DAMASK_EICMD/src/phase_mechanical_plastic_is...

309 lines
13 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic plasticity
!> @details Isotropic Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
submodule(phase:plastic) isotropic
type :: tParameters
real(pReal) :: &
M, & !< Taylor factor
dot_gamma_0, & !< reference strain rate
n, & !< stress exponent
h_0, &
h, & !< hardening pre-factor
h_ln, &
xi_inf, & !< maximum critical stress
a, &
c_1, &
c_4, &
c_3, &
c_2
logical :: &
dilatation
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type :: tIsotropicState
real(pReal), pointer, dimension(:) :: &
xi
end type tIsotropicState
!--------------------------------------------------------------------------------------------------
! containers for parameters and state
type(tParameters), allocatable, dimension(:) :: param
type(tIsotropicState), allocatable, dimension(:) :: state
contains
!--------------------------------------------------------------------------------------------------
!> @brief Perform module initialization.
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function plastic_isotropic_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
ph, &
Nmembers, &
sizeState, sizeDotState
real(pReal) :: &
xi_0 !< initial critical stress
character(len=pStringLen) :: &
extmsg = ''
class(tNode), pointer :: &
phases, &
phase, &
mech, &
pl
myPlasticity = plastic_active('isotropic')
if(count(myPlasticity) == 0) return
print'(/,1x,a)', '<<<+- phase:mechanical:plastic:isotropic init -+>>>'
print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT)
print'(/,a)', 'T. Maiti and P. Eisenlohr, Scripta Materialia 145:3740, 2018'
print'(/,a)', 'https://doi.org/10.1016/j.scriptamat.2017.09.047'
phases => config_material%get('phase')
allocate(param(phases%length))
allocate(state(phases%length))
do ph = 1, phases%length
if(.not. myPlasticity(ph)) cycle
associate(prm => param(ph), stt => state(ph))
phase => phases%get(ph)
mech => phase%get('mechanical')
pl => mech%get('plastic')
#if defined (__GFORTRAN__)
prm%output = output_as1dString(pl)
#else
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
#endif
xi_0 = pl%get_asFloat('xi_0')
prm%xi_inf = pl%get_asFloat('xi_inf')
prm%dot_gamma_0 = pl%get_asFloat('dot_gamma_0')
prm%n = pl%get_asFloat('n')
prm%h_0 = pl%get_asFloat('h_0')
prm%h = pl%get_asFloat('h', defaultVal=3.0_pReal) ! match for fcc random polycrystal
prm%M = pl%get_asFloat('M')
prm%h_ln = pl%get_asFloat('h_ln', defaultVal=0.0_pReal)
prm%c_1 = pl%get_asFloat('c_1', defaultVal=0.0_pReal)
prm%c_4 = pl%get_asFloat('c_4', defaultVal=0.0_pReal)
prm%c_3 = pl%get_asFloat('c_3', defaultVal=0.0_pReal)
prm%c_2 = pl%get_asFloat('c_2', defaultVal=0.0_pReal)
prm%a = pl%get_asFloat('a')
prm%dilatation = pl%get_AsBool('dilatation',defaultVal = .false.)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (xi_0 < 0.0_pReal) extmsg = trim(extmsg)//' xi_0'
if (prm%dot_gamma_0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0'
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' n'
if (prm%a <= 0.0_pReal) extmsg = trim(extmsg)//' a'
if (prm%M <= 0.0_pReal) extmsg = trim(extmsg)//' M'
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nmembers = count(material_phaseID == ph)
sizeDotState = size(['xi'])
sizeState = sizeDotState
call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0)
deallocate(plasticState(ph)%dotState) ! ToDo: remove dotState completely
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
stt%xi => plasticState(ph)%state(1,:)
stt%xi = xi_0
plasticState(ph)%atol(1) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if (plasticState(ph)%atol(1) < 0.0_pReal) extmsg = trim(extmsg)//' atol_xi'
end associate
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(isotropic)')
end do
end function plastic_isotropic_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculate plastic velocity gradient and its tangent.
!--------------------------------------------------------------------------------------------------
module subroutine isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLp_dMp !< derivative of Lp with respect to the Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
en
real(pReal), dimension(3,3) :: &
Mp_dev !< deviatoric part of the Mandel stress
real(pReal) :: &
dot_gamma, & !< strainrate
norm_Mp_dev, & !< norm of the deviatoric part of the Mandel stress
squarenorm_Mp_dev !< square of the norm of the deviatoric part of the Mandel stress
integer :: &
k, l, m, n
associate(prm => param(ph), stt => state(ph))
Mp_dev = math_deviatoric33(Mp)
squarenorm_Mp_dev = math_tensordot(Mp_dev,Mp_dev)
norm_Mp_dev = sqrt(squarenorm_Mp_dev)
if (norm_Mp_dev > 0.0_pReal) then
dot_gamma = prm%dot_gamma_0 * (sqrt(1.5_pReal) * norm_Mp_dev/(prm%M*stt%xi(en)))**prm%n
Lp = dot_gamma * Mp_dev/norm_Mp_dev
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = (prm%n-1.0_pReal) * Mp_dev(k,l)*Mp_dev(m,n) / squarenorm_Mp_dev
forall (k=1:3,l=1:3) &
dLp_dMp(k,l,k,l) = dLp_dMp(k,l,k,l) + 1.0_pReal
forall (k=1:3,m=1:3) &
dLp_dMp(k,k,m,m) = dLp_dMp(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dMp = dot_gamma * dLp_dMp / norm_Mp_dev
else
Lp = 0.0_pReal
dLp_dMp = 0.0_pReal
end if
end associate
end subroutine isotropic_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief Calculate inelastic velocity gradient and its tangent.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dMi,Mi,ph,en)
real(pReal), dimension(3,3), intent(out) :: &
Li !< inleastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dMi !< derivative of Li with respect to Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Mi !< Mandel stress
integer, intent(in) :: &
ph, &
en
real(pReal) :: &
tr !< trace of spherical part of Mandel stress (= 3 x pressure)
integer :: &
k, l, m, n
associate(prm => param(ph), stt => state(ph))
tr=math_trace33(math_spherical33(Mi))
if (prm%dilatation .and. abs(tr) > 0.0_pReal) then ! no stress or J2 plasticity --> Li and its derivative are zero
Li = math_I3 &
* prm%dot_gamma_0 * (3.0_pReal*prm%M*stt%xi(en))**(-prm%n) &
* tr * abs(tr)**(prm%n-1.0_pReal)
forall (k=1:3,l=1:3,m=1:3,n=1:3) dLi_dMi(k,l,m,n) = prm%n / tr * Li(k,l) * math_I3(m,n)
else
Li = 0.0_pReal
dLi_dMi = 0.0_pReal
end if
end associate
end subroutine plastic_isotropic_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief Calculate the rate of change of microstructure.
!--------------------------------------------------------------------------------------------------
module function isotropic_dotState(Mp,ph,en) result(dotState)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
en
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
dotState
real(pReal) :: &
dot_gamma, & !< strainrate
xi_inf_star, & !< saturation xi
norm_Mp !< norm of the (deviatoric) Mandel stress
associate(prm => param(ph), stt => state(ph), dot_xi => dotState(1))
norm_Mp = merge(sqrt(math_tensordot(Mp,Mp)), &
sqrt(math_tensordot(math_deviatoric33(Mp),math_deviatoric33(Mp))), &
prm%dilatation)
dot_gamma = prm%dot_gamma_0 * (sqrt(1.5_pReal) * norm_Mp /(prm%M*stt%xi(en))) **prm%n
if (dot_gamma > 1e-12_pReal) then
if (dEq0(prm%c_1)) then
xi_inf_star = prm%xi_inf
else
xi_inf_star = prm%xi_inf &
+ asinh( (dot_gamma / prm%c_1)**(1.0_pReal / prm%c_2))**(1.0_pReal / prm%c_3) &
/ prm%c_4 * (dot_gamma / prm%dot_gamma_0)**(1.0_pReal / prm%n)
end if
dot_xi = dot_gamma &
* ( prm%h_0 + prm%h_ln * log(dot_gamma) ) &
* sign(abs(1.0_pReal - stt%xi(en)/xi_inf_star)**prm%a *prm%h, 1.0_pReal-stt%xi(en)/xi_inf_star)
else
dot_xi = 0.0_pReal
end if
end associate
end function isotropic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief Write results to HDF5 output file.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_isotropic_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(ph), stt => state(ph))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case ('xi')
call results_writeDataset(stt%xi,group,trim(prm%output(o)), &
'resistance against plastic flow','Pa')
end select
end do outputsLoop
end associate
end subroutine plastic_isotropic_results
end submodule isotropic