|
|
call mesh_spectral_count_nodesAndElements
|
|
call mesh_spectral_count_cpElements
|
|
call mesh_spectral_map_elements
|
|
call mesh_spectral_map_nodes
|
|
call mesh_spectral_count_cpSizes
|
|
call mesh_spectral_build_nodes
|
|
call mesh_spectral_build_elements(fileUnit)
|
|
call mesh_get_damaskOptions(fileUnit)
|
|
close (fileUnit)
|
|
call mesh_build_cellconnectivity
|
|
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
|
|
call mesh_build_ipCoordinates
|
|
call mesh_build_ipVolumes
|
|
call mesh_build_ipAreas
|
|
call mesh_spectral_build_ipNeighborhood
|
|
#endif
|
|
#ifdef Marc
|
|
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
|
|
call mesh_marc_get_tableStyles(fileUnit)
|
|
call mesh_marc_count_nodesAndElements(fileUnit)
|
|
call mesh_marc_count_elementSets(fileUnit)
|
|
call mesh_marc_map_elementSets(fileUnit)
|
|
call mesh_marc_count_cpElements(fileUnit)
|
|
call mesh_marc_map_elements(fileUnit)
|
|
call mesh_marc_map_nodes(fileUnit)
|
|
call mesh_marc_build_nodes(fileUnit)
|
|
call mesh_marc_count_cpSizes(fileunit)
|
|
call mesh_marc_build_elements(fileUnit)
|
|
call mesh_get_damaskOptions(fileUnit)
|
|
close (fileUnit)
|
|
call mesh_build_cellconnectivity
|
|
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
|
|
call mesh_build_ipCoordinates
|
|
call mesh_build_ipVolumes
|
|
call mesh_build_ipAreas
|
|
call mesh_build_nodeTwins
|
|
call mesh_build_sharedElems
|
|
call mesh_build_ipNeighborhood
|
|
#endif
|
|
#ifdef Abaqus
|
|
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
|
|
noPart = IO_abaqus_hasNoPart(fileUnit)
|
|
call mesh_abaqus_count_nodesAndElements(fileUnit)
|
|
call mesh_abaqus_count_elementSets(fileUnit)
|
|
call mesh_abaqus_count_materials(fileUnit)
|
|
call mesh_abaqus_map_elementSets(fileUnit)
|
|
call mesh_abaqus_map_materials(fileUnit)
|
|
call mesh_abaqus_count_cpElements(fileUnit)
|
|
call mesh_abaqus_map_elements(fileUnit)
|
|
call mesh_abaqus_map_nodes(fileUnit)
|
|
call mesh_abaqus_build_nodes(fileUnit)
|
|
call mesh_abaqus_count_cpSizes(fileunit)
|
|
call mesh_abaqus_build_elements(fileUnit)
|
|
call mesh_get_damaskOptions(fileUnit)
|
|
close (fileUnit)
|
|
call mesh_build_cellconnectivity
|
|
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
|
|
call mesh_build_ipCoordinates
|
|
call mesh_build_ipVolumes
|
|
call mesh_build_ipAreas
|
|
call mesh_build_nodeTwins
|
|
call mesh_build_sharedElems
|
|
call mesh_build_ipNeighborhood
|
|
#endif
|
|
|
|
call mesh_tell_statistics
|
|
call mesh_write_meshfile
|
|
call mesh_write_cellGeom
|
|
call mesh_write_elemGeom
|
|
|
|
if (usePingPong .and. (mesh_Nelems /= mesh_NcpElems)) call IO_error(600_pInt) ! ping-pong must be disabled when havin non-DAMASK-elements
|
|
|
|
FEsolving_execElem = [ 1_pInt,mesh_NcpElems ]
|
|
if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP)
|
|
allocate(FEsolving_execIP(2_pInt,mesh_NcpElems)); FEsolving_execIP = 1_pInt
|
|
forall (j = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,j) = FE_Nips(FE_geomtype(mesh_element(2,j)))
|
|
|
|
if (allocated(calcMode)) deallocate(calcMode)
|
|
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
|
|
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
|
|
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
|
|
lastMode = .true. ! and its mode is already known...
|
|
|
|
|
|
end subroutine mesh_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
|
|
!! valid questions (what) are 'elem', 'node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function mesh_FEasCP(what,myID)
|
|
use IO, only: &
|
|
IO_lc
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: what
|
|
integer(pInt), intent(in) :: myID
|
|
|
|
integer(pInt), dimension(:,:), pointer :: lookupMap
|
|
integer(pInt) :: lower,upper,center
|
|
|
|
mesh_FEasCP = 0_pInt
|
|
select case(IO_lc(what(1:4)))
|
|
case('elem')
|
|
lookupMap => mesh_mapFEtoCPelem
|
|
case('node')
|
|
lookupMap => mesh_mapFEtoCPnode
|
|
case default
|
|
return
|
|
endselect
|
|
|
|
lower = 1_pInt
|
|
upper = int(size(lookupMap,2_pInt),pInt)
|
|
|
|
if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
|
|
mesh_FEasCP = lookupMap(2_pInt,lower)
|
|
return
|
|
elseif (lookupMap(1_pInt,upper) == myID) then
|
|
mesh_FEasCP = lookupMap(2_pInt,upper)
|
|
return
|
|
endif
|
|
|
|
do while (upper-lower > 1_pInt) ! binary search in between bounds
|
|
center = (lower+upper)/2_pInt
|
|
if (lookupMap(1_pInt,center) < myID) then
|
|
lower = center
|
|
elseif (lookupMap(1_pInt,center) > myID) then
|
|
upper = center
|
|
else
|
|
mesh_FEasCP = lookupMap(2_pInt,center)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
end function mesh_FEasCP
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Split CP elements into cells.
|
|
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
|
|
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
|
|
!> all others (currently) might be stored more than once.
|
|
!> Also allocates the 'mesh_node' array.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_cellconnectivity
|
|
|
|
implicit none
|
|
integer(pInt), dimension(:), allocatable :: &
|
|
matchingNode2cellnode
|
|
integer(pInt), dimension(:,:), allocatable :: &
|
|
cellnodeParent
|
|
integer(pInt), dimension(mesh_maxNcellnodes) :: &
|
|
localCellnode2globalCellnode
|
|
integer(pInt) &
|
|
e,t,g,c,n,i, &
|
|
matchingNodeID, &
|
|
localCellnodeID
|
|
|
|
|
|
!*** Count cell nodes (including duplicates) and generate cell connectivity list
|
|
|
|
allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems)) ; mesh_cell = 0_pInt
|
|
allocate(matchingNode2cellnode(mesh_Nnodes)) ; matchingNode2cellnode = 0_pInt
|
|
allocate(cellnodeParent(2_pInt,mesh_maxNcellnodes*mesh_NcpElems)) ; cellnodeParent = 0_pInt
|
|
|
|
mesh_Ncellnodes = 0_pInt
|
|
mesh_Ncells = 0_pInt
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2_pInt,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
localCellnode2globalCellnode = 0_pInt
|
|
mesh_Ncells = mesh_Ncells + FE_Nips(g)
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
localCellnodeID = FE_cell(n,i,g)
|
|
if (localCellnodeID <= FE_NmatchingNodes(g)) then ! this cell node is a matching node
|
|
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
|
|
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
|
|
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
|
|
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
|
|
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
|
|
else ! this cell node is no matching node
|
|
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
|
|
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
|
|
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
|
|
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
|
|
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
|
|
forall(n = 1_pInt:mesh_Ncellnodes)
|
|
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
|
|
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
|
|
endforall
|
|
|
|
deallocate(matchingNode2cellnode)
|
|
deallocate(cellnodeParent)
|
|
|
|
end subroutine mesh_build_cellconnectivity
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate position of cellnodes from the given position of nodes
|
|
!> Build list of cellnodes' coordinates.
|
|
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_build_cellnodes(nodes,Ncellnodes)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
|
|
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
|
|
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
|
|
|
|
integer(pInt) &
|
|
e,t,n,m, &
|
|
localCellnodeID
|
|
real(pReal), dimension(3) :: &
|
|
myCoords
|
|
|
|
mesh_build_cellnodes = 0.0_pReal
|
|
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,t,myCoords)
|
|
do n = 1_pInt,Ncellnodes ! loop over cell nodes
|
|
e = mesh_cellnodeParent(1,n)
|
|
localCellnodeID = mesh_cellnodeParent(2,n)
|
|
t = mesh_element(2,e) ! get element type
|
|
myCoords = 0.0_pReal
|
|
do m = 1_pInt,FE_Nnodes(t)
|
|
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
|
|
* FE_cellnodeParentnodeWeights(m,localCellnodeID,t)
|
|
enddo
|
|
mesh_build_cellnodes(1:3,n) = myCoords / sum(FE_cellnodeParentnodeWeights(:,localCellnodeID,t))
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end function mesh_build_cellnodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
|
!> @details The IP volume is calculated differently depending on the cell type.
|
|
!> 2D cells assume an element depth of one in order to calculate the volume.
|
|
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
|
|
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
|
|
!> calculated as an average of four tetrahedals with three corners on the cell face
|
|
!> and one corner at the central ip.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipVolumes
|
|
use math, only: &
|
|
math_volTetrahedron, &
|
|
math_areaTriangle
|
|
|
|
implicit none
|
|
integer(pInt) :: e,t,g,c,i,m,f,n
|
|
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
|
|
|
|
if (.not. allocated(mesh_ipVolume)) then
|
|
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipVolume = 0.0_pReal
|
|
endif
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2_pInt,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
select case (c)
|
|
|
|
case (1_pInt) ! 2D 3node
|
|
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)))
|
|
|
|
case (2_pInt) ! 2D 4node
|
|
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
|
|
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(1,i,e)))
|
|
|
|
case (3_pInt) ! 3D 4node
|
|
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)))
|
|
|
|
case (4_pInt) ! 3D 8node
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
subvolume = 0.0_pReal
|
|
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
subvolume(n,f) = math_volTetrahedron(&
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
|
|
mesh_ipCoordinates(1:3,i,e))
|
|
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipVolumes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
|
|
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
|
|
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
|
|
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
|
|
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
|
|
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
|
|
! HAS TO BE CHANGED IN A LATER VERSION.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipCoordinates
|
|
|
|
implicit none
|
|
integer(pInt) :: e,t,g,c,i,n
|
|
real(pReal), dimension(3) :: myCoords
|
|
|
|
if (.not. allocated(mesh_ipCoordinates)) then
|
|
allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipCoordinates = 0.0_pReal
|
|
endif
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,myCoords)
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2_pInt,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
myCoords = 0.0_pReal
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
|
|
enddo
|
|
mesh_ipCoordinates(1:3,i,e) = myCoords / FE_NcellnodesPerCell(c)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipCoordinates
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates cell center coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function mesh_cellCenterCoordinates(ip,el)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: el, & !< element number
|
|
ip !< integration point number
|
|
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
|
|
|
|
integer(pInt) :: t,g,c,n
|
|
|
|
|
|
t = mesh_element(2_pInt,el) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
mesh_cellCenterCoordinates = 0.0_pReal
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
|
|
enddo
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / FE_NcellnodesPerCell(c)
|
|
|
|
endfunction mesh_cellCenterCoordinates
|
|
|
|
|
|
#ifdef Spectral
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads grid information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_spectral_getGrid(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_floatValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
integer(pInt), dimension(3) :: mesh_spectral_getGrid
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b,c + 3 values + keyword
|
|
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i, j, myUnit
|
|
logical :: gotGrid = .false.
|
|
|
|
mesh_spectral_getGrid = -1_pInt
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getGrid')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1_pInt,.true.)) )
|
|
case ('resolution','grid')
|
|
gotGrid = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('a')
|
|
mesh_spectral_getGrid(1) = IO_intValue(line,positions,j+1_pInt)
|
|
case('b')
|
|
mesh_spectral_getGrid(2) = IO_intValue(line,positions,j+1_pInt)
|
|
case('c')
|
|
mesh_spectral_getGrid(3) = IO_intValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotGrid) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='grid')
|
|
if(any(mesh_spectral_getGrid < 1_pInt)) &
|
|
call IO_error(error_ID = 843_pInt, ext_msg='mesh_spectral_getGrid')
|
|
|
|
end function mesh_spectral_getGrid
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads size information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_spectral_getSize(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_floatValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
real(pReal), dimension(3) :: mesh_spectral_getSize
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for x,y,z + 3 values + keyword
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i, j, myUnit
|
|
logical :: gotSize = .false.
|
|
|
|
mesh_spectral_getSize = -1.0_pReal
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getSize')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) )
|
|
case ('dimension', 'size')
|
|
gotSize = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('x')
|
|
mesh_spectral_getSize(1) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('y')
|
|
mesh_spectral_getSize(2) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('z')
|
|
mesh_spectral_getSize(3) = IO_floatValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotSize) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='size')
|
|
if (any(mesh_spectral_getSize<=0.0_pReal)) &
|
|
call IO_error(error_ID = 844_pInt, ext_msg='mesh_spectral_getSize')
|
|
|
|
end function mesh_spectral_getSize
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads homogenization information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function mesh_spectral_getHomogenization(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a, b, c + 3 values + keyword
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i, myUnit
|
|
logical :: gotHomogenization = .false.
|
|
|
|
mesh_spectral_getHomogenization = -1_pInt
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getHomogenization')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) )
|
|
case ('homogenization')
|
|
gotHomogenization = .true.
|
|
mesh_spectral_getHomogenization = IO_intValue(line,positions,2_pInt)
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotHomogenization ) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='homogenization')
|
|
if (mesh_spectral_getHomogenization<1_pInt) &
|
|
call IO_error(error_ID = 842_pInt, ext_msg='mesh_spectral_getHomogenization')
|
|
|
|
end function mesh_spectral_getHomogenization
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_nodesAndElements()
|
|
|
|
implicit none
|
|
mesh_Nelems = product(res)
|
|
mesh_Nnodes = product(res+1_pInt)
|
|
|
|
end subroutine mesh_spectral_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_cpElements
|
|
|
|
implicit none
|
|
|
|
mesh_NcpElems = mesh_Nelems
|
|
|
|
end subroutine mesh_spectral_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_map_elements
|
|
|
|
implicit none
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPelem(2_pInt,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
forall (i = 1_pInt:mesh_NcpElems) &
|
|
mesh_mapFEtoCPelem(1:2,i) = i
|
|
|
|
end subroutine mesh_spectral_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_map_nodes
|
|
|
|
implicit none
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
forall (i = 1_pInt:mesh_Nnodes) &
|
|
mesh_mapFEtoCPnode(1:2,i) = i
|
|
|
|
end subroutine mesh_spectral_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNcellnodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_cpSizes
|
|
|
|
implicit none
|
|
integer(pInt) :: t,g,c
|
|
|
|
t = FE_mapElemtype('C3D8R') ! fake 3D hexahedral 8 node 1 IP element
|
|
g = FE_geomtype(t)
|
|
c = FE_celltype(g)
|
|
|
|
mesh_maxNnodes = FE_Nnodes(t)
|
|
mesh_maxNips = FE_Nips(g)
|
|
mesh_maxNipNeighbors = FE_NipNeighbors(c)
|
|
mesh_maxNcellnodes = FE_Ncellnodes(g)
|
|
|
|
end subroutine mesh_spectral_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_nodes()
|
|
use numerics, &
|
|
only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt) :: n
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
|
|
mesh_node0(1,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(1) * real(mod(n,(res(1)+1_pInt) ),pReal) &
|
|
/ real(res(1),pReal)
|
|
mesh_node0(2,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(2) * real(mod(n/(res(1)+1_pInt),(res(2)+1_pInt)),pReal) &
|
|
/ real(res(2),pReal)
|
|
mesh_node0(3,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(3) * real(mod(n/(res(1)+1_pInt)/(res(2)+1_pInt),(res(3)+1_pInt)),pReal) &
|
|
/ real(res(3),pReal)
|
|
end forall
|
|
|
|
mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_spectral_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, material, texture, and node list per element.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_elements(myUnit)
|
|
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_continuousIntValues, &
|
|
IO_intValue, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), dimension (1_pInt+7_pInt*2_pInt) :: myPos
|
|
integer(pInt) :: e, i, headerLength = 0_pInt, maxIntCount
|
|
integer(pInt), dimension(:), allocatable :: microstructures
|
|
integer(pInt), dimension(1,1) :: dummySet = 0_pInt
|
|
character(len=65536) :: line,keyword
|
|
character(len=64), dimension(1) :: dummyName = ''
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a65536)') line
|
|
myPos = IO_stringPos(line,7_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,myPos,2_pInt,.true.))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,myPos,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_build_elements')
|
|
endif
|
|
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a65536)') line
|
|
enddo
|
|
|
|
maxIntCount = 0_pInt
|
|
i = 1_pInt
|
|
|
|
do while (i > 0_pInt)
|
|
i = IO_countContinuousIntValues(myUnit)
|
|
maxIntCount = max(maxIntCount, i)
|
|
enddo
|
|
|
|
rewind (myUnit)
|
|
do i=1_pInt,headerLength ! skip header
|
|
read(myUnit,'(a65536)') line
|
|
enddo
|
|
|
|
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)); mesh_element = 0_pInt
|
|
allocate (microstructures (1_pInt+maxIntCount)); microstructures = 2_pInt
|
|
|
|
e = 0_pInt
|
|
do while (e < mesh_NcpElems .and. microstructures(1) > 0_pInt) ! fill expected number of elements, stop at end of data (or blank line!)
|
|
microstructures = IO_continuousIntValues(myUnit,maxIntCount,dummyName,dummySet,0_pInt) ! get affected elements
|
|
do i = 1_pInt,microstructures(1_pInt)
|
|
e = e+1_pInt ! valid element entry
|
|
mesh_element( 1,e) = e ! FE id
|
|
mesh_element( 2,e) = FE_mapElemtype('C3D8R') ! elem type
|
|
mesh_element( 3,e) = homog ! homogenization
|
|
mesh_element( 4,e) = microstructures(1_pInt+i) ! microstructure
|
|
mesh_element( 5,e) = e + (e-1_pInt)/res(1) + &
|
|
((e-1_pInt)/(res(1)*res(2)))*(res(1)+1_pInt) ! base node
|
|
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
|
|
mesh_element( 7,e) = mesh_element(5,e) + res(1) + 2_pInt
|
|
mesh_element( 8,e) = mesh_element(5,e) + res(1) + 1_pInt
|
|
mesh_element( 9,e) = mesh_element(5,e) +(res(1) + 1_pInt) * (res(2) + 1_pInt) ! second floor base node
|
|
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
|
|
mesh_element(11,e) = mesh_element(9,e) + res(1) + 2_pInt
|
|
mesh_element(12,e) = mesh_element(9,e) + res(1) + 1_pInt
|
|
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),mesh_element(3,e)) !needed for statistics
|
|
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),mesh_element(4,e))
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(microstructures)
|
|
if (e /= mesh_NcpElems) call IO_error(880_pInt,e) !@ToDo does that make sense?
|
|
|
|
end subroutine mesh_spectral_build_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief build neighborhood relations for spectral
|
|
!> @details assign globals: mesh_ipNeighborhood
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_ipNeighborhood
|
|
|
|
implicit none
|
|
integer(pInt) x,y,z, &
|
|
e
|
|
|
|
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipNeighborhood = 0_pInt
|
|
|
|
|
|
e = 0_pInt
|
|
do x = 0_pInt,res(1)-1_pInt
|
|
do y = 0_pInt,res(2)-1_pInt
|
|
do z = 0_pInt,res(3)-1_pInt
|
|
e = e + 1_pInt
|
|
mesh_ipNeighborhood(1,1,1,e) = z * res(1) * res(2) &
|
|
+ y * res(1) &
|
|
+ modulo(x+1_pInt,res(1)) &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,2,1,e) = z * res(1) * res(2) &
|
|
+ y * res(1) &
|
|
+ modulo(x-1_pInt,res(1)) &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,3,1,e) = z * res(1) * res(2) &
|
|
+ modulo(y+1_pInt,res(2)) * res(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,4,1,e) = z * res(1) * res(2) &
|
|
+ modulo(y-1_pInt,res(2)) * res(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,res(3)) * res(1) * res(2) &
|
|
+ y * res(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,res(3)) * res(1) * res(2) &
|
|
+ y * res(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt
|
|
mesh_ipNeighborhood(3,1,1,e) = 2_pInt
|
|
mesh_ipNeighborhood(3,2,1,e) = 1_pInt
|
|
mesh_ipNeighborhood(3,3,1,e) = 4_pInt
|
|
mesh_ipNeighborhood(3,4,1,e) = 3_pInt
|
|
mesh_ipNeighborhood(3,5,1,e) = 6_pInt
|
|
mesh_ipNeighborhood(3,6,1,e) = 5_pInt
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
end subroutine mesh_spectral_build_ipNeighborhood
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Performes a regridding from saved restart information
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_regrid(adaptive,resNewInput,minRes)
|
|
use prec, only: &
|
|
pInt, &
|
|
pReal
|
|
use DAMASK_interface, only: &
|
|
getSolverWorkingDirectoryName, &
|
|
getSolverJobName, &
|
|
GeometryFile
|
|
use IO, only: &
|
|
IO_read_jobBinaryFile ,&
|
|
IO_read_jobBinaryIntFile ,&
|
|
IO_write_jobBinaryFile, &
|
|
IO_write_jobBinaryIntFile, &
|
|
IO_write_jobFile, &
|
|
IO_error
|
|
use numerics, only: &
|
|
mySpectralSolver
|
|
use math, only: &
|
|
math_periodicNearestNeighbor, &
|
|
math_mul33x3
|
|
|
|
implicit none
|
|
character(len=1024):: formatString, N_Digits
|
|
logical, intent(in) :: adaptive ! if true, choose adaptive grid based on resNewInput, otherwise keep it constant
|
|
integer(pInt), dimension(3), optional, intent(in) :: resNewInput ! f2py cannot handle optional arguments correctly (they are always present)
|
|
integer(pInt), dimension(3), optional, intent(in) :: minRes
|
|
integer(pInt), dimension(3) :: mesh_regrid, ratio
|
|
integer(pInt), dimension(3,2) :: possibleResNew
|
|
integer(pInt):: maxsize, i, j, k, ielem, NpointsNew, spatialDim
|
|
integer(pInt), dimension(3) :: resNew
|
|
integer(pInt), dimension(:), allocatable :: indices
|
|
real(pReal), dimension(3) :: geomdimNew
|
|
real(pReal), dimension(3,3) :: Favg, Favg_LastInc, &
|
|
FavgNew, Favg_LastIncNew, &
|
|
deltaF, deltaF_lastInc
|
|
real(pReal), dimension(:,:), allocatable :: &
|
|
coordinates, coordinatesNew
|
|
real(pReal), dimension(:,:,:), allocatable :: &
|
|
stateHomog
|
|
real(pReal), dimension (:,:,:,:), allocatable :: &
|
|
spectralF9, spectralF9New, &
|
|
Tstar, TstarNew, &
|
|
stateConst
|
|
real(pReal), dimension(:,:,:,:,:), allocatable :: &
|
|
spectralF33, spectralF33New, &
|
|
F, FNew, &
|
|
Fp, FpNew, &
|
|
Lp, LpNew, &
|
|
dcsdE, dcsdENew, &
|
|
F_lastIncNew
|
|
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
|
dPdF, dPdFNew
|
|
|
|
integer(pInt), dimension(:,:), allocatable :: &
|
|
sizeStateHomog
|
|
integer(pInt), dimension(:,:,:), allocatable :: &
|
|
material_phase, material_phaseNew, &
|
|
sizeStateConst
|
|
|
|
write(6,'(a)') 'Regridding geometry'
|
|
if (adaptive) then
|
|
write(6,'(a)') 'adaptive resolution determination'
|
|
if (present(minRes)) then
|
|
if (all(minRes /= -1_pInt)) & !the f2py way to tell it is present
|
|
write(6,'(a,3(i12))') ' given minimum resolution ', minRes
|
|
endif
|
|
if (present(resNewInput)) then
|
|
if (any (resNewInput<1)) call IO_error(890_pInt, ext_msg = 'resNewInput') !the f2py way to tell it is not present
|
|
write(6,'(a,3(i12))') ' target resolution ', resNewInput
|
|
else
|
|
call IO_error(890_pInt, ext_msg = 'resNewInput')
|
|
endif
|
|
endif
|
|
|
|
allocate(coordinates(3,mesh_NcpElems))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! read in deformation gradient to calculate coordinates, shape depend of selected solver
|
|
select case(myspectralsolver)
|
|
case('basic')
|
|
allocate(spectralF33(3,3,res(1),res(2),res(3)))
|
|
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF33))
|
|
read (777,rec=1) spectralF33
|
|
close (777)
|
|
Favg = sum(sum(sum(spectralF33,dim=5),dim=4),dim=3) * wgt
|
|
coordinates = reshape(mesh_deformedCoordsFFT(geomdim,spectralF33),[3,mesh_NcpElems])
|
|
case('basicpetsc','al')
|
|
allocate(spectralF9(9,res(1),res(2),res(3)))
|
|
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF9))
|
|
read (777,rec=1) spectralF9
|
|
close (777)
|
|
Favg = reshape(sum(sum(sum(spectralF9,dim=4),dim=3),dim=2) * wgt, [3,3])
|
|
coordinates = reshape(mesh_deformedCoordsFFT(geomdim,reshape(spectralF9, &
|
|
[3,3,res(1),res(2),res(3)])),[3,mesh_NcpElems])
|
|
end select
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! sanity check 2D/3D case
|
|
if (res(3)== 1_pInt) then
|
|
spatialDim = 2_pInt
|
|
if (present (minRes)) then
|
|
if (minRes(1) > 0_pInt .or. minRes(2) > 0_pInt) then
|
|
if (minRes(3) /= 1_pInt .or. &
|
|
mod(minRes(1),2_pInt) /= 0_pInt .or. &
|
|
mod(minRes(2),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '2D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
|
|
endif; endif
|
|
else
|
|
spatialDim = 3_pInt
|
|
if (present (minRes)) then
|
|
if (any(minRes > 0_pInt)) then
|
|
if (mod(minRes(1),2_pInt) /= 0_pInt.or. &
|
|
mod(minRes(2),2_pInt) /= 0_pInt .or. &
|
|
mod(minRes(3),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '3D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
|
|
endif; endif
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Automatic detection based on current geom
|
|
geomdimNew = math_mul33x3(Favg,geomdim)
|
|
if (adaptive) then
|
|
ratio = floor(real(resNewInput,pReal) * (geomdimNew/geomdim), pInt)
|
|
|
|
possibleResNew = 1_pInt
|
|
do i = 1_pInt, spatialDim
|
|
if (mod(ratio(i),2) == 0_pInt) then
|
|
possibleResNew(i,1:2) = [ratio(i),ratio(i) + 2_pInt]
|
|
else
|
|
possibleResNew(i,1:2) = [ratio(i)-1_pInt, ratio(i) + 1_pInt]
|
|
endif
|
|
if (.not.present(minRes)) then ! calling from fortran, optional argument not given
|
|
possibleResNew = possibleResNew
|
|
else ! optional argument is there
|
|
if (any(minRes<1_pInt)) then
|
|
possibleResNew = possibleResNew ! f2py calling, but without specification (or choosing invalid values), standard from pyf = -1
|
|
else ! given useful values
|
|
do k = 1_pInt,3_pInt; do j = 1_pInt,3_pInt
|
|
possibleResNew(j,k) = max(possibleResNew(j,k), minRes(j))
|
|
enddo; enddo
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
k = huge(1_pInt)
|
|
do i = 0_pInt, 2_pInt**spatialDim - 1
|
|
j = abs( possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt) &
|
|
* possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt) &
|
|
* possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) &
|
|
- resNewInput(1)*resNewInput(2)*resNewInput(3))
|
|
|
|
if (j < k) then
|
|
k = j
|
|
resNew =[ possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt), &
|
|
possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt), &
|
|
possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) ]
|
|
endif
|
|
enddo
|
|
else
|
|
resNew = res
|
|
endif
|
|
|
|
mesh_regrid = resNew
|
|
NpointsNew = resNew(1)*resNew(2)*resNew(3)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculate regular new coordinates
|
|
allocate(coordinatesNew(3,NpointsNew))
|
|
ielem = 0_pInt
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
ielem = ielem + 1_pInt
|
|
coordinatesNew(1:3,ielem) = math_mul33x3(Favg, geomdim/real(resNew,pReal)*real([i,j,k],pReal) &
|
|
- geomdim/real(2_pInt*resNew,pReal))
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Nearest neighbour search
|
|
allocate(indices(NpointsNew))
|
|
indices = math_periodicNearestNeighbor(geomdim, Favg, coordinatesNew, coordinates)
|
|
deallocate(coordinates)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write out indices periodic
|
|
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
|
|
call IO_write_jobFile(777,'IDX') ! make it a general open-write file
|
|
write(777, '(A)') '1 header'
|
|
write(777, '(A)') 'Numbered indices as per the large set'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') indices(i), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate and write out indices non periodic
|
|
do i = 1_pInt, NpointsNew
|
|
indices(i) = indices(i) / 3_pInt**spatialDim +1_pInt ! +1 b'coz index count starts from '0'
|
|
enddo
|
|
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
|
|
call IO_write_jobFile(777,'idx') ! make it a general open-write file
|
|
write(777, '(A)') '1 header'
|
|
write(777, '(A)') 'Numbered indices as per the small set'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') indices(i), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write out new geom file
|
|
write(N_Digits, '(I16.16)') 1_pInt+int(log10(real(maxval(mesh_element(4,1:mesh_NcpElems)),pReal)),pInt)
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
open(777,file=trim(getSolverWorkingDirectoryName())//trim(GeometryFile),status='REPLACE')
|
|
write(777, '(A)') '3 header'
|
|
write(777, '(3(A, I8))') 'resolution a ', resNew(1), ' b ', resNew(2), ' c ', resNew(3)
|
|
write(777, '(3(A, g17.10))') 'dimension x ', geomdim(1), ' y ', geomdim(2), ' z ', geomdim(3)
|
|
write(777, '(A)') 'homogenization 1'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') mesh_element(4,indices(i)), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! set F to average values
|
|
select case(myspectralsolver)
|
|
case('basic')
|
|
allocate(spectralF33New(3,3,resNew(1),resNew(2),resNew(3)))
|
|
spectralF33New = spread(spread(spread(Favg,3,resNew(1)),4,resNew(2)),5,resNew(3))
|
|
call IO_write_jobBinaryFile(777,'F',size(spectralF33New))
|
|
write (777,rec=1) spectralF33New
|
|
close (777)
|
|
|
|
case('basicpetsc','al')
|
|
allocate(spectralF9New(9,resNew(1),resNew(2),resNew(3)))
|
|
spectralF9New = spread(spread(spread(reshape(Favg,[9]),2,resNew(1)),3,resNew(2)),4,resNew(3))
|
|
call IO_write_jobBinaryFile(777,'F',size(spectralF9New))
|
|
write (777,rec=1) spectralF9New
|
|
close (777)
|
|
end select
|
|
|
|
!---------------------------------------------------------------------------------
|
|
allocate(F_lastIncNew(3,3,resNew(1),resNew(2),resNew(3)))
|
|
|
|
call IO_read_jobBinaryFile(777,'F_aim_lastInc', &
|
|
trim(getSolverJobName()),size(Favg_LastInc))
|
|
read (777,rec=1) Favg_LastInc
|
|
close (777)
|
|
|
|
F_lastIncNew = spread(spread(spread(Favg_LastInc,3,resNew(1)),4,resNew(2)),5,resNew(3))
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',size(F_LastIncNew))
|
|
write (777,rec=1) F_LastIncNew
|
|
close (777)
|
|
|
|
deallocate(F_lastIncNew)
|
|
|
|
! relocating data of material subroutine ---------------------------------------------------------
|
|
allocate(material_phase (1,1, mesh_NcpElems))
|
|
allocate(material_phaseNew (1,1, NpointsNew))
|
|
call IO_read_jobBinaryIntFile(777,'recordedPhase',trim(getSolverJobName()),size(material_phase))
|
|
read (777,rec=1) material_phase
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
material_phaseNew(1,1,i) = material_phase(1,1,indices(i))
|
|
enddo
|
|
do i = 1, mesh_NcpElems
|
|
if (all(material_phaseNew(1,1,:) /= material_phase(1,1,i))) then
|
|
write(6,*) 'mismatch in regridding'
|
|
write(6,*) material_phase(1,1,i), 'not found in material_phaseNew'
|
|
endif
|
|
enddo
|
|
call IO_write_jobBinaryIntFile(777,'recordedPhase',size(material_phaseNew))
|
|
write (777,rec=1) material_phaseNew
|
|
close (777)
|
|
deallocate(material_phase)
|
|
deallocate(material_phaseNew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(F (3,3,1,1, mesh_NcpElems))
|
|
allocate(FNew (3,3,1,1, NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedF',trim(getSolverJobName()),size(F))
|
|
read (777,rec=1) F
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
FNew(1:3,1:3,1,1,i) = F(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedF',size(FNew))
|
|
write (777,rec=1) FNew
|
|
close (777)
|
|
deallocate(F)
|
|
deallocate(FNew)
|
|
!---------------------------------------------------------------------
|
|
allocate(Fp (3,3,1,1,mesh_NcpElems))
|
|
allocate(FpNew (3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedFp',trim(getSolverJobName()),size(Fp))
|
|
read (777,rec=1) Fp
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
FpNew(1:3,1:3,1,1,i) = Fp(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedFp',size(FpNew))
|
|
write (777,rec=1) FpNew
|
|
close (777)
|
|
deallocate(Fp)
|
|
deallocate(FpNew)
|
|
!------------------------------------------------------------------------
|
|
allocate(Lp (3,3,1,1,mesh_NcpElems))
|
|
allocate(LpNew (3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedLp',trim(getSolverJobName()),size(Lp))
|
|
read (777,rec=1) Lp
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
LpNew(1:3,1:3,1,1,i) = Lp(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergedLp',size(LpNew))
|
|
write (777,rec=1) LpNew
|
|
close (777)
|
|
deallocate(Lp)
|
|
deallocate(LpNew)
|
|
!----------------------------------------------------------------------------
|
|
allocate(dcsdE (6,6,1,1,mesh_NcpElems))
|
|
allocate(dcsdENew (6,6,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergeddcsdE',trim(getSolverJobName()),size(dcsdE))
|
|
read (777,rec=1) dcsdE
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
dcsdENew(1:6,1:6,1,1,i) = dcsdE(1:6,1:6,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergeddcsdE',size(dcsdENew))
|
|
write (777,rec=1) dcsdENew
|
|
close (777)
|
|
deallocate(dcsdE)
|
|
deallocate(dcsdENew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(dPdF (3,3,3,3,1,1,mesh_NcpElems))
|
|
allocate(dPdFNew (3,3,3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergeddPdF',trim(getSolverJobName()),size(dPdF))
|
|
read (777,rec=1) dPdF
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
dPdFNew(1:3,1:3,1:3,1:3,1,1,i) = dPdF(1:3,1:3,1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergeddPdF',size(dPdFNew))
|
|
write (777,rec=1) dPdFNew
|
|
close (777)
|
|
deallocate(dPdF)
|
|
deallocate(dPdFNew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(Tstar (6,1,1,mesh_NcpElems))
|
|
allocate(TstarNew (6,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedTstar',trim(getSolverJobName()),size(Tstar))
|
|
read (777,rec=1) Tstar
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
TstarNew(1:6,1,1,i) = Tstar(1:6,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergedTstar',size(TstarNew))
|
|
write (777,rec=1) TstarNew
|
|
close (777)
|
|
deallocate(Tstar)
|
|
deallocate(TstarNew)
|
|
|
|
! for the state, we first have to know the size------------------------------------------------------------------
|
|
allocate(sizeStateConst(1,1,mesh_NcpElems))
|
|
call IO_read_jobBinaryIntFile(777,'sizeStateConst',trim(getSolverJobName()),size(sizeStateConst))
|
|
read (777,rec=1) sizeStateConst
|
|
close (777)
|
|
maxsize = maxval(sizeStateConst(1,1,1:mesh_NcpElems))
|
|
allocate(StateConst (1,1,mesh_NcpElems,maxsize))
|
|
|
|
call IO_read_jobBinaryFile(777,'convergedStateConst',trim(getSolverJobName()))
|
|
k = 0_pInt
|
|
do i =1, mesh_NcpElems
|
|
do j = 1,sizeStateConst(1,1,i)
|
|
k = k+1_pInt
|
|
read(777,rec=k) StateConst(1,1,i,j)
|
|
enddo
|
|
enddo
|
|
close(777)
|
|
call IO_write_jobBinaryFile(777,'convergedStateConst')
|
|
k = 0_pInt
|
|
do i = 1,NpointsNew
|
|
do j = 1,sizeStateConst(1,1,indices(i))
|
|
k=k+1_pInt
|
|
write(777,rec=k) StateConst(1,1,indices(i),j)
|
|
enddo
|
|
enddo
|
|
close (777)
|
|
deallocate(sizeStateConst)
|
|
deallocate(StateConst)
|
|
!----------------------------------------------------------------------------
|
|
allocate(sizeStateHomog(1,mesh_NcpElems))
|
|
call IO_read_jobBinaryIntFile(777,'sizeStateHomog',trim(getSolverJobName()),size(sizeStateHomog))
|
|
read (777,rec=1) sizeStateHomog
|
|
close (777)
|
|
maxsize = maxval(sizeStateHomog(1,1:mesh_NcpElems))
|
|
allocate(stateHomog (1,mesh_NcpElems,maxsize))
|
|
|
|
call IO_read_jobBinaryFile(777,'convergedStateHomog',trim(getSolverJobName()))
|
|
k = 0_pInt
|
|
do i =1, mesh_NcpElems
|
|
do j = 1,sizeStateHomog(1,i)
|
|
k = k+1_pInt
|
|
read(777,rec=k) stateHomog(1,i,j)
|
|
enddo
|
|
enddo
|
|
close(777)
|
|
call IO_write_jobBinaryFile(777,'convergedStateHomog')
|
|
k = 0_pInt
|
|
do i = 1,NpointsNew
|
|
do j = 1,sizeStateHomog(1,indices(i))
|
|
k=k+1_pInt
|
|
write(777,rec=k) stateHomog(1,indices(i),j)
|
|
enddo
|
|
enddo
|
|
close (777)
|
|
deallocate(sizeStateHomog)
|
|
deallocate(stateHomog)
|
|
|
|
deallocate(indices)
|
|
write(6,*) 'finished regridding'
|
|
|
|
end function mesh_regrid
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: &
|
|
math_mul33x3
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:) :: &
|
|
centres
|
|
real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
|
|
nodes
|
|
real(pReal), intent(in), dimension(3) :: &
|
|
gDim
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Favg
|
|
real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
|
|
wrappedCentres
|
|
|
|
integer(pInt) :: &
|
|
i,j,k,n
|
|
integer(pInt), dimension(3), parameter :: &
|
|
diag = 1_pInt
|
|
integer(pInt), dimension(3) :: &
|
|
shift = 0_pInt, &
|
|
lookup = 0_pInt, &
|
|
me = 0_pInt, &
|
|
iRes = 0_pInt
|
|
integer(pInt), dimension(3,8) :: &
|
|
neighbor = reshape([ &
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
0_pInt, 1_pInt, 1_pInt ], [3,8])
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initializing variables
|
|
iRes = [size(centres,2),size(centres,3),size(centres,4)]
|
|
nodes = 0.0_pReal
|
|
wrappedCentres = 0.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Meshing cubes around centroids'
|
|
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
|
|
write(6,'(a,3(i5))') ' Resolution:', iRes
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! building wrappedCentres = centroids + ghosts
|
|
wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres
|
|
do k = 0_pInt,iRes(3)+1_pInt
|
|
do j = 0_pInt,iRes(2)+1_pInt
|
|
do i = 0_pInt,iRes(1)+1_pInt
|
|
if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin
|
|
j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin
|
|
i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin
|
|
me = [i,j,k] ! me on skin
|
|
shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me)
|
|
lookup = me-diag+shift*iRes
|
|
wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = &
|
|
centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) - &
|
|
math_mul33x3(Favg, shift*gDim)
|
|
endif
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! averaging
|
|
do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1)
|
|
do n = 1_pInt,8_pInt
|
|
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = &
|
|
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), &
|
|
j+1_pInt+neighbor(2,n), &
|
|
k+1_pInt+neighbor(3,n) )
|
|
enddo
|
|
enddo; enddo; enddo
|
|
nodes = nodes/8.0_pReal
|
|
|
|
end function mesh_nodesAroundCentres
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculate coordinates in current configuration for given defgrad using linear
|
|
! interpolation
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_deformedCoordsLinear(gDim,F,FavgIn) result(coords)
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: &
|
|
math_mul33x3
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
|
|
F
|
|
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: &
|
|
coords
|
|
real(pReal), intent(in), dimension(3) :: &
|
|
gDim
|
|
real(pReal), intent(in), dimension(3,3), optional :: &
|
|
FavgIn
|
|
real(pReal), dimension(3,0:size(F,3)-1,0:size(F,4)-1,0:size(F,5)-1,0:7) :: &
|
|
coordsAvgOrder
|
|
integer(pInt), parameter, dimension(3) :: &
|
|
iOnes = 1_pInt
|
|
real(pReal), parameter, dimension(3) :: &
|
|
fOnes = 1.0_pReal
|
|
real(pReal), dimension(3) :: &
|
|
myStep, &
|
|
negative, &
|
|
positive, &
|
|
offsetCoords, &
|
|
parameterCoords, &
|
|
stepLength, &
|
|
fRes
|
|
real(pReal), dimension(3,3) :: &
|
|
Favg
|
|
integer(pInt), dimension(3) :: &
|
|
rear, &
|
|
init, &
|
|
oppo, &
|
|
me, &
|
|
smallRes, &
|
|
iRes
|
|
integer(pInt) :: &
|
|
i, j, k, s, o
|
|
integer(pInt), parameter, dimension(3,0:7) :: &
|
|
corner = reshape([ &
|
|
0_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 0_pInt,&
|
|
0_pInt, 1_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 0_pInt, 1_pInt,&
|
|
1_pInt, 0_pInt, 1_pInt &
|
|
],[3,8]), &
|
|
step = reshape([&
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt, 1_pInt,&
|
|
1_pInt,-1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt, 1_pInt,-1_pInt,&
|
|
-1_pInt, 1_pInt,-1_pInt &
|
|
], [3,8])
|
|
integer(pInt), parameter, dimension(3,6) :: &
|
|
order = reshape([ &
|
|
1_pInt, 2_pInt, 3_pInt,&
|
|
1_pInt, 3_pInt, 2_pInt,&
|
|
2_pInt, 1_pInt, 3_pInt,&
|
|
2_pInt, 3_pInt, 1_pInt,&
|
|
3_pInt, 1_pInt, 2_pInt,&
|
|
3_pInt, 2_pInt, 1_pInt &
|
|
], [3,6])
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initializing variables
|
|
iRes = [size(F,3),size(F,4),size(F,5)]
|
|
fRes = real(iRes,pReal)
|
|
smallRes = iRes - 1_pInt
|
|
coordsAvgOrder = 0.0_pReal
|
|
stepLength = gDim/fRes
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Restore geometry using linear integration'
|
|
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
|
|
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! determine average deformation gradient
|
|
if (present(FavgIn)) then
|
|
if (all(FavgIn < 0.0_pReal)) then ! the f2py way to tell it is not present
|
|
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
|
|
else
|
|
Favg = FavgIn
|
|
endif
|
|
else
|
|
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! loop over starting corners (from 0 to 7)
|
|
cornerLooping: do s = 0_pInt, 7_pInt
|
|
init = corner(1:3,s) * smallRes + iOnes
|
|
oppo = corner(1:3,mod((s+4_pInt),8_pInt)) * smallRes + iOnes
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! permutation of ways on each corner
|
|
permutationLooping: do o = 1_pInt,6_pInt
|
|
coords = 0.0_pReal
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s)
|
|
rear(order(2,o)) = init(order(2,o))
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s)
|
|
rear(order(1,o)) = init(order(1,o))
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s)
|
|
me(order(1:3,o)) = [i,j,k]
|
|
if ( all(me == init)) then
|
|
coords(1:3,me(1),me(2),me(3)) = gDim*( math_mul33x3(Favg,real(corner(1:3,s),pReal)) &
|
|
+math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)), &
|
|
0.5_pReal*real(step(1:3,s)/iRes,pReal)))
|
|
else
|
|
myStep = (me-rear)*stepLength
|
|
coords(1:3,me(1),me(2),me(3)) = coords(1:3,rear(1),rear(2),rear(3)) + &
|
|
0.5_pReal*math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)) + &
|
|
F(1:3,1:3,rear(1),rear(2),rear(3)),myStep)
|
|
endif
|
|
rear = me
|
|
enddo; enddo; enddo
|
|
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) = &
|
|
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) + coords/6.0_pReal
|
|
enddo permutationLooping
|
|
offsetCoords = coordsAvgOrder(1:3,0,0,0,s)
|
|
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
|
|
coordsAvgOrder(1:3,i,j,k,s) = coordsAvgOrder(1:3,i,j,k,s) - offsetCoords
|
|
enddo; enddo; enddo
|
|
enddo cornerLooping
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! linear interpolation starting at each corner (comparable to linear shape function FEM)
|
|
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
|
|
parameterCoords = (2.0_pReal*real([i,j,k]+1,pReal)-fRes)/fRes
|
|
positive = fones + parameterCoords
|
|
negative = fones - parameterCoords
|
|
coords(1:3,i+1_pInt,j+1_pInt,k+1_pInt) &
|
|
=(coordsAvgOrder(1:3,i,j,k,0) *negative(1)*negative(2)*negative(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,1) *positive(1)*negative(2)*negative(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,2) *positive(1)*positive(2)*negative(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,3) *negative(1)*positive(2)*negative(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,4) *positive(1)*positive(2)*positive(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,5) *negative(1)*positive(2)*positive(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,6) *negative(1)*negative(2)*positive(3)&
|
|
+ coordsAvgOrder(1:3,i,j,k,7) *positive(1)*negative(2)*positive(3))*0.125_pReal
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! setting base node to (0,0,0)
|
|
offsetCoords = math_mul33x3(F(1:3,1:3,1,1,1),stepLength/2.0_pReal) - coords(1:3,1,1,1)
|
|
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
|
|
coords(1:3,i,j,k) = coords(1:3,i,j,k) + offsetCoords
|
|
enddo; enddo; enddo
|
|
|
|
end function mesh_deformedCoordsLinear
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculate coordinates in current configuration for given defgrad
|
|
! using integration in Fourier space
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_deformedCoordsFFT(gDim,F,FavgIn,scalingIn) result(coords)
|
|
use IO, only: &
|
|
IO_error
|
|
use numerics, only: &
|
|
fftw_timelimit, &
|
|
fftw_planner_flag
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: &
|
|
PI, &
|
|
math_mul33x3
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
|
|
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: coords
|
|
real(pReal), intent(in), dimension(3) :: gDim
|
|
real(pReal), intent(in), dimension(3,3), optional :: FavgIn
|
|
real(pReal), intent(in), dimension(3), optional :: scalingIn
|
|
|
|
! allocatable arrays for fftw c routines
|
|
type(C_PTR) :: planForth, planBack
|
|
type(C_PTR) :: coords_fftw, defgrad_fftw
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: F_real
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: F_fourier
|
|
real(pReal), dimension(:,:,:,:), pointer :: coords_real
|
|
complex(pReal), dimension(:,:,:,:), pointer :: coords_fourier
|
|
! other variables
|
|
integer(pInt) :: i, j, k, m, res1Red
|
|
integer(pInt), dimension(3) :: k_s, iRes
|
|
real(pReal), dimension(3) :: scaling, step, offset_coords, integrator
|
|
real(pReal), dimension(3,3) :: Favg
|
|
integer(pInt), dimension(2:3,2) :: Nyquist ! highest frequencies to be removed (1 if even, 2 if odd)
|
|
|
|
if (present(scalingIn)) then
|
|
where (scalingIn < 0.0_pReal) ! invalid values. in case of f2py -1 if not present
|
|
scaling = [1.0_pReal,1.0_pReal,1.0_pReal]
|
|
elsewhere
|
|
scaling = scalingIn
|
|
end where
|
|
else
|
|
scaling = 1.0_pReal
|
|
endif
|
|
|
|
iRes = [size(F,3),size(F,4),size(F,5)]
|
|
integrator = gDim / 2.0_pReal / PI ! see notes where it is used
|
|
res1Red = iRes(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
|
step = gDim/real(iRes, pReal)
|
|
Nyquist(2,1:2) = [iRes(2)/2_pInt + 1_pInt, iRes(2)/2_pInt + 1_pInt + mod(iRes(2),2_pInt)]
|
|
Nyquist(3,1:2) = [iRes(3)/2_pInt + 1_pInt, iRes(3)/2_pInt + 1_pInt + mod(iRes(3),2_pInt)]
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Restore geometry using FFT-based integration'
|
|
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
|
|
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! sanity check
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) &
|
|
call IO_error(0_pInt,ext_msg='Fortran to C in mesh_deformedCoordsFFT')
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocation and FFTW initialization
|
|
defgrad_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*9_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8)
|
|
coords_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*3_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(defgrad_fftw, F_real, &
|
|
[iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt,3_pInt])
|
|
call c_f_pointer(defgrad_fftw, F_fourier, &
|
|
[res1Red, iRes(2),iRes(3),3_pInt,3_pInt])
|
|
call c_f_pointer(coords_fftw, coords_real, &
|
|
[iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt])
|
|
call c_f_pointer(coords_fftw, coords_fourier, &
|
|
[res1Red, iRes(2),iRes(3),3_pInt])
|
|
|
|
call fftw_set_timelimit(fftw_timelimit)
|
|
planForth = fftw_plan_many_dft_r2c(3_pInt,[iRes(3),iRes(2) ,iRes(1)],9_pInt,& ! dimensions , length in each dimension in reversed order
|
|
F_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],& ! input data , physical length in each dimension in reversed order
|
|
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),& ! striding , product of physical lenght in the 3 dimensions
|
|
F_fourier,[iRes(3),iRes(2) ,res1Red],&
|
|
1_pInt, iRes(3)*iRes(2)* res1Red,fftw_planner_flag)
|
|
|
|
planBack = fftw_plan_many_dft_c2r(3_pInt,[iRes(3),iRes(2) ,iRes(1)],3_pInt,&
|
|
coords_fourier,[iRes(3),iRes(2) ,res1Red],&
|
|
1_pInt, iRes(3)*iRes(2)* res1Red,&
|
|
coords_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],&
|
|
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),&
|
|
fftw_planner_flag)
|
|
F_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3,1:3) = &
|
|
reshape(F,[iRes(1),iRes(2),iRes(3),3,3], order = [4,5,1,2,3]) ! F_real is overwritten during plan creatio, is larger (padding) and has different order
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! FFT
|
|
call fftw_execute_dft_r2c(planForth, F_real, F_fourier)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! if no average F is given, compute it in Fourier space
|
|
if (present(FavgIn)) then
|
|
if (all(FavgIn < 0.0_pReal)) then
|
|
Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal) !the f2py way to tell it is not present
|
|
else
|
|
Favg = FavgIn
|
|
endif
|
|
else
|
|
Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! remove highest frequency in each direction, in third direction only if not 2D
|
|
|
|
if(iRes(1)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
|
|
F_fourier (res1Red, 1:iRes(2), 1:iRes(3), 1:3,1:3) &
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
if(iRes(2)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
|
|
F_fourier (1:res1Red,Nyquist(2,1):Nyquist(2,2),1:iRes(3), 1:3,1:3) &
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
if(iRes(3)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
|
|
F_fourier (1:res1Red,1:iRes(2), Nyquist(3,1):Nyquist(3,2),1:3,1:3) &
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! integration in Fourier space
|
|
coords_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
do k = 1_pInt, iRes(3)
|
|
k_s(3) = k-1_pInt
|
|
if(k > iRes(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-iRes(3)
|
|
do j = 1_pInt, iRes(2)
|
|
k_s(2) = j-1_pInt
|
|
if(j > iRes(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-iRes(2)
|
|
do i = 1_pInt, res1Red
|
|
k_s(1) = i-1_pInt
|
|
do m = 1_pInt,3_pInt
|
|
coords_fourier(i,j,k,m) = sum(F_fourier(i,j,k,m,1:3)*&
|
|
cmplx(0.0_pReal,real(k_s,pReal)*integrator,pReal))
|
|
enddo
|
|
if (any(k_s /= 0_pInt)) coords_fourier(i,j,k,1:3) = &
|
|
coords_fourier(i,j,k,1:3) / cmplx(-sum(k_s*k_s),0.0_pReal,pReal)
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! iFFT and freeing memory
|
|
call fftw_execute_dft_c2r(planBack,coords_fourier,coords_real)
|
|
coords = reshape(coords_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3), [3,iRes(1),iRes(2),iRes(3)], &
|
|
order = [2,3,4,1])/real(product(iRes),pReal) ! weight and change order
|
|
call fftw_destroy_plan(planForth)
|
|
call fftw_destroy_plan(planBack)
|
|
call fftw_free(defgrad_fftw)
|
|
call fftw_free(coords_fftw)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! add average to scaled fluctuation and put (0,0,0) on (0,0,0)
|
|
offset_coords = math_mul33x3(F(1:3,1:3,1,1,1),step/2.0_pReal) - scaling*coords(1:3,1,1,1)
|
|
forall(k = 1_pInt:iRes(3), j = 1_pInt:iRes(2), i = 1_pInt:iRes(1)) &
|
|
coords(1:3,i,j,k) = scaling(1:3)*coords(1:3,i,j,k) &
|
|
+ offset_coords &
|
|
+ math_mul33x3(Favg,step*real([i,j,k]-1_pInt,pReal))
|
|
|
|
end function mesh_deformedCoordsFFT
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates the mismatch between volume of reconstructed (compatible) cube and
|
|
! determinant of defgrad at the FP
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_volumeMismatch(gDim,F,nodes) result(vMismatch)
|
|
use IO, only: &
|
|
IO_error
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: &
|
|
PI, &
|
|
math_det33, &
|
|
math_volTetrahedron
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
|
|
F
|
|
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
|
|
vMismatch
|
|
real(pReal), intent(in), dimension(:,:,:,:) :: &
|
|
nodes
|
|
real(pReal), dimension(3) :: &
|
|
gDim
|
|
integer(pInt), dimension(3) :: &
|
|
iRes
|
|
real(pReal), dimension(3,8) :: coords
|
|
integer(pInt) :: i,j,k
|
|
real(pReal) :: volInitial
|
|
|
|
iRes = [size(F,3),size(F,4),size(F,5)]
|
|
volInitial = product(gDim)/real(product(iRes), pReal)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report and check
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Calculating volume mismatch'
|
|
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
|
|
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
|
|
endif
|
|
|
|
if (any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]))&
|
|
call IO_error(0_pInt,ext_msg='Arrays F and nodes in mesh_volumeMismatch')
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate actual volume and volume resulting from deformation gradient
|
|
do k = 1_pInt,iRes(3)
|
|
do j = 1_pInt,iRes(2)
|
|
do i = 1_pInt,iRes(1)
|
|
coords(1:3,1) = nodes(1:3,i, j, k )
|
|
coords(1:3,2) = nodes(1:3,i+1_pInt,j, k )
|
|
coords(1:3,3) = nodes(1:3,i+1_pInt,j+1_pInt,k )
|
|
coords(1:3,4) = nodes(1:3,i, j+1_pInt,k )
|
|
coords(1:3,5) = nodes(1:3,i, j, k+1_pInt)
|
|
coords(1:3,6) = nodes(1:3,i+1_pInt,j, k+1_pInt)
|
|
coords(1:3,7) = nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt)
|
|
coords(1:3,8) = nodes(1:3,i, j+1_pInt,k+1_pInt)
|
|
vMismatch(i,j,k) = &
|
|
abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,4))) &
|
|
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,5))) &
|
|
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,4))) &
|
|
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,2))) &
|
|
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,6))) &
|
|
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,1)))
|
|
vMismatch(i,j,k) = vMismatch(i,j,k)/math_det33(F(1:3,1:3,i,j,k))
|
|
enddo; enddo; enddo
|
|
vMismatch = vMismatch/volInitial
|
|
|
|
end function mesh_volumeMismatch
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Routine to calculate the mismatch between the vectors from the central point to
|
|
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
|
! the initial volume element with the current deformation gradient
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_shapeMismatch(gDim,F,nodes,centres) result(sMismatch)
|
|
use IO, only: &
|
|
IO_error
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: &
|
|
math_mul33x3
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
|
|
F
|
|
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
|
|
sMismatch
|
|
real(pReal), intent(in), dimension(:,:,:,:) :: &
|
|
nodes, &
|
|
centres
|
|
real(pReal), dimension(3) :: &
|
|
gDim, &
|
|
fRes
|
|
integer(pInt), dimension(3) :: &
|
|
iRes
|
|
real(pReal), dimension(3,8) :: coordsInitial
|
|
integer(pInt) i,j,k
|
|
|
|
iRes = [size(F,3),size(F,4),size(F,5)]
|
|
fRes = real(iRes,pReal)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report and check
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Calculating shape mismatch'
|
|
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
|
|
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
|
|
endif
|
|
|
|
if(any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]) .or.&
|
|
any([iRes/=size(centres,2), iRes/=size(centres,3), iRes/=size(centres,4)]))&
|
|
call IO_error(0_pInt,ext_msg='Arrays F and nodes/centres in mesh_shapeMismatch')
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initial positions
|
|
coordsInitial(1:3,1) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,2) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,3) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,4) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,5) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,6) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,7) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
|
|
coordsInitial(1:3,8) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
|
|
coordsInitial = coordsInitial/2.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! compare deformed original and deformed positions to actual positions
|
|
do k = 1_pInt,iRes(3)
|
|
do j = 1_pInt,iRes(2)
|
|
do i = 1_pInt,iRes(1)
|
|
sMismatch(i,j,k) = &
|
|
sqrt(sum((nodes(1:3,i, j, k ) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,1)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k ) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,2)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k ) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k ) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,4)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i, j, k+1_pInt) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,5)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k+1_pInt) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,6)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,7)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
|
|
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,8)))**2.0_pReal))
|
|
enddo; enddo; enddo
|
|
|
|
end function mesh_shapeMismatch
|
|
#endif
|
|
|
|
|
|
#ifdef Marc
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Figures out table styles (Marc only) and stores to 'initialcondTableStyle' and
|
|
!! 'hypoelasticTableStyle'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_get_tableStyles(myUnit)
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_intValue, &
|
|
IO_stringValue, &
|
|
IO_stringPos
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 6_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
initialcondTableStyle = 0_pInt
|
|
hypoelasticTableStyle = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'table' .and. myPos(1_pInt) > 5) then
|
|
initialcondTableStyle = IO_intValue(line,myPos,4_pInt)
|
|
hypoelasticTableStyle = IO_intValue(line,myPos,5_pInt)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_get_tableStyles
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores the numbers in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_nodesAndElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_IntValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
mesh_Nnodes = 0_pInt
|
|
mesh_Nelems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'sizing') &
|
|
mesh_Nelems = IO_IntValue (line,myPos,3_pInt)
|
|
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'coordinates') then
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
mesh_Nnodes = IO_IntValue (line,myPos,2_pInt)
|
|
exit ! assumes that "coordinates" comes later in file
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of element sets in mesh. Stores to 'mesh_NelemSets', and
|
|
!! 'mesh_maxNelemInSet'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
mesh_NelemSets = 0_pInt
|
|
mesh_maxNelemInSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'define' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'element' ) then
|
|
mesh_NelemSets = mesh_NelemSets + 1_pInt
|
|
mesh_maxNelemInSet = max(mesh_maxNelemInSet, &
|
|
IO_countContinuousIntValues(myUnit))
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_elementSets
|
|
|
|
|
|
!********************************************************************
|
|
! map element sets
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!********************************************************************
|
|
subroutine mesh_marc_map_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: elemSet = 0_pInt
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
|
|
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=640) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'define' ) .and. &
|
|
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'element' ) ) then
|
|
elemSet = elemSet+1_pInt
|
|
mesh_nameElemSet(elemSet) = trim(IO_stringValue(line,myPos,4_pInt))
|
|
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
endif
|
|
enddo
|
|
|
|
640 end subroutine mesh_marc_map_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_cpElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
integer(pInt) :: i
|
|
character(len=300):: line
|
|
|
|
mesh_NcpElems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic') then
|
|
do i=1_pInt,3_pInt+hypoelasticTableStyle ! Skip 3 or 4 lines
|
|
read (myUnit,610,END=620) line
|
|
enddo
|
|
mesh_NcpElems = mesh_NcpElems + IO_countContinuousIntValues(myUnit)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_map_elements(myUnit)
|
|
|
|
use math, only: math_qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension (1_pInt+mesh_NcpElems) :: contInts
|
|
integer(pInt) :: i,cpElem = 0_pInt
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=660) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic' ) then
|
|
do i=1_pInt,3_pInt+hypoelasticTableStyle ! skip three (or four if new table style!) lines
|
|
read (myUnit,610,END=660) line
|
|
enddo
|
|
contInts = IO_continuousIntValues(myUnit,mesh_NcpElems,mesh_nameElemSet,&
|
|
mesh_mapElemSet,mesh_NelemSets)
|
|
do i = 1_pInt,contInts(1)
|
|
cpElem = cpElem+1_pInt
|
|
mesh_mapFEtoCPelem(1,cpElem) = contInts(1_pInt+i)
|
|
mesh_mapFEtoCPelem(2,cpElem) = cpElem
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
|
|
|
|
end subroutine mesh_marc_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_map_nodes(myUnit)
|
|
|
|
use math, only: math_qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_fixedIntValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
node_count = 0_pInt
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
|
|
read (myUnit,610,END=650) line ! skip crap line
|
|
do i = 1_pInt,mesh_Nnodes
|
|
read (myUnit,610,END=650) line
|
|
mesh_mapFEtoCPnode(1_pInt,i) = IO_fixedIntValue (line,[ 0_pInt,10_pInt],1_pInt)
|
|
mesh_mapFEtoCPnode(2_pInt,i) = i
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
|
|
|
|
end subroutine mesh_marc_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_build_nodes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_fixedIntValue, &
|
|
IO_fixedNoEFloatValue
|
|
use numerics, only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), dimension(5), parameter :: node_ends = int([0,10,30,50,70],pInt)
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,j,m
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
|
|
read (myUnit,610,END=670) line ! skip crap line
|
|
do i=1_pInt,mesh_Nnodes
|
|
read (myUnit,610,END=670) line
|
|
m = mesh_FEasCP('node',IO_fixedIntValue(line,node_ends,1_pInt))
|
|
do j = 1_pInt,3_pInt
|
|
mesh_node0(j,m) = numerics_unitlength * IO_fixedNoEFloatValue(line,node_ends,j+1_pInt)
|
|
enddo
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
670 mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_marc_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and cellnodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNcellnodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_cpSizes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_skipChunks
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,t,g,e,c
|
|
|
|
mesh_maxNnodes = 0_pInt
|
|
mesh_maxNips = 0_pInt
|
|
mesh_maxNipNeighbors = 0_pInt
|
|
mesh_maxNcellnodes = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
|
|
read (myUnit,610,END=630) line ! Garbage line
|
|
do i=1_pInt,mesh_Nelems ! read all elements
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to id and type
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then
|
|
t = FE_mapElemtype(IO_stringValue(line,myPos,2_pInt))
|
|
g = FE_geomtype(t)
|
|
c = FE_celltype(g)
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
|
|
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
|
|
call IO_skipChunks(myUnit,FE_Nnodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
|
|
endif
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
630 end subroutine mesh_marc_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, mat, tex, and node list per elemen.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_build_elements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_fixedNoEFloatValue, &
|
|
IO_skipChunks, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 66_pInt ! limit to 64 nodes max (plus ID, type)
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension(1_pInt+mesh_NcpElems) :: contInts
|
|
integer(pInt) :: i,j,t,sv,myVal,e,nNodesAlreadyRead
|
|
|
|
allocate (mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
|
|
read (myUnit,610,END=620) line ! garbage line
|
|
do i = 1_pInt,mesh_Nelems
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then ! disregard non CP elems
|
|
t = FE_mapElemtype(IO_StringValue(line,myPos,2_pInt)) ! elem type
|
|
mesh_element(2,e) = t
|
|
mesh_element(1,e) = IO_IntValue (line,myPos,1_pInt) ! FE id
|
|
nNodesAlreadyRead = 0_pInt
|
|
do j = 1_pInt,myPos(1)-2_pInt
|
|
mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_IntValue(line,myPos,j+2_pInt)) ! CP ids of nodes
|
|
enddo
|
|
nNodesAlreadyRead = myPos(1) - 2_pInt
|
|
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
do j = 1_pInt,myPos(1)
|
|
mesh_element(4_pInt+nNodesAlreadyRead+j,e) &
|
|
= mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes
|
|
enddo
|
|
nNodesAlreadyRead = nNodesAlreadyRead + myPos(1)
|
|
enddo
|
|
endif
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 rewind(myUnit) ! just in case "initial state" apears before "connectivity"
|
|
read (myUnit,610,END=620) line
|
|
do
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'initial') .and. &
|
|
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'state') ) then
|
|
if (initialcondTableStyle == 2_pInt) read (myUnit,610,END=620) line ! read extra line for new style
|
|
read (myUnit,610,END=630) line ! read line with index of state var
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
sv = IO_IntValue(line,myPos,1_pInt) ! figure state variable index
|
|
if( (sv == 2_pInt).or.(sv == 3_pInt) ) then ! only state vars 2 and 3 of interest
|
|
read (myUnit,610,END=620) line ! read line with value of state var
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
do while (scan(IO_stringValue(line,myPos,1_pInt),'+-',back=.true.)>1) ! is noEfloat value?
|
|
myVal = nint(IO_fixedNoEFloatValue(line,[0_pInt,20_pInt],1_pInt),pInt) ! state var's value
|
|
mesh_maxValStateVar(sv-1_pInt) = max(myVal,mesh_maxValStateVar(sv-1_pInt)) ! remember max val of homogenization and microstructure index
|
|
if (initialcondTableStyle == 2_pInt) then
|
|
read (myUnit,610,END=630) line ! read extra line
|
|
read (myUnit,610,END=630) line ! read extra line
|
|
endif
|
|
contInts = IO_continuousIntValues& ! get affected elements
|
|
(myUnit,mesh_Nelems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
do i = 1_pInt,contInts(1)
|
|
e = mesh_FEasCP('elem',contInts(1_pInt+i))
|
|
mesh_element(1_pInt+sv,e) = myVal
|
|
enddo
|
|
if (initialcondTableStyle == 0_pInt) read (myUnit,610,END=620) line ! ignore IP range for old table style
|
|
read (myUnit,610,END=630) line
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
enddo
|
|
endif
|
|
else
|
|
read (myUnit,610,END=630) line
|
|
endif
|
|
enddo
|
|
|
|
630 end subroutine mesh_marc_build_elements
|
|
#endif
|
|
|
|
#ifdef Abaqus
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_nodesAndElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical :: inPart
|
|
|
|
mesh_Nnodes = 0_pInt
|
|
mesh_Nelems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if (inPart .or. noPart) then
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)))
|
|
case('*node')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
|
|
) &
|
|
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(myUnit)
|
|
case('*element')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
|
|
) then
|
|
mesh_Nelems = mesh_Nelems + IO_countDataLines(myUnit)
|
|
endif
|
|
endselect
|
|
endif
|
|
enddo
|
|
|
|
620 if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt)
|
|
if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief count overall number of element sets in mesh and write 'mesh_NelemSets' and
|
|
!! 'mesh_maxNelemInSet'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical :: inPart
|
|
|
|
mesh_NelemSets = 0_pInt
|
|
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) &
|
|
mesh_NelemSets = mesh_NelemSets + 1_pInt
|
|
enddo
|
|
|
|
620 continue
|
|
if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!********************************************************************
|
|
! count overall number of solid sections sets in mesh (Abaqus only)
|
|
!
|
|
! mesh_Nmaterials
|
|
!********************************************************************
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_materials(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical inPart
|
|
|
|
mesh_Nmaterials = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) &
|
|
mesh_Nmaterials = mesh_Nmaterials + 1_pInt
|
|
enddo
|
|
|
|
620 if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_materials
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!********************************************************************
|
|
! Build element set mapping
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!********************************************************************
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_continuousIntValues, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: elemSet = 0_pInt,i
|
|
logical :: inPart = .false.
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
|
|
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=640) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) then
|
|
elemSet = elemSet + 1_pInt
|
|
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'elset'))
|
|
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_Nelems,mesh_nameElemSet,&
|
|
mesh_mapElemSet,elemSet-1_pInt)
|
|
endif
|
|
enddo
|
|
|
|
640 do i = 1_pInt,elemSet
|
|
if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i))
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!********************************************************************
|
|
! map solid section (Abaqus only)
|
|
!
|
|
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
|
|
!********************************************************************
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_materials(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 20_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt) :: i,c = 0_pInt
|
|
logical :: inPart = .false.
|
|
character(len=64) :: elemSetName,materialName
|
|
|
|
allocate (mesh_nameMaterial(mesh_Nmaterials)) ; mesh_nameMaterial = ''
|
|
allocate (mesh_mapMaterial(mesh_Nmaterials)) ; mesh_mapMaterial = ''
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) then
|
|
|
|
elemSetName = ''
|
|
materialName = ''
|
|
|
|
do i = 3_pInt,myPos(1_pInt)
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset') /= '') &
|
|
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset'))
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material') /= '') &
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material'))
|
|
enddo
|
|
|
|
if (elemSetName /= '' .and. materialName /= '') then
|
|
c = c + 1_pInt
|
|
mesh_nameMaterial(c) = materialName ! name of material used for this section
|
|
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
620 if (c==0_pInt) call IO_error(error_ID=905_pInt)
|
|
do i=1_pInt,c
|
|
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt)
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_materials
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_extractValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
integer(pInt) :: i,k
|
|
logical :: materialFound = .false.
|
|
character(len=64) ::materialName,elemSetName
|
|
|
|
mesh_NcpElems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
|
|
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
620 if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_elements(myUnit)
|
|
|
|
use math, only: math_qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) ::i,j,k,cpElem = 0_pInt
|
|
logical :: materialFound = .false.
|
|
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=660) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1_pInt,mesh_mapElemSet(1,k)
|
|
cpElem = cpElem + 1_pInt
|
|
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id
|
|
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
|
|
|
|
if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt)
|
|
|
|
end subroutine mesh_abaqus_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_nodes(myUnit)
|
|
|
|
use math, only: math_qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_intValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt) :: i,c,cpNode = 0_pInt
|
|
logical :: inPart = .false.
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(myUnit)
|
|
do i = 1_pInt,c
|
|
backspace(myUnit)
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
cpNode = cpNode + 1_pInt
|
|
mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,myPos,1_pInt)
|
|
mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
|
|
|
|
if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt)
|
|
|
|
end subroutine mesh_abaqus_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_nodes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
use numerics, only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,j,m,c
|
|
logical :: inPart
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(myUnit) ! how many nodes are defined here?
|
|
do i = 1_pInt,c
|
|
backspace(myUnit) ! rewind to first entry
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
m = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt))
|
|
do j=1_pInt, 3_pInt
|
|
mesh_node0(j,m) = numerics_unitlength * IO_floatValue(line,myPos,j+1_pInt)
|
|
enddo
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
670 if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt)
|
|
mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_abaqus_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNcellnodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpSizes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue ,&
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,c,t,g
|
|
logical :: inPart
|
|
|
|
mesh_maxNnodes = 0_pInt
|
|
mesh_maxNips = 0_pInt
|
|
mesh_maxNipNeighbors = 0_pInt
|
|
mesh_maxNcellnodes = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
|
|
g = FE_geomtype(t)
|
|
c = FE_celltype(g)
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
|
|
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_abaqus_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, mat, tex, and node list per elemen.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_elements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_skipChunks, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_extractValue, &
|
|
IO_floatValue, &
|
|
IO_error, &
|
|
IO_countDataLines
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 65_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
|
|
integer(pInt) :: i,j,k,c,e,t,homog,micro, nNodesAlreadyRead
|
|
logical inPart,materialFound
|
|
character (len=64) :: materialName,elemSetName
|
|
character(len=300) :: line
|
|
|
|
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
|
|
c = IO_countDataLines(myUnit)
|
|
do i = 1_pInt,c
|
|
backspace(myUnit)
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then ! disregard non CP elems
|
|
mesh_element(1,e) = IO_intValue(line,myPos,1_pInt) ! FE id
|
|
mesh_element(2,e) = t ! elem type
|
|
nNodesAlreadyRead = 0_pInt
|
|
do j = 1_pInt,myPos(1)-1_pInt
|
|
mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt+j)) ! put CP ids of nodes to position 5:
|
|
enddo
|
|
nNodesAlreadyRead = myPos(1) - 1_pInt
|
|
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
do j = 1_pInt,myPos(1)
|
|
mesh_element(4_pInt+nNodesAlreadyRead+j,e) &
|
|
= mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes
|
|
enddo
|
|
nNodesAlreadyRead = nNodesAlreadyRead + myPos(1)
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
|
|
620 rewind(myUnit) ! just in case "*material" definitions apear before "*element"
|
|
|
|
materialFound = .false.
|
|
do
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_StringValue(line,myPos,1_pInt)))
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if ( IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. &
|
|
materialFound ) then
|
|
read (myUnit,610,END=630) line ! read homogenization and microstructure
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
homog = nint(IO_floatValue(line,myPos,1_pInt),pInt)
|
|
micro = nint(IO_floatValue(line,myPos,2_pInt),pInt)
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1_pInt,mesh_mapElemSet(1,k)
|
|
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
|
|
mesh_element(3,e) = homog ! store homogenization
|
|
mesh_element(4,e) = micro ! store microstructure
|
|
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
|
|
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
630 end subroutine mesh_abaqus_build_elements
|
|
#endif
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get any additional damask options from input file, sets mesh_periodicSurface
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_get_damaskOptions(myUnit)
|
|
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
#ifndef Spectral
|
|
integer(pInt), parameter :: maxNchunks = 5_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
integer(pInt) chunk, Nchunks
|
|
character(len=300) :: line, damaskOption, v
|
|
character(len=300) :: keyword
|
|
#endif
|
|
|
|
#ifdef Spectral
|
|
mesh_periodicSurface = .true.
|
|
#else
|
|
mesh_periodicSurface = .false.
|
|
#ifdef Marc
|
|
keyword = '$damask'
|
|
#endif
|
|
#ifdef Abaqus
|
|
keyword = '**damask'
|
|
#endif
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
Nchunks = myPos(1)
|
|
if (IO_lc(IO_stringValue(line,myPos,1_pInt)) == keyword .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read
|
|
damaskOption = IO_lc(IO_stringValue(line,myPos,2_pInt))
|
|
select case(damaskOption)
|
|
case('periodic') ! damask Option that allows to specify periodic fluxes
|
|
do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword)
|
|
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
|
|
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
|
|
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
|
|
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
|
|
enddo
|
|
endselect
|
|
endif
|
|
enddo
|
|
#endif
|
|
|
|
610 FORMAT(A300)
|
|
620 end subroutine mesh_get_damaskOptions
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipAreas
|
|
|
|
use math, only: &
|
|
math_norm3, &
|
|
math_vectorproduct
|
|
|
|
|
|
implicit none
|
|
integer(pInt) :: e,t,g,c,i,f,n,m
|
|
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
|
|
real(pReal), dimension(3) :: normal
|
|
|
|
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipArea = 0.0_pReal
|
|
allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipAreaNormal = 0.0_pReal
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2_pInt,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
select case (c)
|
|
|
|
case (1_pInt,2_pInt) ! 2D 3 or 4 node
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
|
|
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
|
|
normal(3) = 0.0_pReal
|
|
mesh_ipArea(f,i,e) = math_norm3(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (3_pInt) ! 3D 4node
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal = math_vectorproduct(nodePos(1:3,2) - nodePos(1:3,1), &
|
|
nodePos(1:3,3) - nodePos(1:3,1))
|
|
mesh_ipArea(f,i,e) = math_norm3(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (4_pInt) ! 3D 8node
|
|
! for this cell type we get the normal of the quadrilateral face as an average of
|
|
! four normals of triangular subfaces; since the face consists only of two triangles,
|
|
! the sum has to be divided by two; this whole prcedure tries to compensate for
|
|
! probable non-planar cell surfaces
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
normals(1:3,n) = 0.5_pReal &
|
|
* math_vectorproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
|
|
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
|
|
normal = 0.5_pReal * sum(normals,2)
|
|
mesh_ipArea(f,i,e) = math_norm3(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal)
|
|
enddo
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipAreas
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief assignment of twin nodes for each cp node, allocate globals '_nodeTwins'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_nodeTwins
|
|
|
|
implicit none
|
|
integer(pInt) dir, & ! direction of periodicity
|
|
node, &
|
|
minimumNode, &
|
|
maximumNode, &
|
|
n1, &
|
|
n2
|
|
integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
|
|
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
|
|
tolerance ! tolerance below which positions are assumed identical
|
|
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
|
|
logical, dimension(mesh_Nnodes) :: unpaired
|
|
|
|
allocate(mesh_nodeTwins(3,mesh_Nnodes))
|
|
mesh_nodeTwins = 0_pInt
|
|
|
|
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
|
|
|
|
do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z
|
|
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
|
|
|
|
|
|
!*** find out which nodes sit on the surface
|
|
!*** and have a minimum or maximum position in this dimension
|
|
|
|
minimumNodes = 0_pInt
|
|
maximumNodes = 0_pInt
|
|
minCoord = minval(mesh_node0(dir,:))
|
|
maxCoord = maxval(mesh_node0(dir,:))
|
|
do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes
|
|
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
|
|
minimumNodes(1) = minimumNodes(1) + 1_pInt
|
|
minimumNodes(minimumNodes(1)+1_pInt) = node
|
|
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
|
|
maximumNodes(1) = maximumNodes(1) + 1_pInt
|
|
maximumNodes(maximumNodes(1)+1_pInt) = node
|
|
endif
|
|
enddo
|
|
|
|
|
|
!*** find the corresponding node on the other side with the same position in this dimension
|
|
|
|
unpaired = .true.
|
|
do n1 = 1_pInt,minimumNodes(1)
|
|
minimumNode = minimumNodes(n1+1_pInt)
|
|
if (unpaired(minimumNode)) then
|
|
do n2 = 1_pInt,maximumNodes(1)
|
|
maximumNode = maximumNodes(n2+1_pInt)
|
|
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
|
|
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
|
|
mesh_nodeTwins(dir,minimumNode) = maximumNode
|
|
mesh_nodeTwins(dir,maximumNode) = minimumNode
|
|
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
|
|
exit
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
enddo
|
|
|
|
end subroutine mesh_build_nodeTwins
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get maximum count of shared elements among cpElements and build list of elements shared
|
|
!! by each node in mesh. Allocate globals '_maxNsharedElems' and '_sharedElem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_sharedElems
|
|
|
|
implicit none
|
|
integer(pint) e, & ! element index
|
|
g, & ! element type
|
|
node, & ! CP node index
|
|
n, & ! node index per element
|
|
myDim, & ! dimension index
|
|
nodeTwin ! node twin in the specified dimension
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt), dimension (:), allocatable :: node_seen
|
|
|
|
allocate(node_seen(maxval(FE_NmatchingNodes)))
|
|
|
|
|
|
node_count = 0_pInt
|
|
|
|
do e = 1_pInt,mesh_NcpElems
|
|
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
|
|
node_seen = 0_pInt ! reset node duplicates
|
|
do n = 1_pInt,FE_NmatchingNodes(g) ! check each node of element
|
|
node = mesh_element(4+n,e)
|
|
if (all(node_seen /= node)) then
|
|
node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it
|
|
do myDim = 1_pInt,3_pInt ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0_pInt) & ! if I am a twin of some node...
|
|
node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node
|
|
enddo
|
|
endif
|
|
node_seen(n) = node ! remember this node to be counted already
|
|
enddo
|
|
enddo
|
|
|
|
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
|
|
|
|
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes))
|
|
mesh_sharedElem = 0_pInt
|
|
|
|
do e = 1_pInt,mesh_NcpElems
|
|
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
|
|
node_seen = 0_pInt
|
|
do n = 1_pInt,FE_NmatchingNodes(g)
|
|
node = mesh_element(4_pInt+n,e)
|
|
if (all(node_seen /= node)) then
|
|
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements
|
|
mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id
|
|
do myDim = 1_pInt,3_pInt ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0_pInt) then ! if i am a twin of some node...
|
|
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin
|
|
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
|
|
endif
|
|
enddo
|
|
endif
|
|
node_seen(n) = node
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(node_seen)
|
|
|
|
end subroutine mesh_build_sharedElems
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief build up of IP neighborhood, allocate globals '_ipNeighborhood'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipNeighborhood
|
|
use math, only: &
|
|
math_mul3x3
|
|
|
|
implicit none
|
|
integer(pInt) :: myElem, & ! my CP element index
|
|
myIP, &
|
|
myType, & ! my element type
|
|
myFace, &
|
|
neighbor, & ! neighor index
|
|
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
|
|
candidateIP, &
|
|
neighboringType, & ! element type of neighbor
|
|
NlinkedNodes, & ! number of linked nodes
|
|
twin_of_linkedNode, & ! node twin of a specific linkedNode
|
|
NmatchingNodes, & ! number of matching nodes
|
|
dir, & ! direction of periodicity
|
|
matchingElem, & ! CP elem number of matching element
|
|
matchingFace, & ! face ID of matching element
|
|
a, anchor, &
|
|
neighboringIP, &
|
|
neighboringElem, &
|
|
pointingToMe
|
|
integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: &
|
|
linkedNodes = 0_pInt, &
|
|
matchingNodes
|
|
logical checkTwins
|
|
|
|
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipNeighborhood = 0_pInt
|
|
|
|
|
|
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
|
|
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
|
|
|
|
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
|
|
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
|
|
|
|
!*** if the key is positive, the neighbor is inside the element
|
|
!*** that means, we have already found our neighboring IP
|
|
|
|
if (neighboringIPkey > 0_pInt) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
|
|
|
|
|
|
!*** if the key is negative, the neighbor resides in a neighboring element
|
|
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
|
|
|
|
elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP
|
|
myFace = -neighboringIPkey
|
|
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
|
|
if (matchingElem > 0_pInt) then ! found match?
|
|
neighboringType = FE_geomtype(mesh_element(2,matchingElem))
|
|
|
|
!*** trivial solution if neighbor has only one IP
|
|
|
|
if (FE_Nips(neighboringType) == 1_pInt) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt
|
|
cycle
|
|
endif
|
|
|
|
!*** find those nodes which build the link to the neighbor
|
|
|
|
NlinkedNodes = 0_pInt
|
|
linkedNodes = 0_pInt
|
|
do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
|
|
anchor = FE_nodesAtIP(a,myIP,myType)
|
|
if (anchor /= 0_pInt) then ! valid anchor node
|
|
if (any(FE_face(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
|
|
NlinkedNodes = NlinkedNodes + 1_pInt
|
|
linkedNodes(NlinkedNodes) = mesh_element(4_pInt+anchor,myElem) ! CP id of anchor node
|
|
else ! something went wrong with the linkage, since not all anchors sit on my face
|
|
NlinkedNodes = 0_pInt
|
|
linkedNodes = 0_pInt
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
!*** loop through the ips of my neighbor
|
|
!*** and try to find an ip with matching nodes
|
|
!*** also try to match with node twins
|
|
|
|
checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType)
|
|
NmatchingNodes = 0_pInt
|
|
matchingNodes = 0_pInt
|
|
do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
|
|
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
|
|
if (anchor /= 0_pInt) then ! valid anchor node
|
|
if (any(FE_face(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
|
|
NmatchingNodes = NmatchingNodes + 1_pInt
|
|
matchingNodes(NmatchingNodes) = mesh_element(4+anchor,matchingElem) ! CP id of neighbor's anchor node
|
|
else ! no matching, because not all nodes sit on the matching face
|
|
NmatchingNodes = 0_pInt
|
|
matchingNodes = 0_pInt
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
|
|
cycle checkCandidateIP
|
|
|
|
!*** check "normal" nodes whether they match or not
|
|
|
|
checkTwins = .false.
|
|
do a = 1_pInt,NlinkedNodes
|
|
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
|
|
checkTwins = .true.
|
|
exit ! no need to search further
|
|
endif
|
|
enddo
|
|
|
|
!*** if no match found, then also check node twins
|
|
|
|
if(checkTwins) then
|
|
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
|
|
do a = 1_pInt,NlinkedNodes
|
|
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
|
|
if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist...
|
|
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
|
|
cycle checkCandidateIP ! ... then check next candidateIP
|
|
endif
|
|
enddo
|
|
endif
|
|
|
|
!*** we found a match !!!
|
|
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
|
|
exit checkCandidateIP
|
|
enddo checkCandidateIP
|
|
endif ! end of valid external matching
|
|
endif ! end of internal/external matching
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
|
|
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
|
|
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
|
|
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
|
|
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
|
|
if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ...
|
|
neighboringType = FE_geomtype(mesh_element(2,neighboringElem))
|
|
do pointingToMe = 1_pInt,FE_NipNeighbors(FE_celltype(neighboringType)) ! find neighboring index that points from my neighbor to myself
|
|
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
|
|
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
|
|
if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
|
|
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
|
|
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
|
|
exit ! so no need to search further
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_ipNeighborhood
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief write statistics regarding input file parsing to the output file
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_tell_statistics
|
|
use math, only: &
|
|
math_range
|
|
use IO, only: &
|
|
IO_error
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_MESH, &
|
|
debug_LEVELBASIC, &
|
|
debug_LEVELEXTENSIVE, &
|
|
debug_LEVELSELECTIVE, &
|
|
debug_e, &
|
|
debug_i
|
|
|
|
implicit none
|
|
integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro
|
|
character(len=64) :: myFmt
|
|
integer(pInt) :: i,e,n,f,t,g,c, myDebug
|
|
|
|
myDebug = debug_level(debug_mesh)
|
|
|
|
if (mesh_maxValStateVar(1) < 1_pInt) call IO_error(error_ID=170_pInt) ! no homogenization specified
|
|
if (mesh_maxValStateVar(2) < 1_pInt) call IO_error(error_ID=180_pInt) ! no microstructure specified
|
|
|
|
allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (mesh_element(3,e) < 1_pInt) call IO_error(error_ID=170_pInt,e=e) ! no homogenization specified
|
|
if (mesh_element(4,e) < 1_pInt) call IO_error(error_ID=180_pInt,e=e) ! no microstructure specified
|
|
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) = &
|
|
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) + 1_pInt ! count combinations of homogenization and microstructure
|
|
enddo
|
|
!$OMP CRITICAL (write2out)
|
|
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(/,a,/)') ' Input Parser: STATISTICS'
|
|
write(6,*) mesh_Nelems, ' : total number of elements in mesh'
|
|
write(6,*) mesh_NcpElems, ' : total number of CP elements in mesh'
|
|
write(6,*) mesh_Nnodes, ' : total number of nodes in mesh'
|
|
write(6,*) mesh_maxNnodes, ' : max number of nodes in any CP element'
|
|
write(6,*) mesh_maxNips, ' : max number of IPs in any CP element'
|
|
write(6,*) mesh_maxNipNeighbors, ' : max number of IP neighbors in any CP element'
|
|
write(6,*) mesh_maxNsharedElems, ' : max number of CP elements sharing a node'
|
|
write(6,'(/,a,/)') ' Input Parser: HOMOGENIZATION/MICROSTRUCTURE'
|
|
write(6,*) mesh_maxValStateVar(1), ' : maximum homogenization index'
|
|
write(6,*) mesh_maxValStateVar(2), ' : maximum microstructure index'
|
|
write(6,*)
|
|
write (myFmt,'(a,i32.32,a)') '(9x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
|
|
write(6,myFmt) '+-',math_range(mesh_maxValStateVar(2))
|
|
write (myFmt,'(a,i32.32,a)') '(i8,1x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
|
|
do i=1_pInt,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations
|
|
write(6,myFmt) i,'| ',mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstructures
|
|
enddo
|
|
write(6,'(/,a,/)') ' Input Parser: ADDITIONAL MPIE OPTIONS'
|
|
write(6,*) 'periodic surface : ', mesh_periodicSurface
|
|
write(6,*)
|
|
flush(6)
|
|
endif
|
|
|
|
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: ELEMENT TYPE'
|
|
write(6,*)
|
|
write(6,'(a8,3(1x,a8))') 'elem','elemtype','geomtype','celltype'
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get elemType
|
|
g = FE_geomtype(t) ! get elemGeomType
|
|
c = FE_celltype(g) ! get cellType
|
|
write(6,'(i8,3(1x,i8))') e,t,g,c
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: ELEMENT VOLUME'
|
|
write(6,*)
|
|
write(6,'(a13,1x,e15.8)') 'total volume', sum(mesh_ipVolume)
|
|
write(6,*)
|
|
write(6,'(a8,1x,a5,1x,a15,1x,a5,1x,a15,1x,a16)') 'elem','IP','volume','face','area','-- normal --'
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1_pInt,FE_Nips(g)
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
write(6,'(i8,1x,i5,1x,e15.8)') e,i,mesh_IPvolume(i,e)
|
|
do f = 1_pInt,FE_NipNeighbors(c)
|
|
write(6,'(i33,1x,e15.8,1x,3(f6.3,1x))') f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: CELLNODE COORDINATES'
|
|
write(6,*)
|
|
write(6,'(a8,1x,a2,1x,a8,3(1x,a12))') 'elem','IP','cellnode','x','y','z'
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
write(6,'(i8,1x,i2)') e,i
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in the cell
|
|
write(6,'(12x,i8,3(1x,f12.8))') mesh_cell(n,i,e), &
|
|
mesh_cellnode(1:3,mesh_cell(n,i,e))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: IP COORDINATES'
|
|
write(6,'(a8,1x,a5,3(1x,a12))') 'elem','IP','x','y','z'
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
write(6,'(i8,1x,i5,3(1x,f12.8))') e, i, mesh_ipCoordinates(:,i,e)
|
|
enddo
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: NODE TWINS'
|
|
write(6,*)
|
|
write(6,'(a6,3(3x,a6))') ' node','twin_x','twin_y','twin_z'
|
|
do n = 1_pInt,mesh_Nnodes ! loop over cpNodes
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. .not. any(mesh_element(5:,debug_e) == n)) cycle
|
|
write(6,'(i6,3(3x,i6))') n, mesh_nodeTwins(1:3,n)
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: IP NEIGHBORHOOD'
|
|
write(6,*)
|
|
write(6,'(a8,1x,a10,1x,a10,1x,a3,1x,a13,1x,a13)') 'elem','IP','neighbor','','elemNeighbor','ipNeighbor'
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
do n = 1_pInt,FE_NipNeighbors(c) ! loop over neighbors of IP
|
|
write(6,'(i8,1x,i10,1x,i10,1x,a3,1x,i13,1x,i13)') e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
deallocate(mesh_HomogMicro)
|
|
|
|
end subroutine mesh_tell_statistics
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief mapping of FE element types to internal representation
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function FE_mapElemtype(what)
|
|
|
|
use IO, only: IO_lc, IO_error
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: what
|
|
|
|
select case (IO_lc(what))
|
|
case ( '6')
|
|
FE_mapElemtype = 1_pInt ! Two-dimensional Plane Strain Triangle
|
|
case ( '155', &
|
|
'125', &
|
|
'128')
|
|
FE_mapElemtype = 2_pInt ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric)
|
|
case ( '11', &
|
|
'cpe4')
|
|
FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain
|
|
case ( '27', &
|
|
'cpe8')
|
|
FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral
|
|
case ( '54')
|
|
FE_mapElemtype = 5_pInt ! Plane Strain, Eight-node Distorted Quadrilateral with reduced integration
|
|
case ('134', &
|
|
'c3d4')
|
|
FE_mapElemtype = 6_pInt ! Three-dimensional Four-node Tetrahedron
|
|
case ('157')
|
|
FE_mapElemtype = 7_pInt ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations
|
|
case ('127')
|
|
FE_mapElemtype = 8_pInt ! Three-dimensional Ten-node Tetrahedron
|
|
case ('136', &
|
|
'c3d6')
|
|
FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral
|
|
case ( '117', &
|
|
'123', &
|
|
'c3d8r')
|
|
FE_mapElemtype = 10_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
|
|
case ( '7', &
|
|
'c3d8')
|
|
FE_mapElemtype = 11_pInt ! Three-dimensional Arbitrarily Distorted Brick
|
|
case ( '57', &
|
|
'c3d20r')
|
|
FE_mapElemtype = 12_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
|
|
case ( '21', &
|
|
'c3d20')
|
|
FE_mapElemtype = 13_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
|
|
case default
|
|
call IO_error(error_ID=190_pInt,ext_msg=IO_lc(what))
|
|
end select
|
|
|
|
end function FE_mapElemtype
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief find face-matching element of same type
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
|
|
|
|
implicit none
|
|
!*** output variables
|
|
integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID
|
|
matchingFace ! matching face ID
|
|
|
|
!*** input variables
|
|
integer(pInt), intent(in) :: face, & ! face ID
|
|
elem ! CP elem ID
|
|
|
|
!*** local variables
|
|
integer(pInt), dimension(FE_NmatchingNodesPerFace(face,FE_geomtype(mesh_element(2,elem)))) :: &
|
|
myFaceNodes ! global node ids on my face
|
|
integer(pInt) :: myType, &
|
|
candidateType, &
|
|
candidateElem, &
|
|
candidateFace, &
|
|
candidateFaceNode, &
|
|
minNsharedElems, &
|
|
NsharedElems, &
|
|
lonelyNode = 0_pInt, &
|
|
i, &
|
|
n, &
|
|
dir ! periodicity direction
|
|
integer(pInt), dimension(:), allocatable :: element_seen
|
|
logical checkTwins
|
|
|
|
matchingElem = 0_pInt
|
|
matchingFace = 0_pInt
|
|
minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case
|
|
myType = FE_geomtype(mesh_element(2_pInt,elem)) ! figure elemGeomType
|
|
|
|
do n = 1_pInt,FE_NmatchingNodesPerFace(face,myType) ! loop over nodes on face
|
|
myFaceNodes(n) = mesh_element(4_pInt+FE_face(n,face,myType),elem) ! CP id of face node
|
|
NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node
|
|
if (NsharedElems < minNsharedElems) then
|
|
minNsharedElems = NsharedElems ! remember min # shared elems
|
|
lonelyNode = n ! remember most lonely node
|
|
endif
|
|
enddo
|
|
|
|
allocate(element_seen(minNsharedElems))
|
|
element_seen = 0_pInt
|
|
|
|
checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements
|
|
candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem
|
|
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
|
|
element_seen(i) = candidateElem
|
|
candidateType = FE_geomtype(mesh_element(2_pInt,candidateElem)) ! figure elemGeomType of candidate
|
|
checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate
|
|
if (FE_NmatchingNodesPerFace(candidateFace,candidateType) &
|
|
/= FE_NmatchingNodesPerFace(face,myType) & ! incompatible face
|
|
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
|
|
cycle checkCandidateFace
|
|
endif
|
|
checkTwins = .false.
|
|
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_element(4_pInt+FE_face(n,candidateFace,candidateType),candidateElem)
|
|
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
|
|
checkTwins = .true. ! perhaps the twin nodes do match
|
|
exit
|
|
endif
|
|
enddo
|
|
if(checkTwins) then
|
|
checkCandidateFaceTwins: do dir = 1_pInt,3_pInt
|
|
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem)
|
|
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
|
|
if (dir == 3_pInt) then
|
|
cycle checkCandidateFace
|
|
else
|
|
cycle checkCandidateFaceTwins ! try twins in next dimension
|
|
endif
|
|
endif
|
|
enddo
|
|
exit checkCandidateFaceTwins
|
|
enddo checkCandidateFaceTwins
|
|
endif
|
|
matchingFace = candidateFace
|
|
matchingElem = candidateElem
|
|
exit checkCandidate ! found my matching candidate
|
|
enddo checkCandidateFace
|
|
endif
|
|
enddo checkCandidate
|
|
|
|
deallocate(element_seen)
|
|
|
|
end subroutine mesh_faceMatch
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get properties of different types of finite elements
|
|
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_cellnodeParentnodeWeights, FE_subNodeOnIPFace
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_FEdata
|
|
|
|
implicit none
|
|
integer(pInt) :: me
|
|
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes)); FE_nodesAtIP = 0_pInt
|
|
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes)); FE_ipNeighbor = 0_pInt
|
|
allocate(FE_cell(FE_maxNcellnodesPerCell,FE_maxNips,FE_Ngeomtypes)); FE_cell = 0_pInt
|
|
allocate(FE_cellnodeParentnodeWeights(FE_maxNnodes,FE_maxNcellnodes,FE_Nelemtypes)); FE_cellnodeParentnodeWeights = 0.0_pReal
|
|
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes)); FE_cellface = 0_pInt
|
|
|
|
|
|
!*** fill FE_nodesAtIP with data ***
|
|
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
1,2,3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
1,0, &
|
|
1,2, &
|
|
2,0, &
|
|
1,4, &
|
|
0,0, &
|
|
2,3, &
|
|
4,0, &
|
|
3,4, &
|
|
3,0 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
1,2,3,4 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4, &
|
|
5, &
|
|
6 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
1,2,3,4,5,6,7,8 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3, &
|
|
5, &
|
|
6, &
|
|
8, &
|
|
7 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
1,0, 0,0, &
|
|
1,2, 0,0, &
|
|
2,0, 0,0, &
|
|
1,4, 0,0, &
|
|
1,3, 2,4, &
|
|
2,3, 0,0, &
|
|
4,0, 0,0, &
|
|
3,4, 0,0, &
|
|
3,0, 0,0, &
|
|
1,5, 0,0, &
|
|
1,6, 2,5, &
|
|
2,6, 0,0, &
|
|
1,8, 4,5, &
|
|
0,0, 0,0, &
|
|
2,7, 3,6, &
|
|
4,8, 0,0, &
|
|
3,8, 4,7, &
|
|
3,7, 0,0, &
|
|
5,0, 0,0, &
|
|
5,6, 0,0, &
|
|
6,0, 0,0, &
|
|
5,8, 0,0, &
|
|
5,7, 6,8, &
|
|
6,7, 0,0, &
|
|
8,0, 0,0, &
|
|
7,8, 0,0, &
|
|
7,0, 0,0 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_ipNeighbor ***
|
|
! is a list of the neighborhood of each IP.
|
|
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
|
|
! Positive integers denote an intra-FE IP identifier.
|
|
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
-2,-3,-1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
2,-3, 3,-1, &
|
|
-2, 1, 3,-1, &
|
|
2,-3,-2, 1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
2,-4, 3,-1, &
|
|
-2, 1, 4,-1, &
|
|
4,-4,-3, 1, &
|
|
-2, 3,-3, 2 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
2,-4, 4,-1, &
|
|
3, 1, 5,-1, &
|
|
-2, 2, 6,-1, &
|
|
5,-4, 7, 1, &
|
|
6, 4, 8, 2, &
|
|
-2, 5, 9, 3, &
|
|
8,-4,-3, 4, &
|
|
9, 7,-3, 5, &
|
|
-2, 8,-3, 6 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
-1,-2,-3,-4 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
-2, 1, 3,-2, 4,-1, &
|
|
2,-4,-3, 1, 4,-1, &
|
|
2,-4, 3,-2,-3, 1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
-3, 1, 3,-2, 5,-1, &
|
|
2,-4,-3, 1, 6,-1, &
|
|
5,-4, 6,-2,-5, 1, &
|
|
-3, 4, 6,-2,-5, 2, &
|
|
5,-4,-3, 4,-5, 3 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
-3,-5,-4,-2,-6,-1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
2,-5, 3,-2, 5,-1, &
|
|
-3, 1, 4,-2, 6,-1, &
|
|
4,-5,-4, 1, 7,-1, &
|
|
-3, 3,-4, 2, 8,-1, &
|
|
6,-5, 7,-2,-6, 1, &
|
|
-3, 5, 8,-2,-6, 2, &
|
|
8,-5,-4, 5,-6, 3, &
|
|
-3, 7,-4, 6,-6, 4 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
2,-5, 4,-2,10,-1, &
|
|
3, 1, 5,-2,11,-1, &
|
|
-3, 2, 6,-2,12,-1, &
|
|
5,-5, 7, 1,13,-1, &
|
|
6, 4, 8, 2,14,-1, &
|
|
-3, 5, 9, 3,15,-1, &
|
|
8,-5,-4, 4,16,-1, &
|
|
9, 7,-4, 5,17,-1, &
|
|
-3, 8,-4, 6,18,-1, &
|
|
11,-5,13,-2,19, 1, &
|
|
12,10,14,-2,20, 2, &
|
|
-3,11,15,-2,21, 3, &
|
|
14,-5,16,10,22, 4, &
|
|
15,13,17,11,23, 5, &
|
|
-3,14,18,12,24, 6, &
|
|
17,-5,-4,13,25, 7, &
|
|
18,16,-4,14,26, 8, &
|
|
-3,17,-4,15,27, 9, &
|
|
20,-5,22,-2,-6,10, &
|
|
21,19,23,-2,-6,11, &
|
|
-3,20,24,-2,-6,12, &
|
|
23,-5,25,19,-6,13, &
|
|
24,22,26,20,-6,14, &
|
|
-3,23,27,21,-6,15, &
|
|
26,-5,-4,22,-6,16, &
|
|
27,25,-4,23,-6,17, &
|
|
-3,26,-4,24,-6,18 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_cell ***
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
1,2,3 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
1, 4, 7, 6, &
|
|
2, 5, 7, 4, &
|
|
3, 6, 7, 5 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
1, 5, 9, 8, &
|
|
5, 2, 6, 9, &
|
|
8, 9, 7, 4, &
|
|
9, 6, 3, 7 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
1, 5,13,12, &
|
|
5, 6,14,13, &
|
|
6, 2, 7,14, &
|
|
12,13,16,11, &
|
|
13,14,15,16, &
|
|
14, 7, 8,15, &
|
|
11,16,10, 4, &
|
|
16,15, 9,10, &
|
|
15, 8, 3, 9 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
1, 2, 3, 4 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
1, 5,11, 7, 8,12,15,14, &
|
|
5, 2, 6,11,12, 9,13,15, &
|
|
7,11, 6, 3,14,15,13,10, &
|
|
8,12,15, 4, 4, 9,13,10 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
1, 7,16, 9,10,17,21,19, &
|
|
7, 2, 8,16,17,11,18,21, &
|
|
9,16, 8, 3,19,21,18,12, &
|
|
10,17,21,19, 4,13,20,15, &
|
|
17,11,18,21,13, 5,14,20, &
|
|
19,21,18,12,15,20,14, 6 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
1, 2, 3, 4, 5, 6, 7, 8 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
1, 9,21,12,13,22,27,25, &
|
|
9, 2,10,21,22,14,23,27, &
|
|
12,21,11, 4,25,27,24,16, &
|
|
21,10, 3,11,27,23,15,24, &
|
|
13,22,27,25, 5,17,26,20, &
|
|
22,14,23,27,17, 6,18,26, &
|
|
25,27,24,16,20,26,19, 8, &
|
|
27,23,15,24,26,18, 7,19 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
1, 9,33,16,17,37,57,44, &
|
|
9,10,34,33,37,38,58,57, &
|
|
10, 2,11,34,38,18,39,58, &
|
|
16,33,36,15,44,57,60,43, &
|
|
33,34,35,36,57,58,59,60, &
|
|
34,11,12,35,58,39,40,59, &
|
|
15,36,14, 4,43,60,42,20, &
|
|
36,35,13,14,60,59,41,42, &
|
|
35,12, 3,13,59,40,19,41, &
|
|
17,37,57,44,21,45,61,52, &
|
|
37,38,58,57,45,46,62,61, &
|
|
38,18,39,58,46,22,47,62, &
|
|
44,57,60,43,52,61,64,51, &
|
|
57,58,59,60,61,62,63,64, &
|
|
58,39,40,59,62,47,48,63, &
|
|
43,60,42,20,51,64,50,24, &
|
|
60,59,41,42,64,63,49,50, &
|
|
59,40,19,41,63,48,23,49, &
|
|
21,45,61,52, 5,25,53,32, &
|
|
45,46,62,61,25,26,54,53, &
|
|
46,22,47,62,26, 6,27,54, &
|
|
52,61,64,51,32,53,56,31, &
|
|
61,62,63,64,53,54,55,56, &
|
|
62,47,48,63,54,27,28,55, &
|
|
51,64,50,24,31,56,30, 8, &
|
|
64,63,49,50,56,55,29,30, &
|
|
63,48,23,49,55,28, 7,29 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_cellnodeParentnodeWeights ***
|
|
! center of gravity of the weighted nodes gives the position of the cell node.
|
|
! fill with 0.
|
|
! example: face-centered cell node with face nodes 1,2,5,6 to be used in,
|
|
! e.g., an 8 node element, would be encoded:
|
|
! 1, 1, 0, 0, 1, 1, 0, 0
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, &
|
|
0, 1, 0, &
|
|
0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 2, 2, 2 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, &
|
|
0, 1, 0, 0, &
|
|
0, 0, 1, 0, &
|
|
0, 0, 0, 1, &
|
|
1, 1, 0, 0, &
|
|
0, 1, 1, 0, &
|
|
0, 0, 1, 1, &
|
|
1, 0, 0, 1, &
|
|
1, 1, 1, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
1, 0, 0, 0, 2, 0, 0, 0, &
|
|
0, 1, 0, 0, 2, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 2, 0, 0, &
|
|
0, 0, 1, 0, 0, 2, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 2, 0, &
|
|
0, 0, 0, 1, 0, 0, 2, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 2, &
|
|
1, 0, 0, 0, 0, 0, 0, 2, &
|
|
4, 1, 1, 1, 8, 2, 2, 8, &
|
|
1, 4, 1, 1, 8, 8, 2, 2, &
|
|
1, 1, 4, 1, 2, 8, 8, 2, &
|
|
1, 1, 1, 4, 2, 2, 8, 8 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 54 (2D 8node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 1, 2, 2, 2, 2 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, &
|
|
0, 1, 0, 0, &
|
|
0, 0, 1, 0, &
|
|
0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 157 (3D 5node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, &
|
|
0, 0, 0, 1, 0, &
|
|
1, 1, 0, 0, 0, &
|
|
0, 1, 1, 0, 0, &
|
|
1, 0, 1, 0, 0, &
|
|
1, 0, 0, 1, 0, &
|
|
0, 1, 0, 1, 0, &
|
|
0, 0, 1, 1, 0, &
|
|
1, 1, 1, 0, 0, &
|
|
1, 1, 0, 1, 0, &
|
|
0, 1, 1, 1, 0, &
|
|
1, 0, 1, 1, 0, &
|
|
0, 0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 0, 2, 2, 2, 0, 0, 0, &
|
|
1, 1, 0, 1, 2, 0, 0, 2, 2, 0, &
|
|
0, 1, 1, 1, 0, 2, 0, 0, 2, 2, &
|
|
1, 0, 1, 1, 0, 0, 2, 2, 0, 2, &
|
|
3, 3, 3, 3, 4, 4, 4, 4, 4, 4 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 1, &
|
|
1, 1, 0, 0, 0, 0, &
|
|
0, 1, 1, 0, 0, 0, &
|
|
1, 0, 1, 0, 0, 0, &
|
|
1, 0, 0, 1, 0, 0, &
|
|
0, 1, 0, 0, 1, 0, &
|
|
0, 0, 1, 0, 0, 1, &
|
|
0, 0, 0, 1, 1, 0, &
|
|
0, 0, 0, 0, 1, 1, &
|
|
0, 0, 0, 1, 0, 1, &
|
|
1, 1, 1, 0, 0, 0, &
|
|
1, 1, 0, 1, 1, 0, &
|
|
0, 1, 1, 0, 1, 1, &
|
|
1, 0, 1, 1, 0, 1, &
|
|
0, 0, 0, 1, 1, 1, &
|
|
1, 1, 1, 1, 1, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, & !
|
|
1, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 1, 0, 0, 0, 0, 0, & ! 10
|
|
0, 0, 1, 1, 0, 0, 0, 0, & !
|
|
1, 0, 0, 1, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 1, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 1, 0, & ! 15
|
|
0, 0, 0, 1, 0, 0, 0, 1, & !
|
|
0, 0, 0, 0, 1, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 1, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 1, & !
|
|
0, 0, 0, 0, 1, 0, 0, 1, & ! 20
|
|
1, 1, 1, 1, 0, 0, 0, 0, & !
|
|
1, 1, 0, 0, 1, 1, 0, 0, & !
|
|
0, 1, 1, 0, 0, 1, 1, 0, & !
|
|
0, 0, 1, 1, 0, 0, 1, 1, & !
|
|
1, 0, 0, 1, 1, 0, 0, 1, & ! 25
|
|
0, 0, 0, 0, 1, 1, 1, 1, & !
|
|
1, 1, 1, 1, 1, 1, 1, 1 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 57 (3D 20node 8ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & ! 15
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & ! 20
|
|
1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, & !
|
|
0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, & !
|
|
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, & !
|
|
1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, & ! 25
|
|
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, & !
|
|
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 15
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 20
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 25
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 30
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
|
|
4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 35
|
|
1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, & !
|
|
1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, & !
|
|
0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, & !
|
|
0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, & ! 40
|
|
0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, & !
|
|
0, 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, & !
|
|
1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 2, 0, 0, 8, & !
|
|
4, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, 2, & !
|
|
1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, 0, & ! 45
|
|
1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, & !
|
|
0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, & !
|
|
0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, & !
|
|
0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, & !
|
|
0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, & ! 50
|
|
1, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, 8, & !
|
|
1, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 8, 0, 0, 2, & !
|
|
0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, & ! 55
|
|
0, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, & !
|
|
24, 8, 4, 8, 8, 4, 3, 4, 32,12,12,32, 12, 4, 4,12, 32,12, 4,12, & !
|
|
8,24, 8, 4, 4, 8, 4, 3, 32,32,12,12, 12,12, 4, 4, 12,32,12, 4, & !
|
|
4, 8,24, 8, 3, 4, 8, 4, 12,32,32,12, 4,12,12, 4, 4,12,32,12, & !
|
|
8, 4, 8,24, 4, 3, 4, 8, 12,12,32,32, 4, 4,12,12, 12, 4,12,32, & ! 60
|
|
8, 4, 3, 4, 24, 8, 4, 8, 12, 4, 4,12, 32,12,12,32, 32,12, 4,12, & !
|
|
4, 8, 4, 3, 8,24, 8, 4, 12,12, 4, 4, 32,32,12,12, 12,32,12, 4, & !
|
|
3, 4, 8, 4, 4, 8,24, 8, 4,12,12, 4, 12,32,32,12, 4,12,32,12, & !
|
|
4, 3, 4, 8, 8, 4, 8,24, 4, 4,12,12, 12,12,32,32, 12, 4,12,32 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
|
|
|
|
! *** FE_cellface ***
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
|
|
reshape(int([&
|
|
2,3, &
|
|
3,1, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
|
|
reshape(int([&
|
|
2,3, &
|
|
4,1, &
|
|
3,4, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
|
|
reshape(int([&
|
|
1,3,2, &
|
|
1,2,4, &
|
|
2,3,4, &
|
|
1,4,3 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
|
|
reshape(int([&
|
|
2,3,7,6, &
|
|
4,1,5,8, &
|
|
3,4,8,7, &
|
|
1,2,6,5, &
|
|
5,6,7,8, &
|
|
1,4,3,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
|
|
end subroutine mesh_build_FEdata
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief writes out initial cell geometry
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_write_cellGeom
|
|
use DAMASK_interface, only: &
|
|
getSolverJobName
|
|
use Lib_VTK_IO, only: &
|
|
VTK_ini, &
|
|
VTK_geo, &
|
|
VTK_con, &
|
|
VTK_end
|
|
|
|
implicit none
|
|
integer(pInt), dimension(1:mesh_Ncells) :: celltype
|
|
integer(pInt), dimension(mesh_Ncells*(1_pInt+FE_maxNcellnodesPerCell)) :: cellconnection
|
|
integer(pInt):: err, g, c, e, CellID, i, j
|
|
|
|
cellID = 0_pInt
|
|
j = 0_pInt
|
|
do e = 1_pInt, mesh_NcpElems ! loop over cpElems
|
|
g = FE_geomtype(mesh_element(2_pInt,e)) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
|
|
cellID = cellID + 1_pInt
|
|
celltype(cellID) = MESH_VTKCELLTYPE(c)
|
|
cellconnection(j+1_pInt:j+FE_NcellnodesPerCell(c)+1_pInt) &
|
|
= [FE_NcellnodesPerCell(c),mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt] ! number of cellnodes per cell & list of global cellnode IDs belnging to this cell (cellnode counting starts at 0)
|
|
j = j + FE_NcellnodesPerCell(c) + 1_pInt
|
|
enddo
|
|
enddo
|
|
|
|
err = VTK_ini(output_format = 'ASCII', &
|
|
title=trim(getSolverJobName())//' cell mesh', &
|
|
filename = trim(getSolverJobName())//'_ipbased.vtk', &
|
|
mesh_topology = 'UNSTRUCTURED_GRID')
|
|
err = VTK_geo(NN = mesh_Ncellnodes, &
|
|
X = mesh_cellnode(1,:), &
|
|
Y = mesh_cellnode(2,:), &
|
|
Z = mesh_cellnode(3,:))
|
|
err = VTK_con(NC = mesh_Ncells, &
|
|
connect = cellconnection(1:j), &
|
|
cell_type = celltype)
|
|
err = VTK_end()
|
|
|
|
end subroutine mesh_write_cellGeom
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief writes out initial element geometry
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_write_elemGeom
|
|
use DAMASK_interface, only: &
|
|
getSolverJobName
|
|
use Lib_VTK_IO, only: &
|
|
VTK_ini, &
|
|
VTK_geo, &
|
|
VTK_con, &
|
|
VTK_end
|
|
|
|
implicit none
|
|
integer(pInt), dimension(1:mesh_NcpElems) :: elemtype
|
|
integer(pInt), dimension(mesh_NcpElems*(1_pInt+FE_maxNnodes)) :: elementconnection
|
|
integer(pInt):: err, e, t, n, i
|
|
|
|
i = 0_pInt
|
|
do e = 1_pInt, mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
elemtype(e) = MESH_VTKELEMTYPE(t)
|
|
elementconnection(i+1_pInt) = FE_Nnodes(t) ! number of nodes per element
|
|
do n = 1_pInt,FE_Nnodes(t)
|
|
elementconnection(i+1_pInt+n) = mesh_element(4_pInt+n,e) - 1_pInt ! global node ID of node that belongs to this element (node counting starts at 0)
|
|
enddo
|
|
i = i + 1_pInt + FE_Nnodes(t)
|
|
enddo
|
|
|
|
err = VTK_ini(output_format = 'ASCII', &
|
|
title=trim(getSolverJobName())//' element mesh', &
|
|
filename = trim(getSolverJobName())//'_nodebased.vtk', &
|
|
mesh_topology = 'UNSTRUCTURED_GRID')
|
|
err = VTK_geo(NN = mesh_Nnodes, &
|
|
X = mesh_node0(1,1:mesh_Nnodes), &
|
|
Y = mesh_node0(2,1:mesh_Nnodes), &
|
|
Z = mesh_node0(3,1:mesh_Nnodes))
|
|
err = VTK_con(NC = mesh_Nelems, &
|
|
connect = elementconnection(1:i), &
|
|
cell_type = elemtype)
|
|
err = VTK_end()
|
|
|
|
end subroutine mesh_write_elemGeom
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief writes description file for mesh
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_write_meshfile
|
|
use IO, only: &
|
|
IO_write_jobFile
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: fileUnit = 223_pInt
|
|
integer(pInt) :: e,i,t,g,c,n
|
|
|
|
call IO_write_jobFile(fileUnit,'mesh')
|
|
write(fileUnit,'(A16,I10)') 'maxNcellnodes', mesh_maxNcellnodes
|
|
write(fileUnit,'(A16,I10)') 'maxNips', mesh_maxNips
|
|
write(fileUnit,'(A16,I10)') 'maxNnodes', mesh_maxNnodes
|
|
write(fileUnit,'(A16,I10)') 'Nnodes', mesh_Nnodes
|
|
write(fileUnit,'(A16,I10)') 'NcpElems', mesh_NcpElems
|
|
do e = 1_pInt,mesh_NcpElems
|
|
t = mesh_element(2,e)
|
|
write(fileUnit,'(20(I10))') mesh_element(1_pInt:4_pInt+FE_Nnodes(t),e)
|
|
enddo
|
|
write(fileUnit,'(A16,I10)') 'Ncellnodes', mesh_Ncellnodes
|
|
do n = 1_pInt,mesh_Ncellnodes
|
|
write(fileUnit,'(2(I10))') mesh_cellnodeParent(1:2,n)
|
|
enddo
|
|
write(fileUnit,'(A16,I10)') 'Ncells', mesh_Ncells
|
|
do e = 1_pInt,mesh_NcpElems
|
|
t = mesh_element(2,e)
|
|
g = FE_geomtype(t)
|
|
c = FE_celltype(g)
|
|
do i = 1_pInt,FE_Nips(g)
|
|
write(fileUnit,'(8(I10))') &
|
|
mesh_cell(1_pInt:FE_NcellnodesPerCell(c),i,e)
|
|
enddo
|
|
enddo
|
|
close(fileUnit)
|
|
|
|
end subroutine mesh_write_meshfile
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief reads mesh description file
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer function mesh_read_meshfile(filepath)
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: filepath
|
|
integer(pInt), parameter :: fileUnit = 223_pInt
|
|
integer(pInt) :: e,i,t,g,n
|
|
|
|
open(fileUnit,status='old',err=100,iostat=mesh_read_meshfile,action='read',file=filepath)
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNcellnodes
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNips
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNnodes
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Nnodes
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_NcpElems
|
|
if (.not. allocated(mesh_element)) allocate(mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems))
|
|
mesh_element = 0_pInt
|
|
do e = 1_pInt,mesh_NcpElems
|
|
read(fileUnit,'(20(I10))',err=100,iostat=mesh_read_meshfile) &
|
|
mesh_element(:,e)
|
|
enddo
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncellnodes
|
|
if (.not. allocated(mesh_cellnodeParent)) allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
|
|
do n = 1_pInt,mesh_Ncellnodes
|
|
read(fileUnit,'(2(I10))',err=100,iostat=mesh_read_meshfile) mesh_cellnodeParent(1:2,n)
|
|
enddo
|
|
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncells
|
|
if (.not. allocated(mesh_cell)) allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems))
|
|
do e = 1_pInt,mesh_NcpElems
|
|
t = mesh_element(2,e)
|
|
g = FE_geomtype(t)
|
|
do i = 1_pInt,FE_Nips(g)
|
|
read(fileUnit,'(8(I10))',err=100,iostat=mesh_read_meshfile) mesh_cell(:,i,e)
|
|
enddo
|
|
enddo
|
|
close(fileUnit)
|
|
|
|
mesh_read_meshfile = 0 ! successfully read data
|
|
|
|
100 continue
|
|
end function mesh_read_meshfile
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief initializes mesh data for use in post processing
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer function mesh_init_postprocessing(filepath)
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: filepath
|
|
|
|
call mesh_build_FEdata
|
|
mesh_init_postprocessing = mesh_read_meshfile(filepath)
|
|
|
|
end function mesh_init_postprocessing
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns global variable mesh_Ncellnodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function mesh_get_Ncellnodes()
|
|
|
|
implicit none
|
|
|
|
mesh_get_Ncellnodes = mesh_Ncellnodes
|
|
|
|
end function mesh_get_Ncellnodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns node that is located at an ip
|
|
!> @details return zero if requested ip does not exist or not available (more ips than nodes)
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function mesh_get_nodeAtIP(elemtypeFE,ip)
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: elemtypeFE
|
|
integer(pInt), intent(in) :: ip
|
|
integer(pInt) :: elemtype
|
|
integer(pInt) :: geomtype
|
|
|
|
mesh_get_nodeAtIP = 0_pInt
|
|
|
|
elemtype = FE_mapElemtype(elemtypeFE)
|
|
geomtype = FE_geomtype(elemtype)
|
|
if (FE_Nips(geomtype) >= ip .and. FE_Nips(geomtype) <= FE_Nnodes(elemtype)) &
|
|
mesh_get_nodeAtIP = FE_nodesAtIP(1,ip,geomtype)
|
|
|
|
end function mesh_get_nodeAtIP
|
|
|
|
|
|
end module mesh
|
|
|