DAMASK_EICMD/code/homogenization.f90

1372 lines
69 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec, only: &
#ifdef FEM
tOutputData, &
#endif
pInt, &
pReal
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
implicit none
private
real(pReal), dimension(:,:,:,:), allocatable, public :: &
materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
materialpoint_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
materialpoint_dPdF !< tangent of first P--K stress at IP
#ifdef FEM
type(tOutputData), dimension(:), allocatable, public :: &
homogOutput
type(tOutputData), dimension(:,:), allocatable, public :: &
crystalliteOutput, &
phaseOutput
#else
real(pReal), dimension(:,:,:), allocatable, public :: &
materialpoint_results !< results array of material point
#endif
integer(pInt), public, protected :: &
materialpoint_sizeResults, &
homogenization_maxSizePostResults, &
thermal_maxSizePostResults, &
damage_maxSizePostResults, &
vacancyflux_maxSizePostResults, &
porosity_maxSizePostResults, &
hydrogenflux_maxSizePostResults
real(pReal), dimension(:,:,:,:), allocatable, private :: &
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment
materialpoint_subF !< def grad of IP to be reached at end of homog inc
real(pReal), dimension(:,:), allocatable, private :: &
materialpoint_subFrac, &
materialpoint_subStep, &
materialpoint_subdt
logical, dimension(:,:), allocatable, private :: &
materialpoint_requested, &
materialpoint_converged
logical, dimension(:,:,:), allocatable, private :: &
materialpoint_doneAndHappy
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
private :: &
homogenization_partitionDeformation, &
homogenization_updateState, &
homogenization_averageStressAndItsTangent, &
homogenization_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: &
math_I3
use debug, only: &
debug_level, &
debug_homogenization, &
debug_levelBasic, &
debug_e, &
debug_g
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
#ifdef FEM
use crystallite, only: &
crystallite_sizePostResults
#else
use constitutive, only: &
constitutive_plasticity_maxSizePostResults, &
constitutive_source_maxSizePostResults
use crystallite, only: &
crystallite_maxSizePostResults
#endif
use material
use homogenization_none
use homogenization_isostrain
use homogenization_RGC
use thermal_isothermal
use thermal_adiabatic
use thermal_conduction
use damage_none
use damage_local
use damage_nonlocal
use vacancyflux_isoconc
use vacancyflux_isochempot
use vacancyflux_cahnhilliard
use porosity_none
use porosity_phasefield
use hydrogenflux_isoconc
use hydrogenflux_cahnhilliard
use IO
use numerics, only: &
worldrank
implicit none
integer(pInt), parameter :: FILEUNIT = 200_pInt
integer(pInt) :: e,i,p
integer(pInt), dimension(:,:), pointer :: thisSize
integer(pInt), dimension(:) , pointer :: thisNoutput
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
logical :: knownHomogenization, knownThermal, knownDamage, knownVacancyflux, knownPorosity, knownHydrogenflux
!--------------------------------------------------------------------------------------------------
! open material.config
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
!--------------------------------------------------------------------------------------------------
! parse homogenization from config file
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) &
call homogenization_none_init()
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) &
call homogenization_isostrain_init(FILEUNIT)
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) &
call homogenization_RGC_init(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! parse thermal from config file
call IO_checkAndRewind(FILEUNIT)
if (any(thermal_type == THERMAL_isothermal_ID)) &
call thermal_isothermal_init()
if (any(thermal_type == THERMAL_adiabatic_ID)) &
call thermal_adiabatic_init(FILEUNIT)
if (any(thermal_type == THERMAL_conduction_ID)) &
call thermal_conduction_init(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! parse damage from config file
call IO_checkAndRewind(FILEUNIT)
if (any(damage_type == DAMAGE_none_ID)) &
call damage_none_init()
if (any(damage_type == DAMAGE_local_ID)) &
call damage_local_init(FILEUNIT)
if (any(damage_type == DAMAGE_nonlocal_ID)) &
call damage_nonlocal_init(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! parse vacancy transport from config file
call IO_checkAndRewind(FILEUNIT)
if (any(vacancyflux_type == VACANCYFLUX_isoconc_ID)) &
call vacancyflux_isoconc_init()
if (any(vacancyflux_type == VACANCYFLUX_isochempot_ID)) &
call vacancyflux_isochempot_init(FILEUNIT)
if (any(vacancyflux_type == VACANCYFLUX_cahnhilliard_ID)) &
call vacancyflux_cahnhilliard_init(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! parse porosity from config file
call IO_checkAndRewind(FILEUNIT)
if (any(porosity_type == POROSITY_none_ID)) &
call porosity_none_init()
if (any(porosity_type == POROSITY_phasefield_ID)) &
call porosity_phasefield_init(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! parse hydrogen transport from config file
call IO_checkAndRewind(FILEUNIT)
if (any(hydrogenflux_type == HYDROGENFLUX_isoconc_ID)) &
call hydrogenflux_isoconc_init()
if (any(hydrogenflux_type == HYDROGENFLUX_cahnhilliard_ID)) &
call hydrogenflux_cahnhilliard_init(FILEUNIT)
close(FILEUNIT)
!--------------------------------------------------------------------------------------------------
! write description file for homogenization output
mainProcess2: if (worldrank == 0) then
call IO_write_jobFile(FILEUNIT,'outputHomogenization')
do p = 1,material_Nhomogenization
if (any(material_homog == p)) then
i = homogenization_typeInstance(p) ! which instance of this homogenization type
knownHomogenization = .true. ! assume valid
select case(homogenization_type(p)) ! split per homogenization type
case (HOMOGENIZATION_NONE_ID)
outputName = HOMOGENIZATION_NONE_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (HOMOGENIZATION_ISOSTRAIN_ID)
outputName = HOMOGENIZATION_ISOSTRAIN_label
thisNoutput => homogenization_isostrain_Noutput
thisOutput => homogenization_isostrain_output
thisSize => homogenization_isostrain_sizePostResult
case (HOMOGENIZATION_RGC_ID)
outputName = HOMOGENIZATION_RGC_label
thisNoutput => homogenization_RGC_Noutput
thisOutput => homogenization_RGC_output
thisSize => homogenization_RGC_sizePostResult
case default
knownHomogenization = .false.
end select
write(FILEUNIT,'(/,a,/)') '['//trim(homogenization_name(p))//']'
if (knownHomogenization) then
write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName)
write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
if (homogenization_type(p) /= HOMOGENIZATION_NONE_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = thermal_typeInstance(p) ! which instance of this thermal type
knownThermal = .true. ! assume valid
select case(thermal_type(p)) ! split per thermal type
case (THERMAL_isothermal_ID)
outputName = THERMAL_isothermal_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (THERMAL_adiabatic_ID)
outputName = THERMAL_adiabatic_label
thisNoutput => thermal_adiabatic_Noutput
thisOutput => thermal_adiabatic_output
thisSize => thermal_adiabatic_sizePostResult
case (THERMAL_conduction_ID)
outputName = THERMAL_conduction_label
thisNoutput => thermal_conduction_Noutput
thisOutput => thermal_conduction_output
thisSize => thermal_conduction_sizePostResult
case default
knownThermal = .false.
end select
if (knownThermal) then
write(FILEUNIT,'(a)') '(thermal)'//char(9)//trim(outputName)
if (thermal_type(p) /= THERMAL_isothermal_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = damage_typeInstance(p) ! which instance of this damage type
knownDamage = .true. ! assume valid
select case(damage_type(p)) ! split per damage type
case (DAMAGE_none_ID)
outputName = DAMAGE_none_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (DAMAGE_local_ID)
outputName = DAMAGE_local_label
thisNoutput => damage_local_Noutput
thisOutput => damage_local_output
thisSize => damage_local_sizePostResult
case (DAMAGE_nonlocal_ID)
outputName = DAMAGE_nonlocal_label
thisNoutput => damage_nonlocal_Noutput
thisOutput => damage_nonlocal_output
thisSize => damage_nonlocal_sizePostResult
case default
knownDamage = .false.
end select
if (knownDamage) then
write(FILEUNIT,'(a)') '(damage)'//char(9)//trim(outputName)
if (damage_type(p) /= DAMAGE_none_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = vacancyflux_typeInstance(p) ! which instance of this vacancy flux type
knownVacancyflux = .true. ! assume valid
select case(vacancyflux_type(p)) ! split per vacancy flux type
case (VACANCYFLUX_isoconc_ID)
outputName = VACANCYFLUX_isoconc_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (VACANCYFLUX_isochempot_ID)
outputName = VACANCYFLUX_isochempot_label
thisNoutput => vacancyflux_isochempot_Noutput
thisOutput => vacancyflux_isochempot_output
thisSize => vacancyflux_isochempot_sizePostResult
case (VACANCYFLUX_cahnhilliard_ID)
outputName = VACANCYFLUX_cahnhilliard_label
thisNoutput => vacancyflux_cahnhilliard_Noutput
thisOutput => vacancyflux_cahnhilliard_output
thisSize => vacancyflux_cahnhilliard_sizePostResult
case default
knownVacancyflux = .false.
end select
if (knownVacancyflux) then
write(FILEUNIT,'(a)') '(vacancyflux)'//char(9)//trim(outputName)
if (vacancyflux_type(p) /= VACANCYFLUX_isoconc_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = porosity_typeInstance(p) ! which instance of this porosity type
knownPorosity = .true. ! assume valid
select case(porosity_type(p)) ! split per porosity type
case (POROSITY_none_ID)
outputName = POROSITY_none_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (POROSITY_phasefield_ID)
outputName = POROSITY_phasefield_label
thisNoutput => porosity_phasefield_Noutput
thisOutput => porosity_phasefield_output
thisSize => porosity_phasefield_sizePostResult
case default
knownPorosity = .false.
end select
if (knownPorosity) then
write(FILEUNIT,'(a)') '(porosity)'//char(9)//trim(outputName)
if (porosity_type(p) /= POROSITY_none_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = hydrogenflux_typeInstance(p) ! which instance of this hydrogen flux type
knownHydrogenflux = .true. ! assume valid
select case(hydrogenflux_type(p)) ! split per hydrogen flux type
case (HYDROGENFLUX_isoconc_ID)
outputName = HYDROGENFLUX_isoconc_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (HYDROGENFLUX_cahnhilliard_ID)
outputName = HYDROGENFLUX_cahnhilliard_label
thisNoutput => hydrogenflux_cahnhilliard_Noutput
thisOutput => hydrogenflux_cahnhilliard_output
thisSize => hydrogenflux_cahnhilliard_sizePostResult
case default
knownHydrogenflux = .false.
end select
if (knownHydrogenflux) then
write(FILEUNIT,'(a)') '(hydrogenflux)'//char(9)//trim(outputName)
if (hydrogenflux_type(p) /= HYDROGENFLUX_isoconc_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
endif
enddo
close(FILEUNIT)
endif mainProcess2
!--------------------------------------------------------------------------------------------------
! allocate and initialize global variables
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems) ! initialize to identity
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
materialpoint_F = materialpoint_F0 ! initialize to identity
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems), source=.false.)
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems), source=.true.)
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems), source=.true.)
!--------------------------------------------------------------------------------------------------
! allocate and initialize global state and postresutls variables
homogenization_maxSizePostResults = 0_pInt
thermal_maxSizePostResults = 0_pInt
damage_maxSizePostResults = 0_pInt
vacancyflux_maxSizePostResults = 0_pInt
porosity_maxSizePostResults = 0_pInt
hydrogenflux_maxSizePostResults = 0_pInt
do p = 1,material_Nhomogenization
homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState (p)%sizePostResults)
thermal_maxSizePostResults = max(thermal_maxSizePostResults, thermalState (p)%sizePostResults)
damage_maxSizePostResults = max(damage_maxSizePostResults ,damageState (p)%sizePostResults)
vacancyflux_maxSizePostResults = max(vacancyflux_maxSizePostResults ,vacancyfluxState (p)%sizePostResults)
porosity_maxSizePostResults = max(porosity_maxSizePostResults ,porosityState (p)%sizePostResults)
hydrogenflux_maxSizePostResults = max(hydrogenflux_maxSizePostResults ,hydrogenfluxState(p)%sizePostResults)
enddo
#ifdef FEM
allocate(homogOutput (material_Nhomogenization ))
allocate(crystalliteOutput(material_Ncrystallite, homogenization_maxNgrains))
allocate(phaseOutput (material_Nphase, homogenization_maxNgrains))
do p = 1, material_Nhomogenization
homogOutput(p)%sizeResults = homogState (p)%sizePostResults + &
thermalState (p)%sizePostResults + &
damageState (p)%sizePostResults + &
vacancyfluxState (p)%sizePostResults + &
porosityState (p)%sizePostResults + &
hydrogenfluxState(p)%sizePostResults
homogOutput(p)%sizeIpCells = count(material_homog==p)
allocate(homogOutput(p)%output(homogOutput(p)%sizeResults,homogOutput(p)%sizeIpCells))
enddo
do p = 1, material_Ncrystallite; do e = 1, homogenization_maxNgrains
crystalliteOutput(p,e)%sizeResults = crystallite_sizePostResults(p)
crystalliteOutput(p,e)%sizeIpCells = count(microstructure_crystallite(mesh_element(4,:)) == p .and. &
homogenization_Ngrains (mesh_element(3,:)) >= e)*mesh_maxNips
allocate(crystalliteOutput(p,e)%output(crystalliteOutput(p,e)%sizeResults,crystalliteOutput(p,e)%sizeIpCells))
enddo; enddo
do p = 1, material_Nphase; do e = 1, homogenization_maxNgrains
phaseOutput(p,e)%sizeResults = plasticState (p)%sizePostResults + &
sum(sourceState (p)%p(:)%sizePostResults)
phaseOutput(p,e)%sizeIpCells = count(material_phase(e,:,:) == p)
allocate(phaseOutput(p,e)%output(phaseOutput(p,e)%sizeResults,phaseOutput(p,e)%sizeIpCells))
enddo; enddo
#else
materialpoint_sizeResults = 1 & ! grain count
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
+ thermal_maxSizePostResults &
+ damage_maxSizePostResults &
+ vacancyflux_maxSizePostResults &
+ porosity_maxSizePostResults &
+ hydrogenflux_maxSizePostResults &
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
+ 1 + constitutive_plasticity_maxSizePostResults & ! constitutive size & constitutive results
+ constitutive_source_maxSizePostResults)
allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
#ifdef TODO
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0)
write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0)
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state)
#endif
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
#ifndef FEM
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_results: ', shape(materialpoint_results)
#endif
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
endif
flush(6)
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) &
call IO_error(602_pInt,ext_msg='component (grain)')
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
use numerics, only: &
subStepMinHomog, &
subStepSizeHomog, &
stepIncreaseHomog, &
nHomog, &
nMPstate
use math, only: &
math_transpose33
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP, &
terminallyIll
use mesh, only: &
mesh_element
use material, only: &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
porosityState, &
hydrogenfluxState, &
phase_Nsources, &
mappingHomogenization, &
phaseAt, phasememberAt, &
homogenization_Ngrains
use crystallite, only: &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Fi0, &
crystallite_Fi, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Li0, &
crystallite_Li, &
crystallite_dPdF, &
crystallite_dPdF0, &
crystallite_Tstar0_v, &
crystallite_Tstar_v, &
crystallite_partionedF0, &
crystallite_partionedF, &
crystallite_partionedFp0, &
crystallite_partionedLp0, &
crystallite_partionedFi0, &
crystallite_partionedLi0, &
crystallite_partioneddPdF0, &
crystallite_partionedTstar0_v, &
crystallite_dt, &
crystallite_requested, &
crystallite_converged, &
crystallite_stressAndItsTangent, &
crystallite_orientations
use debug, only: &
debug_level, &
debug_homogenization, &
debug_levelBasic, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_MaterialpointLoopDistribution, &
debug_MaterialpointStateLoopDistribution
implicit none
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: updateJaco !< initiating Jacobian update
integer(pInt) :: &
NiterationHomog, &
NiterationMPstate, &
g, & !< grain number
i, & !< integration point number
e, & !< element number
mySource, &
myNgrains
!--------------------------------------------------------------------------------------------------
! initialize to starting condition
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e))
!$OMP END CRITICAL (write2out)
endif
!--------------------------------------------------------------------------------------------------
! initialize restoration points of ...
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do g = 1,myNgrains
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%state0( :,phasememberAt(g,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%state0( :,phasememberAt(g,i,e))
enddo
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) ! ...intermediate def grads
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) ! ...intermediate velocity grads
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads
crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e) ! ...2nd PK stress
enddo; enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e))
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
materialpoint_subFrac(i,e) = 0.0_pReal
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
endforall
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal damage state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
vacancyfluxState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal vacancy transport state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
porosityState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal porosity state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
hydrogenfluxState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal hydrogen transport state
enddo
NiterationHomog = 0_pInt
cutBackLooping: do while (.not. terminallyIll .and. &
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
converged: if ( materialpoint_converged(i,e) ) then
#ifndef _OPENMP
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
endif
#endif
!---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
!$OMP FLUSH(materialpoint_subFrac)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
!$OMP FLUSH(materialpoint_subStep)
steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
! wind forward grain starting point of...
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Li(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = &
crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
do g = 1,myNgrains
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e))
enddo
enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal damage state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
vacancyfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal vacancy transport state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
porosityState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal porosity state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
hydrogenfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal hydrogen transport state
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
!$OMP FLUSH(materialpoint_subF0)
elseif (materialpoint_requested(i,e)) then steppingNeeded ! already at final time (??)
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionHomog)
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
!$OMP END CRITICAL (distributionHomog)
endif
endif steppingNeeded
else converged
if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense
!$OMP FLUSH(terminallyIll)
if (.not. terminallyIll) then ! so first signals terminally ill...
!$OMP CRITICAL (write2out)
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
!$OMP END CRITICAL (write2out)
endif
!$OMP CRITICAL (setTerminallyIll)
terminallyIll = .true. ! ...and kills all others
!$OMP END CRITICAL (setTerminallyIll)
else ! cutback makes sense
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
!$OMP FLUSH(materialpoint_subStep)
#ifndef _OPENMP
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
materialpoint_subStep(i,e),' at el ip',e,i
endif
#endif
!--------------------------------------------------------------------------------------------------
! restore...
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = &
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
crystallite_Tstar_v(1:6,1:myNgrains,i,e) = &
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
do g = 1, myNgrains
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e))
enddo
enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
homogState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
thermalState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
damageState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal damage state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
vacancyfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal vacancy transport state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
porosityState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal porosity state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
hydrogenfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal hydrogen transport state
endif
endif converged
if (materialpoint_subStep(i,e) > subStepMinHomog) then
materialpoint_requested(i,e) = .true.
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0_pInt
convergenceLooping: do while (.not. terminallyIll .and. &
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < nMPstate)
NiterationMPstate = NiterationMPstate + 1
!--------------------------------------------------------------------------------------------------
! deformation partitioning
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
! results in crystallite_partionedF
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. & ! process requested but...
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! crystallite integration
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
!--------------------------------------------------------------------------------------------------
! state update
!$OMP PARALLEL DO
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. &
.not. materialpoint_doneAndHappy(1,i,e)) then
if (.not. all(crystallite_converged(:,i,e))) then
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
materialpoint_converged(i,e) = .false.
else
materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy
endif
!$OMP FLUSH(materialpoint_converged)
if (materialpoint_converged(i,e)) then
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionMPState)
debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt
!$OMP END CRITICAL (distributionMPState)
endif
endif
endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping
NiterationHomog = NiterationHomog + 1_pInt
enddo cutBackLooping
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
call homogenization_averageStressAndItsTangent(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
else
!$OMP CRITICAL (write2out)
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
!$OMP END CRITICAL (write2out)
endif
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of result array at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_postResults
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element
use material, only: &
mappingHomogenization, &
#ifdef FEM
phaseAt, phasememberAt, &
homogenization_maxNgrains, &
material_Ncrystallite, &
material_Nphase, &
#else
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
porosityState, &
hydrogenfluxState, &
#endif
plasticState, &
sourceState, &
material_phase, &
homogenization_Ngrains, &
microstructure_crystallite
use constitutive, only: &
#ifdef FEM
constitutive_plasticity_maxSizePostResults, &
constitutive_source_maxSizePostResults, &
#endif
constitutive_postResults
use crystallite, only: &
#ifdef FEM
crystallite_maxSizePostResults, &
#endif
crystallite_sizePostResults, &
crystallite_postResults
implicit none
integer(pInt) :: &
thePos, &
theSize, &
myNgrains, &
myCrystallite, &
g, & !< grain number
i, & !< integration point number
e !< element number
#ifdef FEM
integer(pInt) :: &
myHomog, &
myPhase, &
crystalliteCtr(material_Ncrystallite, homogenization_maxNgrains), &
phaseCtr (material_Nphase, homogenization_maxNgrains)
real(pReal), dimension(1+crystallite_maxSizePostResults + &
1+constitutive_plasticity_maxSizePostResults + &
constitutive_source_maxSizePostResults) :: &
crystalliteResults
crystalliteCtr = 0_pInt; phaseCtr = 0_pInt
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
myCrystallite = microstructure_crystallite(mesh_element(4,e))
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
myHomog = mappingHomogenization(2,i,e)
thePos = mappingHomogenization(1,i,e)
homogOutput(myHomog)%output(1: &
homogOutput(myHomog)%sizeResults, &
thePos) = homogenization_postResults(i,e)
grainLooping :do g = 1,myNgrains
myPhase = phaseAt(g,i,e)
crystalliteResults(1:1+crystallite_sizePostResults(myCrystallite) + &
1+plasticState(myPhase)%sizePostResults + &
sum(sourceState(myPhase)%p(:)%sizePostResults)) = crystallite_postResults(g,i,e)
if (microstructure_crystallite(mesh_element(4,e)) == myCrystallite .and. &
homogenization_Ngrains (mesh_element(3,e)) >= g) then
crystalliteCtr(myCrystallite,g) = crystalliteCtr(myCrystallite,g) + 1_pInt
crystalliteOutput(myCrystallite,g)% &
output(1:crystalliteOutput(myCrystallite,g)%sizeResults,crystalliteCtr(myCrystallite,g)) = &
crystalliteResults(2:1+crystalliteOutput(myCrystallite,g)%sizeResults)
endif
if (material_phase(g,i,e) == myPhase) then
phaseCtr(myPhase,g) = phaseCtr(myPhase,g) + 1_pInt
phaseOutput(myPhase,g)% &
output(1:phaseOutput(myPhase,g)%sizeResults,phaseCtr(myPhase,g)) = &
crystalliteResults(3 + crystalliteOutput(myCrystallite,g)%sizeResults: &
1 + crystalliteOutput(myCrystallite,g)%sizeResults + &
1 + plasticState (myphase)%sizePostResults + &
sum(sourceState(myphase)%p(:)%sizePostResults))
endif
enddo grainLooping
enddo IpLooping
enddo elementLooping
#else
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
myCrystallite = microstructure_crystallite(mesh_element(4,e))
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
thePos = 0_pInt
theSize = homogState (mappingHomogenization(2,i,e))%sizePostResults &
+ thermalState (mappingHomogenization(2,i,e))%sizePostResults &
+ damageState (mappingHomogenization(2,i,e))%sizePostResults &
+ vacancyfluxState (mappingHomogenization(2,i,e))%sizePostResults &
+ porosityState (mappingHomogenization(2,i,e))%sizePostResults &
+ hydrogenfluxState(mappingHomogenization(2,i,e))%sizePostResults
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
thePos = thePos + 1_pInt
if (theSize > 0_pInt) then ! any homogenization results to mention?
materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results
thePos = thePos + theSize
endif
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
thePos = thePos + 1_pInt
grainLooping :do g = 1,myNgrains
theSize = 1 + crystallite_sizePostResults(myCrystallite) + &
1 + plasticState (material_phase(g,i,e))%sizePostResults + & !ToDo
sum(sourceState(material_phase(g,i,e))%p(:)%sizePostResults)
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results
thePos = thePos + theSize
enddo grainLooping
enddo IpLooping
enddo elementLooping
!$OMP END PARALLEL DO
#endif
end subroutine materialpoint_postResults
!--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_partitionDeformation(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
homogenization_maxNgrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: &
crystallite_partionedF
use homogenization_isostrain, only: &
homogenization_isostrain_partitionDeformation
use homogenization_RGC, only: &
homogenization_RGC_partitionDeformation
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el) = 0.0_pReal
crystallite_partionedF(1:3,1:3,1:1,ip,el) = &
spread(materialpoint_subF(1:3,1:3,ip,el),3,1)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call homogenization_isostrain_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
materialpoint_subF(1:3,1:3,ip,el),&
el)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call homogenization_RGC_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
materialpoint_subF(1:3,1:3,ip,el),&
ip, &
el)
end select chosenHomogenization
end subroutine homogenization_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_updateState(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
thermal_type, &
damage_type, &
vacancyflux_type, &
homogenization_maxNgrains, &
HOMOGENIZATION_RGC_ID, &
THERMAL_adiabatic_ID, &
DAMAGE_local_ID, &
VACANCYFLUX_isochempot_ID
use crystallite, only: &
crystallite_P, &
crystallite_dPdF, &
crystallite_partionedF,&
crystallite_partionedF0
use homogenization_RGC, only: &
homogenization_RGC_updateState
use thermal_adiabatic, only: &
thermal_adiabatic_updateState
use damage_local, only: &
damage_local_updateState
use vacancyflux_isochempot, only: &
vacancyflux_isochempot_updateState
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: homogenization_updateState
homogenization_updateState = .true.
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
homogenization_updateState = &
homogenization_updateState .and. &
homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
materialpoint_subdt(ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
ip, &
el)
end select chosenHomogenization
chosenThermal: select case (thermal_type(mesh_element(3,el)))
case (THERMAL_adiabatic_ID) chosenThermal
homogenization_updateState = &
homogenization_updateState .and. &
thermal_adiabatic_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenThermal
chosenDamage: select case (damage_type(mesh_element(3,el)))
case (DAMAGE_local_ID) chosenDamage
homogenization_updateState = &
homogenization_updateState .and. &
damage_local_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenDamage
chosenVacancyflux: select case (vacancyflux_type(mesh_element(3,el)))
case (VACANCYFLUX_isochempot_ID) chosenVacancyflux
homogenization_updateState = &
homogenization_updateState .and. &
vacancyflux_isochempot_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenVacancyflux
end function homogenization_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_averageStressAndItsTangent(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
homogenization_maxNgrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: &
crystallite_P,crystallite_dPdF
use homogenization_isostrain, only: &
homogenization_isostrain_averageStressAndItsTangent
use homogenization_RGC, only: &
homogenization_RGC_averageStressAndItsTangent
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = sum(crystallite_P(1:3,1:3,1:1,ip,el),3)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) &
= sum(crystallite_dPdF(1:3,1:3,1:3,1:3,1:1,ip,el),5)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call homogenization_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
el)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call homogenization_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
el)
end select chosenHomogenization
end subroutine homogenization_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only,
!> if homogenization_sizePostResults(i,e) > 0 !!
!--------------------------------------------------------------------------------------------------
function homogenization_postResults(ip,el)
use mesh, only: &
mesh_element
use material, only: &
mappingHomogenization, &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
porosityState, &
hydrogenfluxState, &
homogenization_type, &
thermal_type, &
damage_type, &
vacancyflux_type, &
porosity_type, &
hydrogenflux_type, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID, &
THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID, &
DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID, &
VACANCYFLUX_isoconc_ID, &
VACANCYFLUX_isochempot_ID, &
VACANCYFLUX_cahnhilliard_ID, &
POROSITY_none_ID, &
POROSITY_phasefield_ID, &
HYDROGENFLUX_isoconc_ID, &
HYDROGENFLUX_cahnhilliard_ID
use homogenization_isostrain, only: &
homogenization_isostrain_postResults
use homogenization_RGC, only: &
homogenization_RGC_postResults
use thermal_adiabatic, only: &
thermal_adiabatic_postResults
use thermal_conduction, only: &
thermal_conduction_postResults
use damage_local, only: &
damage_local_postResults
use damage_nonlocal, only: &
damage_nonlocal_postResults
use vacancyflux_isochempot, only: &
vacancyflux_isochempot_postResults
use vacancyflux_cahnhilliard, only: &
vacancyflux_cahnhilliard_postResults
use porosity_phasefield, only: &
porosity_phasefield_postResults
use hydrogenflux_cahnhilliard, only: &
hydrogenflux_cahnhilliard_postResults
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element number
real(pReal), dimension( homogState (mappingHomogenization(2,ip,el))%sizePostResults &
+ thermalState (mappingHomogenization(2,ip,el))%sizePostResults &
+ damageState (mappingHomogenization(2,ip,el))%sizePostResults &
+ vacancyfluxState (mappingHomogenization(2,ip,el))%sizePostResults &
+ porosityState (mappingHomogenization(2,ip,el))%sizePostResults &
+ hydrogenfluxState(mappingHomogenization(2,ip,el))%sizePostResults) :: &
homogenization_postResults
integer(pInt) :: &
startPos, endPos
homogenization_postResults = 0.0_pReal
startPos = 1_pInt
endPos = homogState(mappingHomogenization(2,ip,el))%sizePostResults
chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
homogenization_postResults(startPos:endPos) = &
homogenization_isostrain_postResults(&
ip, &
el, &
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_F(1:3,1:3,ip,el))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
homogenization_postResults(startPos:endPos) = &
homogenization_RGC_postResults(&
ip, &
el, &
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_F(1:3,1:3,ip,el))
end select chosenHomogenization
startPos = endPos + 1_pInt
endPos = endPos + thermalState(mappingHomogenization(2,ip,el))%sizePostResults
chosenThermal: select case (thermal_type(mesh_element(3,el)))
case (THERMAL_isothermal_ID) chosenThermal
case (THERMAL_adiabatic_ID) chosenThermal
homogenization_postResults(startPos:endPos) = &
thermal_adiabatic_postResults(ip, el)
case (THERMAL_conduction_ID) chosenThermal
homogenization_postResults(startPos:endPos) = &
thermal_conduction_postResults(ip, el)
end select chosenThermal
startPos = endPos + 1_pInt
endPos = endPos + damageState(mappingHomogenization(2,ip,el))%sizePostResults
chosenDamage: select case (damage_type(mesh_element(3,el)))
case (DAMAGE_none_ID) chosenDamage
case (DAMAGE_local_ID) chosenDamage
homogenization_postResults(startPos:endPos) = &
damage_local_postResults(ip, el)
case (DAMAGE_nonlocal_ID) chosenDamage
homogenization_postResults(startPos:endPos) = &
damage_nonlocal_postResults(ip, el)
end select chosenDamage
startPos = endPos + 1_pInt
endPos = endPos + vacancyfluxState(mappingHomogenization(2,ip,el))%sizePostResults
chosenVacancyflux: select case (vacancyflux_type(mesh_element(3,el)))
case (VACANCYFLUX_isoconc_ID) chosenVacancyflux
case (VACANCYFLUX_isochempot_ID) chosenVacancyflux
homogenization_postResults(startPos:endPos) = &
vacancyflux_isochempot_postResults(ip, el)
case (VACANCYFLUX_cahnhilliard_ID) chosenVacancyflux
homogenization_postResults(startPos:endPos) = &
vacancyflux_cahnhilliard_postResults(ip, el)
end select chosenVacancyflux
startPos = endPos + 1_pInt
endPos = endPos + porosityState(mappingHomogenization(2,ip,el))%sizePostResults
chosenPorosity: select case (porosity_type(mesh_element(3,el)))
case (POROSITY_none_ID) chosenPorosity
case (POROSITY_phasefield_ID) chosenPorosity
homogenization_postResults(startPos:endPos) = &
porosity_phasefield_postResults(ip, el)
end select chosenPorosity
startPos = endPos + 1_pInt
endPos = endPos + hydrogenfluxState(mappingHomogenization(2,ip,el))%sizePostResults
chosenHydrogenflux: select case (hydrogenflux_type(mesh_element(3,el)))
case (HYDROGENFLUX_isoconc_ID) chosenHydrogenflux
case (HYDROGENFLUX_cahnhilliard_ID) chosenHydrogenflux
homogenization_postResults(startPos:endPos) = &
hydrogenflux_cahnhilliard_postResults(ip, el)
end select chosenHydrogenflux
end function homogenization_postResults
end module homogenization