309 lines
13 KiB
Fortran
309 lines
13 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief material subroutine for isotropic plasticity
|
||
!> @details Isotropic Plasticity which resembles the phenopowerlaw plasticity without
|
||
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
|
||
!! untextured polycrystal
|
||
!--------------------------------------------------------------------------------------------------
|
||
submodule(phase:plastic) isotropic
|
||
|
||
type :: tParameters
|
||
real(pReal) :: &
|
||
M, & !< Taylor factor
|
||
dot_gamma_0, & !< reference strain rate
|
||
n, & !< stress exponent
|
||
h_0, &
|
||
h, & !< hardening pre-factor
|
||
h_ln, &
|
||
xi_inf, & !< maximum critical stress
|
||
a, &
|
||
c_1, &
|
||
c_4, &
|
||
c_3, &
|
||
c_2
|
||
logical :: &
|
||
dilatation
|
||
character(len=pStringLen), allocatable, dimension(:) :: &
|
||
output
|
||
end type tParameters
|
||
|
||
type :: tIsotropicState
|
||
real(pReal), pointer, dimension(:) :: &
|
||
xi
|
||
end type tIsotropicState
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! containers for parameters and state
|
||
type(tParameters), allocatable, dimension(:) :: param
|
||
type(tIsotropicState), allocatable, dimension(:) :: state
|
||
|
||
contains
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Perform module initialization.
|
||
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
||
!--------------------------------------------------------------------------------------------------
|
||
module function plastic_isotropic_init() result(myPlasticity)
|
||
|
||
logical, dimension(:), allocatable :: myPlasticity
|
||
integer :: &
|
||
ph, &
|
||
Nmembers, &
|
||
sizeState, sizeDotState
|
||
real(pReal) :: &
|
||
xi_0 !< initial critical stress
|
||
character(len=pStringLen) :: &
|
||
extmsg = ''
|
||
class(tNode), pointer :: &
|
||
phases, &
|
||
phase, &
|
||
mech, &
|
||
pl
|
||
|
||
|
||
myPlasticity = plastic_active('isotropic')
|
||
if(count(myPlasticity) == 0) return
|
||
|
||
print'(/,1x,a)', '<<<+- phase:mechanical:plastic:isotropic init -+>>>'
|
||
print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT)
|
||
|
||
print'(/,a)', 'T. Maiti and P. Eisenlohr, Scripta Materialia 145:37–40, 2018'
|
||
print'(/,a)', 'https://doi.org/10.1016/j.scriptamat.2017.09.047'
|
||
|
||
phases => config_material%get('phase')
|
||
allocate(param(phases%length))
|
||
allocate(state(phases%length))
|
||
|
||
do ph = 1, phases%length
|
||
if(.not. myPlasticity(ph)) cycle
|
||
|
||
associate(prm => param(ph), stt => state(ph))
|
||
|
||
phase => phases%get(ph)
|
||
mech => phase%get('mechanical')
|
||
pl => mech%get('plastic')
|
||
|
||
#if defined (__GFORTRAN__)
|
||
prm%output = output_as1dString(pl)
|
||
#else
|
||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||
#endif
|
||
|
||
xi_0 = pl%get_asFloat('xi_0')
|
||
prm%xi_inf = pl%get_asFloat('xi_inf')
|
||
prm%dot_gamma_0 = pl%get_asFloat('dot_gamma_0')
|
||
prm%n = pl%get_asFloat('n')
|
||
prm%h_0 = pl%get_asFloat('h_0')
|
||
prm%h = pl%get_asFloat('h', defaultVal=3.0_pReal) ! match for fcc random polycrystal
|
||
prm%M = pl%get_asFloat('M')
|
||
prm%h_ln = pl%get_asFloat('h_ln', defaultVal=0.0_pReal)
|
||
prm%c_1 = pl%get_asFloat('c_1', defaultVal=0.0_pReal)
|
||
prm%c_4 = pl%get_asFloat('c_4', defaultVal=0.0_pReal)
|
||
prm%c_3 = pl%get_asFloat('c_3', defaultVal=0.0_pReal)
|
||
prm%c_2 = pl%get_asFloat('c_2', defaultVal=0.0_pReal)
|
||
prm%a = pl%get_asFloat('a')
|
||
|
||
prm%dilatation = pl%get_AsBool('dilatation',defaultVal = .false.)
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! sanity checks
|
||
if (xi_0 < 0.0_pReal) extmsg = trim(extmsg)//' xi_0'
|
||
if (prm%dot_gamma_0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0'
|
||
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' n'
|
||
if (prm%a <= 0.0_pReal) extmsg = trim(extmsg)//' a'
|
||
if (prm%M <= 0.0_pReal) extmsg = trim(extmsg)//' M'
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! allocate state arrays
|
||
Nmembers = count(material_phaseID == ph)
|
||
sizeDotState = size(['xi'])
|
||
sizeState = sizeDotState
|
||
|
||
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
|
||
deallocate(plasticState(ph)%dotState) ! ToDo: remove dotState completely
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! state aliases and initialization
|
||
stt%xi => plasticState(ph)%state(1,:)
|
||
stt%xi = xi_0
|
||
plasticState(ph)%atol(1) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
||
if (plasticState(ph)%atol(1) < 0.0_pReal) extmsg = trim(extmsg)//' atol_xi'
|
||
|
||
end associate
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! exit if any parameter is out of range
|
||
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(isotropic)')
|
||
|
||
end do
|
||
|
||
end function plastic_isotropic_init
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Calculate plastic velocity gradient and its tangent.
|
||
!--------------------------------------------------------------------------------------------------
|
||
module subroutine isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
|
||
|
||
real(pReal), dimension(3,3), intent(out) :: &
|
||
Lp !< plastic velocity gradient
|
||
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
||
dLp_dMp !< derivative of Lp with respect to the Mandel stress
|
||
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mp !< Mandel stress
|
||
integer, intent(in) :: &
|
||
ph, &
|
||
en
|
||
|
||
real(pReal), dimension(3,3) :: &
|
||
Mp_dev !< deviatoric part of the Mandel stress
|
||
real(pReal) :: &
|
||
dot_gamma, & !< strainrate
|
||
norm_Mp_dev, & !< norm of the deviatoric part of the Mandel stress
|
||
squarenorm_Mp_dev !< square of the norm of the deviatoric part of the Mandel stress
|
||
integer :: &
|
||
k, l, m, n
|
||
|
||
|
||
associate(prm => param(ph), stt => state(ph))
|
||
|
||
Mp_dev = math_deviatoric33(Mp)
|
||
squarenorm_Mp_dev = math_tensordot(Mp_dev,Mp_dev)
|
||
norm_Mp_dev = sqrt(squarenorm_Mp_dev)
|
||
|
||
if (norm_Mp_dev > 0.0_pReal) then
|
||
dot_gamma = prm%dot_gamma_0 * (sqrt(1.5_pReal) * norm_Mp_dev/(prm%M*stt%xi(en)))**prm%n
|
||
|
||
Lp = dot_gamma * Mp_dev/norm_Mp_dev
|
||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||
dLp_dMp(k,l,m,n) = (prm%n-1.0_pReal) * Mp_dev(k,l)*Mp_dev(m,n) / squarenorm_Mp_dev
|
||
forall (k=1:3,l=1:3) &
|
||
dLp_dMp(k,l,k,l) = dLp_dMp(k,l,k,l) + 1.0_pReal
|
||
forall (k=1:3,m=1:3) &
|
||
dLp_dMp(k,k,m,m) = dLp_dMp(k,k,m,m) - 1.0_pReal/3.0_pReal
|
||
dLp_dMp = dot_gamma * dLp_dMp / norm_Mp_dev
|
||
else
|
||
Lp = 0.0_pReal
|
||
dLp_dMp = 0.0_pReal
|
||
end if
|
||
|
||
end associate
|
||
|
||
end subroutine isotropic_LpAndItsTangent
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Calculate inelastic velocity gradient and its tangent.
|
||
!--------------------------------------------------------------------------------------------------
|
||
module subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dMi,Mi,ph,en)
|
||
|
||
real(pReal), dimension(3,3), intent(out) :: &
|
||
Li !< inleastic velocity gradient
|
||
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
||
dLi_dMi !< derivative of Li with respect to Mandel stress
|
||
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mi !< Mandel stress
|
||
integer, intent(in) :: &
|
||
ph, &
|
||
en
|
||
|
||
real(pReal) :: &
|
||
tr !< trace of spherical part of Mandel stress (= 3 x pressure)
|
||
integer :: &
|
||
k, l, m, n
|
||
|
||
|
||
associate(prm => param(ph), stt => state(ph))
|
||
|
||
tr=math_trace33(math_spherical33(Mi))
|
||
|
||
if (prm%dilatation .and. abs(tr) > 0.0_pReal) then ! no stress or J2 plasticity --> Li and its derivative are zero
|
||
Li = math_I3 &
|
||
* prm%dot_gamma_0 * (3.0_pReal*prm%M*stt%xi(en))**(-prm%n) &
|
||
* tr * abs(tr)**(prm%n-1.0_pReal)
|
||
forall (k=1:3,l=1:3,m=1:3,n=1:3) dLi_dMi(k,l,m,n) = prm%n / tr * Li(k,l) * math_I3(m,n)
|
||
else
|
||
Li = 0.0_pReal
|
||
dLi_dMi = 0.0_pReal
|
||
end if
|
||
|
||
end associate
|
||
|
||
end subroutine plastic_isotropic_LiAndItsTangent
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Calculate the rate of change of microstructure.
|
||
!--------------------------------------------------------------------------------------------------
|
||
module function isotropic_dotState(Mp,ph,en) result(dotState)
|
||
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mp !< Mandel stress
|
||
integer, intent(in) :: &
|
||
ph, &
|
||
en
|
||
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
||
dotState
|
||
|
||
real(pReal) :: &
|
||
dot_gamma, & !< strainrate
|
||
xi_inf_star, & !< saturation xi
|
||
norm_Mp !< norm of the (deviatoric) Mandel stress
|
||
|
||
associate(prm => param(ph), stt => state(ph), dot_xi => dotState(1))
|
||
|
||
norm_Mp = merge(sqrt(math_tensordot(Mp,Mp)), &
|
||
sqrt(math_tensordot(math_deviatoric33(Mp),math_deviatoric33(Mp))), &
|
||
prm%dilatation)
|
||
|
||
dot_gamma = prm%dot_gamma_0 * (sqrt(1.5_pReal) * norm_Mp /(prm%M*stt%xi(en))) **prm%n
|
||
|
||
if (dot_gamma > 1e-12_pReal) then
|
||
if (dEq0(prm%c_1)) then
|
||
xi_inf_star = prm%xi_inf
|
||
else
|
||
xi_inf_star = prm%xi_inf &
|
||
+ asinh( (dot_gamma / prm%c_1)**(1.0_pReal / prm%c_2))**(1.0_pReal / prm%c_3) &
|
||
/ prm%c_4 * (dot_gamma / prm%dot_gamma_0)**(1.0_pReal / prm%n)
|
||
end if
|
||
dot_xi = dot_gamma &
|
||
* ( prm%h_0 + prm%h_ln * log(dot_gamma) ) &
|
||
* sign(abs(1.0_pReal - stt%xi(en)/xi_inf_star)**prm%a *prm%h, 1.0_pReal-stt%xi(en)/xi_inf_star)
|
||
else
|
||
dot_xi = 0.0_pReal
|
||
end if
|
||
|
||
end associate
|
||
|
||
end function isotropic_dotState
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Write results to HDF5 output file.
|
||
!--------------------------------------------------------------------------------------------------
|
||
module subroutine plastic_isotropic_results(ph,group)
|
||
|
||
integer, intent(in) :: ph
|
||
character(len=*), intent(in) :: group
|
||
|
||
integer :: o
|
||
|
||
associate(prm => param(ph), stt => state(ph))
|
||
outputsLoop: do o = 1,size(prm%output)
|
||
select case(trim(prm%output(o)))
|
||
case ('xi')
|
||
call results_writeDataset(stt%xi,group,trim(prm%output(o)), &
|
||
'resistance against plastic flow','Pa')
|
||
end select
|
||
end do outputsLoop
|
||
end associate
|
||
|
||
end subroutine plastic_isotropic_results
|
||
|
||
|
||
end submodule isotropic
|