848 lines
31 KiB
Fortran
848 lines
31 KiB
Fortran
! ###################################################################
|
|
! Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
|
! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
! All rights reserved.
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without modification, are
|
|
! permitted provided that the following conditions are met:
|
|
!
|
|
! - Redistributions of source code must retain the above copyright notice, this list
|
|
! of conditions and the following disclaimer.
|
|
! - Redistributions in binary form must reproduce the above copyright notice, this
|
|
! list of conditions and the following disclaimer in the documentation and/or
|
|
! other materials provided with the distribution.
|
|
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
|
! of its contributors may be used to endorse or promote products derived from
|
|
! this software without specific prior written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
! ###################################################################
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief rotation storage and conversion
|
|
!> @details: rotation is internally stored as quaternion. It can be inialized from different
|
|
!> representations and also returns itself in different representations.
|
|
!
|
|
! All methods and naming conventions based on Rowenhorst et al. 2015
|
|
! Convention 1: coordinate frames are right-handed
|
|
! Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
|
! when viewing from the end point of the rotation axis towards the origin
|
|
! Convention 3: rotations will be interpreted in the passive sense
|
|
! Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
|
! with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
|
! Convention 5: the rotation angle ω is limited to the interval [0, π]
|
|
! Convention 6: the real part of a quaternion is positive, Re(q) > 0
|
|
! Convention 7: P = -1
|
|
!--------------------------------------------------------------------------------------------------
|
|
|
|
module rotations
|
|
use IO
|
|
use math
|
|
|
|
implicit none(type,external)
|
|
private
|
|
|
|
real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion.
|
|
|
|
type, public :: tRotation
|
|
real(pReal), dimension(4) :: q
|
|
contains
|
|
procedure, public :: asQuaternion
|
|
procedure, public :: asEulers
|
|
procedure, public :: asAxisAngle
|
|
procedure, public :: asMatrix
|
|
!------------------------------------------
|
|
procedure, public :: fromQuaternion
|
|
procedure, public :: fromEulers
|
|
procedure, public :: fromAxisAngle
|
|
procedure, public :: fromMatrix
|
|
!------------------------------------------
|
|
procedure, private :: rotRot__
|
|
generic, public :: operator(*) => rotRot__
|
|
generic, public :: rotate => rotVector,rotTensor2,rotTensor4
|
|
procedure, public :: rotVector
|
|
procedure, public :: rotTensor2
|
|
procedure, public :: rotTensor4
|
|
procedure, public :: rotStiffness
|
|
procedure, public :: misorientation
|
|
procedure, public :: standardize
|
|
end type tRotation
|
|
|
|
real(pReal), parameter :: &
|
|
PREF = sqrt(6.0_pReal/PI), &
|
|
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
|
AP = PI**(2.0_pReal/3.0_pReal), &
|
|
SC = A/AP, &
|
|
BETA = A/2.0_pReal, &
|
|
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
|
R2 = sqrt(2.0_pReal), &
|
|
PI12 = PI/12.0_pReal, &
|
|
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
|
|
|
public :: &
|
|
rotations_init, &
|
|
eu2om
|
|
|
|
contains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Do self test.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine rotations_init
|
|
|
|
print'(/,1x,a)', '<<<+- rotations init -+>>>'; flush(IO_STDOUT)
|
|
|
|
print'(/,1x,a)', 'D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015'
|
|
print'( 1x,a)', 'https://doi.org/10.1088/0965-0393/23/8/083501'
|
|
|
|
call selfTest()
|
|
|
|
end subroutine rotations_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Return rotation in different representations.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function asQuaternion(self)
|
|
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), dimension(4) :: asQuaternion
|
|
|
|
|
|
asQuaternion = self%q
|
|
|
|
end function asQuaternion
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function asEulers(self)
|
|
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), dimension(3) :: asEulers
|
|
|
|
|
|
asEulers = qu2eu(self%q)
|
|
|
|
end function asEulers
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function asAxisAngle(self)
|
|
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), dimension(4) :: asAxisAngle
|
|
|
|
|
|
asAxisAngle = qu2ax(self%q)
|
|
|
|
end function asAxisAngle
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function asMatrix(self)
|
|
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), dimension(3,3) :: asMatrix
|
|
|
|
|
|
asMatrix = qu2om(self%q)
|
|
|
|
end function asMatrix
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Initialize rotation from different representations.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine fromQuaternion(self,qu)
|
|
|
|
class(tRotation), intent(out) :: self
|
|
real(pReal), dimension(4), intent(in) :: qu
|
|
|
|
|
|
if (dNeq(norm2(qu),1.0_pReal,1.0e-8_pReal)) call IO_error(402,ext_msg='fromQuaternion')
|
|
|
|
self%q = qu
|
|
|
|
end subroutine fromQuaternion
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine fromEulers(self,eu,degrees)
|
|
|
|
class(tRotation), intent(out) :: self
|
|
real(pReal), dimension(3), intent(in) :: eu
|
|
logical, intent(in), optional :: degrees
|
|
|
|
real(pReal), dimension(3) :: Eulers
|
|
|
|
|
|
Eulers = merge(eu*INRAD,eu,misc_optional(degrees,.false.))
|
|
|
|
if (any(Eulers<0.0_pReal) .or. any(Eulers>TAU) .or. Eulers(2) > PI) &
|
|
call IO_error(402,ext_msg='fromEulers')
|
|
|
|
self%q = eu2qu(Eulers)
|
|
|
|
end subroutine fromEulers
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine fromAxisAngle(self,ax,degrees,P)
|
|
|
|
class(tRotation), intent(out) :: self
|
|
real(pReal), dimension(4), intent(in) :: ax
|
|
logical, intent(in), optional :: degrees
|
|
integer, intent(in), optional :: P
|
|
|
|
real(pReal) :: angle
|
|
real(pReal),dimension(3) :: axis
|
|
|
|
|
|
angle = merge(ax(4)*INRAD,ax(4),misc_optional(degrees,.false.))
|
|
|
|
axis = ax(1:3) * merge(-1.0_pReal,1.0_pReal,misc_optional(P,-1) == 1)
|
|
if (abs(misc_optional(P,-1)) /= 1) call IO_error(402,ext_msg='fromAxisAngle (P)')
|
|
|
|
if (dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) &
|
|
call IO_error(402,ext_msg='fromAxisAngle')
|
|
|
|
self%q = ax2qu([axis,angle])
|
|
|
|
end subroutine fromAxisAngle
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine fromMatrix(self,om)
|
|
|
|
class(tRotation), intent(out) :: self
|
|
real(pReal), dimension(3,3), intent(in) :: om
|
|
|
|
|
|
if (dNeq(math_det33(om),1.0_pReal,tol=1.0e-5_pReal)) &
|
|
call IO_error(402,ext_msg='fromMatrix')
|
|
|
|
self%q = om2qu(om)
|
|
|
|
end subroutine fromMatrix
|
|
!--------------------------------------------------------------------------------------------------
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief: Compose rotations.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure elemental function rotRot__(self,R) result(rRot)
|
|
|
|
type(tRotation) :: rRot
|
|
class(tRotation), intent(in) :: self,R
|
|
|
|
|
|
rRot = tRotation(multiplyQuaternion(self%q,R%q))
|
|
call rRot%standardize()
|
|
|
|
end function rotRot__
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Convert to quaternion representation with positive q(1).
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure elemental subroutine standardize(self)
|
|
|
|
class(tRotation), intent(inout) :: self
|
|
|
|
|
|
if (sign(1.0_pReal,self%q(1)) < 0.0_pReal) self%q = - self%q
|
|
|
|
end subroutine standardize
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Rotate a vector passively (default) or actively.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function rotVector(self,v,active) result(vRot)
|
|
|
|
real(pReal), dimension(3) :: vRot
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), intent(in), dimension(3) :: v
|
|
logical, intent(in), optional :: active
|
|
|
|
real(pReal), dimension(4) :: v_normed, q
|
|
|
|
|
|
if (dEq0(norm2(v))) then
|
|
vRot = v
|
|
else
|
|
v_normed = [0.0_pReal,v]/norm2(v)
|
|
q = merge(multiplyQuaternion(conjugateQuaternion(self%q), multiplyQuaternion(v_normed, self%q)), &
|
|
multiplyQuaternion(self%q, multiplyQuaternion(v_normed, conjugateQuaternion(self%q))), &
|
|
misc_optional(active,.false.))
|
|
vRot = q(2:4)*norm2(v)
|
|
end if
|
|
|
|
end function rotVector
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Rotate a rank-2 tensor passively (default) or actively.
|
|
!> @details: Rotation is based on rotation matrix
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function rotTensor2(self,T,active) result(tRot)
|
|
|
|
real(pReal), dimension(3,3) :: tRot
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), intent(in), dimension(3,3) :: T
|
|
logical, intent(in), optional :: active
|
|
|
|
|
|
tRot = merge(matmul(matmul(transpose(self%asMatrix()),T),self%asMatrix()), &
|
|
matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix())), &
|
|
misc_optional(active,.false.))
|
|
|
|
end function rotTensor2
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Rotate a rank-4 tensor passively (default) or actively.
|
|
!> @details: rotation is based on rotation matrix
|
|
!! ToDo: Need to check active/passive !!!
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function rotTensor4(self,T,active) result(tRot)
|
|
|
|
real(pReal), dimension(3,3,3,3) :: tRot
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), intent(in), dimension(3,3,3,3) :: T
|
|
logical, intent(in), optional :: active
|
|
|
|
real(pReal), dimension(3,3) :: R
|
|
integer :: i,j,k,l,m,n,o,p
|
|
|
|
R = merge(transpose(self%asMatrix()),self%asMatrix(),misc_optional(active,.false.))
|
|
|
|
tRot = 0.0_pReal
|
|
do i = 1,3;do j = 1,3;do k = 1,3;do l = 1,3
|
|
do m = 1,3;do n = 1,3;do o = 1,3;do p = 1,3
|
|
tRot(i,j,k,l) = tRot(i,j,k,l) &
|
|
+ R(i,m) * R(j,n) * R(k,o) * R(l,p) * T(m,n,o,p)
|
|
end do; end do; end do; end do; end do; end do; end do; end do
|
|
|
|
end function rotTensor4
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Rotate a rank-4 stiffness tensor in Voigt 6x6 notation passively (default) or actively.
|
|
!> @details: https://scicomp.stackexchange.com/questions/35600
|
|
!! ToDo: Need to check active/passive !!!
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function rotStiffness(self,C,active) result(cRot)
|
|
|
|
real(pReal), dimension(6,6) :: cRot
|
|
class(tRotation), intent(in) :: self
|
|
real(pReal), intent(in), dimension(6,6) :: C
|
|
logical, intent(in), optional :: active
|
|
|
|
real(pReal), dimension(3,3) :: R
|
|
real(pReal), dimension(6,6) :: M
|
|
|
|
|
|
R = merge(transpose(self%asMatrix()),self%asMatrix(),misc_optional(active,.false.))
|
|
|
|
M = reshape([R(1,1)**2, R(2,1)**2, R(3,1)**2, &
|
|
R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), &
|
|
R(1,2)**2, R(2,2)**2, R(3,2)**2, &
|
|
R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), &
|
|
R(1,3)**2, R(2,3)**2, R(3,3)**2, &
|
|
R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), &
|
|
2.0_pReal*R(1,2)*R(1,3), 2.0_pReal*R(2,2)*R(2,3), 2.0_pReal*R(3,2)*R(3,3), &
|
|
R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), &
|
|
2.0_pReal*R(1,3)*R(1,1), 2.0_pReal*R(2,3)*R(2,1), 2.0_pReal*R(3,3)*R(3,1), &
|
|
R(2,3)*R(3,1)+R(2,1)*R(3,3), R(1,3)*R(3,1)+R(1,1)*R(3,3), R(1,3)*R(2,1)+R(1,1)*R(2,3), &
|
|
2.0_pReal*R(1,1)*R(1,2), 2.0_pReal*R(2,1)*R(2,2), 2.0_pReal*R(3,1)*R(3,2), &
|
|
R(2,1)*R(3,2)+R(2,2)*R(3,1), R(1,1)*R(3,2)+R(1,2)*R(3,1), R(1,1)*R(2,2)+R(1,2)*R(2,1)],[6,6])
|
|
|
|
cRot = matmul(M,matmul(C,transpose(M)))
|
|
|
|
end function rotStiffness
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate misorientation.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure elemental function misorientation(self,other)
|
|
|
|
type(tRotation) :: misorientation
|
|
class(tRotation), intent(in) :: self, other
|
|
|
|
|
|
misorientation%q = multiplyQuaternion(other%q, conjugateQuaternion(self%q))
|
|
|
|
end function misorientation
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert unit quaternion to rotation matrix.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function qu2om(qu) result(om)
|
|
|
|
real(pReal), intent(in), dimension(4) :: qu
|
|
real(pReal), dimension(3,3) :: om
|
|
|
|
real(pReal) :: qq
|
|
|
|
|
|
qq = qu(1)**2-sum(qu(2:4)**2)
|
|
|
|
om(1,1) = qq+2.0_pReal*qu(2)**2
|
|
om(2,2) = qq+2.0_pReal*qu(3)**2
|
|
om(3,3) = qq+2.0_pReal*qu(4)**2
|
|
|
|
om(1,2) = 2.0_pReal*(qu(2)*qu(3)-qu(1)*qu(4))
|
|
om(2,3) = 2.0_pReal*(qu(3)*qu(4)-qu(1)*qu(2))
|
|
om(3,1) = 2.0_pReal*(qu(4)*qu(2)-qu(1)*qu(3))
|
|
om(2,1) = 2.0_pReal*(qu(3)*qu(2)+qu(1)*qu(4))
|
|
om(3,2) = 2.0_pReal*(qu(4)*qu(3)+qu(1)*qu(2))
|
|
om(1,3) = 2.0_pReal*(qu(2)*qu(4)+qu(1)*qu(3))
|
|
|
|
if (sign(1.0_pReal,P) < 0.0_pReal) om = transpose(om)
|
|
om = om/math_det33(om)**(1.0_pReal/3.0_pReal)
|
|
|
|
end function qu2om
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert unit quaternion to Bunge Euler angles.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function qu2eu(qu) result(eu)
|
|
|
|
real(pReal), intent(in), dimension(4) :: qu
|
|
real(pReal), dimension(3) :: eu
|
|
|
|
real(pReal) :: q12, q03, chi
|
|
|
|
|
|
q03 = qu(1)**2+qu(4)**2
|
|
q12 = qu(2)**2+qu(3)**2
|
|
chi = sqrt(q03*q12)
|
|
|
|
degenerated: if (dEq0(q12)) then
|
|
eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal]
|
|
elseif (dEq0(q03)) then
|
|
eu = [atan2( 2.0_pReal*qu(2)*qu(3),qu(2)**2-qu(3)**2), PI, 0.0_pReal]
|
|
else degenerated
|
|
eu = [atan2((-P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)-qu(3)*qu(4))*chi ), &
|
|
atan2( 2.0_pReal*chi, q03-q12 ), &
|
|
atan2(( P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)+qu(3)*qu(4))*chi )]
|
|
end if degenerated
|
|
where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU])
|
|
|
|
end function qu2eu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert unit quaternion to axis-angle pair.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function qu2ax(qu) result(ax)
|
|
|
|
real(pReal), intent(in), dimension(4) :: qu
|
|
real(pReal), dimension(4) :: ax
|
|
|
|
real(pReal) :: omega, s
|
|
|
|
|
|
if (dEq0(sum(qu(2:4)**2))) then
|
|
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] ! axis = [001]
|
|
elseif (dNeq0(qu(1))) then
|
|
s = sign(1.0_pReal,qu(1))/norm2(qu(2:4))
|
|
omega = 2.0_pReal * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal))
|
|
ax = [ qu(2)*s, qu(3)*s, qu(4)*s, omega ]
|
|
else
|
|
ax = [ qu(2), qu(3), qu(4), PI ]
|
|
end if
|
|
|
|
end function qu2ax
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Convert rotation matrix to unit quaternion.
|
|
!> @details the original formulation (direct conversion) had (numerical?) issues
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function om2qu(om) result(qu)
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: om
|
|
real(pReal), dimension(4) :: qu
|
|
|
|
real(pReal) :: trace,s
|
|
trace = math_trace33(om)
|
|
|
|
|
|
if (trace > 0.0_pReal) then
|
|
s = 0.5_pReal / sqrt(trace+1.0_pReal)
|
|
qu = [0.25_pReal/s, (om(3,2)-om(2,3))*s,(om(1,3)-om(3,1))*s,(om(2,1)-om(1,2))*s]
|
|
else
|
|
if ( om(1,1) > om(2,2) .and. om(1,1) > om(3,3) ) then
|
|
s = 2.0_pReal * sqrt( 1.0_pReal + om(1,1) - om(2,2) - om(3,3))
|
|
qu = [ (om(3,2) - om(2,3)) /s,0.25_pReal * s,(om(1,2) + om(2,1)) / s,(om(1,3) + om(3,1)) / s]
|
|
elseif (om(2,2) > om(3,3)) then
|
|
s = 2.0_pReal * sqrt( 1.0_pReal + om(2,2) - om(1,1) - om(3,3))
|
|
qu = [ (om(1,3) - om(3,1)) /s,(om(1,2) + om(2,1)) / s,0.25_pReal * s,(om(2,3) + om(3,2)) / s]
|
|
else
|
|
s = 2.0_pReal * sqrt( 1.0_pReal + om(3,3) - om(1,1) - om(2,2) )
|
|
qu = [ (om(2,1) - om(1,2)) /s,(om(1,3) + om(3,1)) / s,(om(2,3) + om(3,2)) / s,0.25_pReal * s]
|
|
end if
|
|
end if
|
|
if (sign(1.0_pReal,qu(1))<0.0_pReal) qu =-1.0_pReal * qu
|
|
qu(2:4) = merge(qu(2:4),qu(2:4)*P,dEq0(qu(2:4)))
|
|
qu = qu/norm2(qu)
|
|
|
|
end function om2qu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert orientation matrix to Bunge Euler angles.
|
|
!> @details Two step check for special cases to avoid invalid operations (not needed for python)
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function om2eu(om) result(eu)
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: om
|
|
real(pReal), dimension(3) :: eu
|
|
real(pReal) :: zeta
|
|
|
|
|
|
if (dNeq(abs(om(3,3)),1.0_pReal,1.e-8_pReal)) then
|
|
zeta = 1.0_pReal/sqrt(math_clip(1.0_pReal-om(3,3)**2,1e-64_pReal,1.0_pReal))
|
|
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
|
|
acos(math_clip(om(3,3),-1.0_pReal,1.0_pReal)), &
|
|
atan2(om(1,3)*zeta, om(2,3)*zeta)]
|
|
else
|
|
eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ]
|
|
end if
|
|
where(abs(eu) < 1.e-8_pReal) eu = 0.0_pReal
|
|
where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU])
|
|
|
|
end function om2eu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert orientation matrix to axis-angle pair.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function om2ax(om) result(ax)
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: om
|
|
real(pReal), dimension(4) :: ax
|
|
|
|
real(pReal) :: t
|
|
real(pReal), dimension(3) :: Wr, Wi
|
|
real(pReal), dimension((64+2)*3) :: work
|
|
real(pReal), dimension(3,3) :: VR, devNull, om_
|
|
integer :: ierr, i
|
|
|
|
|
|
om_ = om
|
|
|
|
! first get the rotation angle
|
|
t = 0.5_pReal * (math_trace33(om) - 1.0_pReal)
|
|
ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal))
|
|
|
|
if (dEq0(ax(4))) then
|
|
ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ]
|
|
else
|
|
call dgeev('N','V',3,om_,3,Wr,Wi,devNull,3,VR,3,work,size(work,1),ierr)
|
|
if (ierr /= 0) error stop 'LAPACK error'
|
|
i = findloc(cEq(cmplx(Wr,Wi,pReal),cmplx(1.0_pReal,0.0_pReal,pReal),tol=1.0e-14_pReal),.true.,dim=1) !find eigenvalue (1,0)
|
|
if (i == 0) error stop 'om2ax conversion failed'
|
|
ax(1:3) = VR(1:3,i)
|
|
where ( dNeq0([om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])) &
|
|
ax(1:3) = sign(ax(1:3),-P *[om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])
|
|
end if
|
|
|
|
end function om2ax
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert Bunge Euler angles to unit quaternion.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function eu2qu(eu) result(qu)
|
|
|
|
real(pReal), intent(in), dimension(3) :: eu
|
|
real(pReal), dimension(4) :: qu
|
|
real(pReal), dimension(3) :: ee
|
|
real(pReal) :: cPhi, sPhi
|
|
|
|
|
|
ee = 0.5_pReal*eu
|
|
|
|
cPhi = cos(ee(2))
|
|
sPhi = sin(ee(2))
|
|
|
|
qu = [ cPhi*cos(ee(1)+ee(3)), &
|
|
-P*sPhi*cos(ee(1)-ee(3)), &
|
|
-P*sPhi*sin(ee(1)-ee(3)), &
|
|
-P*cPhi*sin(ee(1)+ee(3))]
|
|
if (sign(1.0_pReal,qu(1)) < 0.0_pReal) qu = qu * (-1.0_pReal)
|
|
|
|
end function eu2qu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert Euler angles to orientation matrix.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function eu2om(eu) result(om)
|
|
|
|
real(pReal), intent(in), dimension(3) :: eu
|
|
real(pReal), dimension(3,3) :: om
|
|
|
|
real(pReal), dimension(3) :: c, s
|
|
|
|
|
|
c = cos(eu)
|
|
s = sin(eu)
|
|
|
|
om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2)
|
|
om(2,1) = -c(1)*s(3)-s(1)*c(3)*c(2)
|
|
om(3,1) = s(1)*s(2)
|
|
om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2)
|
|
om(2,2) = -s(1)*s(3)+c(1)*c(3)*c(2)
|
|
om(3,2) = -c(1)*s(2)
|
|
om(1,3) = s(3)*s(2)
|
|
om(2,3) = c(3)*s(2)
|
|
om(3,3) = c(2)
|
|
|
|
where(abs(om)<1.0e-12_pReal) om = 0.0_pReal
|
|
|
|
end function eu2om
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert Bunge Euler angles to axis-angle pair.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function eu2ax(eu) result(ax)
|
|
|
|
real(pReal), intent(in), dimension(3) :: eu
|
|
real(pReal), dimension(4) :: ax
|
|
|
|
real(pReal) :: t, delta, tau, alpha, sigma
|
|
|
|
|
|
t = tan(eu(2)*0.5_pReal)
|
|
sigma = 0.5_pReal*(eu(1)+eu(3))
|
|
delta = 0.5_pReal*(eu(1)-eu(3))
|
|
tau = sqrt(t**2+sin(sigma)**2)
|
|
|
|
alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal))
|
|
|
|
if (dEq0(alpha)) then ! return a default identity axis-angle pair
|
|
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
|
else
|
|
ax(1:3) = -P/tau * [ t*cos(delta), t*sin(delta), sin(sigma) ] ! passive axis-angle pair so a minus sign in front
|
|
ax(4) = alpha
|
|
if (sign(1.0_pReal,alpha) < 0.0_pReal) ax = -ax ! ensure alpha is positive
|
|
end if
|
|
|
|
end function eu2ax
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert axis-angle pair to unit quaternion.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function ax2qu(ax) result(qu)
|
|
|
|
real(pReal), intent(in), dimension(4) :: ax
|
|
real(pReal), dimension(4) :: qu
|
|
|
|
real(pReal) :: c, s
|
|
|
|
|
|
if (dEq0(ax(4))) then
|
|
qu = [ 1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
|
else
|
|
c = cos(ax(4)*0.5_pReal)
|
|
s = sin(ax(4)*0.5_pReal)
|
|
qu = [ c, ax(1)*s, ax(2)*s, ax(3)*s ]
|
|
end if
|
|
|
|
end function ax2qu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert axis-angle pair to orientation matrix.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function ax2om(ax) result(om)
|
|
|
|
real(pReal), intent(in), dimension(4) :: ax
|
|
real(pReal), dimension(3,3) :: om
|
|
|
|
real(pReal) :: q, c, s, omc
|
|
|
|
|
|
c = cos(ax(4))
|
|
s = sin(ax(4))
|
|
omc = 1.0_pReal-c
|
|
|
|
om(1,1) = ax(1)**2*omc + c
|
|
om(2,2) = ax(2)**2*omc + c
|
|
om(3,3) = ax(3)**2*omc + c
|
|
|
|
q = omc*ax(1)*ax(2)
|
|
om(1,2) = q + s*ax(3)
|
|
om(2,1) = q - s*ax(3)
|
|
|
|
q = omc*ax(2)*ax(3)
|
|
om(2,3) = q + s*ax(1)
|
|
om(3,2) = q - s*ax(1)
|
|
|
|
q = omc*ax(3)*ax(1)
|
|
om(3,1) = q + s*ax(2)
|
|
om(1,3) = q - s*ax(2)
|
|
|
|
if (P > 0.0_pReal) om = transpose(om)
|
|
|
|
end function ax2om
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @brief Convert axis-angle pair to Bunge Euler angles.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function ax2eu(ax) result(eu)
|
|
|
|
real(pReal), intent(in), dimension(4) :: ax
|
|
real(pReal), dimension(3) :: eu
|
|
|
|
|
|
eu = om2eu(ax2om(ax))
|
|
|
|
end function ax2eu
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Multiply two quaternions.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function multiplyQuaternion(qu1,qu2)
|
|
|
|
real(pReal), dimension(4), intent(in) :: qu1, qu2
|
|
real(pReal), dimension(4) :: multiplyQuaternion
|
|
|
|
|
|
multiplyQuaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4)
|
|
multiplyQuaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3))
|
|
multiplyQuaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4))
|
|
multiplyQuaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2))
|
|
|
|
end function multiplyQuaternion
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate conjugate complex of a quaternion.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function conjugateQuaternion(qu)
|
|
|
|
real(pReal), dimension(4), intent(in) :: qu
|
|
real(pReal), dimension(4) :: conjugateQuaternion
|
|
|
|
|
|
conjugateQuaternion = [qu(1), -qu(2), -qu(3), -qu(4)]
|
|
|
|
end function conjugateQuaternion
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Check correctness of some rotations functions.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine selfTest()
|
|
|
|
type(tRotation) :: R
|
|
real(pReal), dimension(4) :: qu
|
|
real(pReal), dimension(3) :: x, eu, v3
|
|
real(pReal), dimension(3,3) :: om, t33
|
|
real(pReal), dimension(3,3,3,3) :: t3333
|
|
real(pReal), dimension(6,6) :: C
|
|
real(pReal) :: A,B
|
|
integer :: i
|
|
|
|
|
|
do i = 1, 20
|
|
|
|
if (i==1) then
|
|
qu = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal]
|
|
elseif (i==2) then
|
|
qu = [1.0_pReal,-0.0_pReal,-0.0_pReal,-0.0_pReal]
|
|
elseif (i==3) then
|
|
qu = [0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal]
|
|
elseif (i==4) then
|
|
qu = [0.0_pReal,0.0_pReal,1.0_pReal,0.0_pReal]
|
|
elseif (i==5) then
|
|
qu = [0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal]
|
|
else
|
|
call random_number(x)
|
|
A = sqrt(x(3))
|
|
B = sqrt(1-0_pReal -x(3))
|
|
qu = [cos(TAU*x(1))*A,&
|
|
sin(TAU*x(2))*B,&
|
|
cos(TAU*x(2))*B,&
|
|
sin(TAU*x(1))*A]
|
|
if (qu(1)<0.0_pReal) qu = qu * (-1.0_pReal)
|
|
end if
|
|
|
|
|
|
if (.not. quaternion_equal(om2qu(qu2om(qu)),qu)) error stop 'om2qu2om'
|
|
if (.not. quaternion_equal(eu2qu(qu2eu(qu)),qu)) error stop 'eu2qu2eu'
|
|
if (.not. quaternion_equal(ax2qu(qu2ax(qu)),qu)) error stop 'ax2qu2ax'
|
|
|
|
om = qu2om(qu)
|
|
if (.not. quaternion_equal(om2qu(eu2om(om2eu(om))),qu)) error stop 'eu2om2eu'
|
|
if (.not. quaternion_equal(om2qu(ax2om(om2ax(om))),qu)) error stop 'ax2om2ax'
|
|
|
|
eu = qu2eu(qu)
|
|
if (.not. quaternion_equal(eu2qu(ax2eu(eu2ax(eu))),qu)) error stop 'ax2eu2ax'
|
|
|
|
call R%fromMatrix(om)
|
|
|
|
call random_number(v3)
|
|
if (any(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) &
|
|
error stop 'rotVector'
|
|
|
|
call random_number(t33)
|
|
if (any(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) &
|
|
error stop 'rotTensor2'
|
|
|
|
call random_number(t3333)
|
|
if (any(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) &
|
|
error stop 'rotTensor4'
|
|
|
|
call random_number(C)
|
|
C = C+transpose(C)
|
|
if (any(dNeq(R%rotStiffness(C), &
|
|
math_3333toVoigt66_stiffness(R%rotate(math_Voigt66to3333_stiffness(C))),1.0e-12_pReal))) &
|
|
error stop 'rotStiffness'
|
|
|
|
call R%fromQuaternion(qu * (1.0_pReal + merge(+5.e-9_pReal,-5.e-9_pReal, mod(i,2) == 0))) ! allow reasonable tolerance for ASCII/YAML
|
|
|
|
end do
|
|
|
|
contains
|
|
|
|
pure recursive function quaternion_equal(qu1,qu2) result(ok)
|
|
|
|
real(pReal), intent(in), dimension(4) :: qu1,qu2
|
|
logical :: ok
|
|
|
|
ok = all(dEq(qu1,qu2,1.0e-7_pReal))
|
|
if (dEq0(qu1(1),1.0e-12_pReal)) &
|
|
ok = ok .or. all(dEq(-1.0_pReal*qu1,qu2,1.0e-7_pReal))
|
|
|
|
end function quaternion_equal
|
|
|
|
end subroutine selfTest
|
|
|
|
|
|
end module rotations
|