1347 lines
77 KiB
Fortran
1347 lines
77 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
! $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief material subroutine for phenomenological crystal plasticity formulation using a powerlaw
|
|
!! fitting
|
|
!--------------------------------------------------------------------------------------------------
|
|
module constitutive_phenopowerlaw
|
|
use prec, only: &
|
|
pReal,&
|
|
pInt
|
|
|
|
implicit none
|
|
private
|
|
integer(pInt), dimension(:), allocatable, public, protected :: &
|
|
#ifndef NEWSTATE
|
|
constitutive_phenopowerlaw_sizeDotState, &
|
|
constitutive_phenopowerlaw_sizeState, &
|
|
#endif
|
|
constitutive_phenopowerlaw_sizePostResults !< cumulative size of post results
|
|
|
|
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
|
constitutive_phenopowerlaw_sizePostResult !< size of each post result output
|
|
|
|
character(len=64), dimension(:,:), allocatable, target, public :: &
|
|
constitutive_phenopowerlaw_output !< name of each post result output
|
|
|
|
integer(pInt), dimension(:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution
|
|
constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation
|
|
constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation
|
|
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family)
|
|
constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family)
|
|
|
|
real(pReal), dimension(:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter)
|
|
constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter)
|
|
constitutive_phenopowerlaw_n_slip, & !< stress exponent for slip (input parameter)
|
|
constitutive_phenopowerlaw_n_twin, & !< stress exponent for twin (input parameter)
|
|
|
|
constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning
|
|
constitutive_phenopowerlaw_twinB, &
|
|
constitutive_phenopowerlaw_twinC, &
|
|
constitutive_phenopowerlaw_twinD, &
|
|
constitutive_phenopowerlaw_twinE, &
|
|
constitutive_phenopowerlaw_h0_SlipSlip, & !< reference hardening slip - slip (input parameter)
|
|
constitutive_phenopowerlaw_h0_SlipTwin, & !< reference hardening slip - twin (input parameter, no effect at the moment)
|
|
constitutive_phenopowerlaw_h0_TwinSlip, & !< reference hardening twin - slip (input parameter)
|
|
constitutive_phenopowerlaw_h0_TwinTwin, & !< reference hardening twin - twin (input parameter)
|
|
constitutive_phenopowerlaw_a_slip, &
|
|
constitutive_phenopowerlaw_aTolResistance, &
|
|
constitutive_phenopowerlaw_aTolShear, &
|
|
constitutive_phenopowerlaw_aTolTwinfrac
|
|
|
|
real(pReal), dimension(:,:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family)
|
|
constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family)
|
|
constitutive_phenopowerlaw_tausat_slip, & !< maximum critical shear stress for slip (input parameter, per family)
|
|
constitutive_phenopowerlaw_nonSchmidCoeff, &
|
|
|
|
constitutive_phenopowerlaw_interaction_SlipSlip, & !< interaction factors slip - slip (input parameter)
|
|
constitutive_phenopowerlaw_interaction_SlipTwin, & !< interaction factors slip - twin (input parameter)
|
|
constitutive_phenopowerlaw_interaction_TwinSlip, & !< interaction factors twin - slip (input parameter)
|
|
constitutive_phenopowerlaw_interaction_TwinTwin !< interaction factors twin - twin (input parameter)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_hardeningMatrix_SlipSlip, &
|
|
constitutive_phenopowerlaw_hardeningMatrix_SlipTwin, &
|
|
constitutive_phenopowerlaw_hardeningMatrix_TwinSlip, &
|
|
constitutive_phenopowerlaw_hardeningMatrix_TwinTwin
|
|
|
|
enum, bind(c)
|
|
enumerator :: undefined_ID, &
|
|
resistance_slip_ID, &
|
|
accumulatedshear_slip_ID, &
|
|
shearrate_slip_ID, &
|
|
resolvedstress_slip_ID, &
|
|
totalshear_ID, &
|
|
resistance_twin_ID, &
|
|
accumulatedshear_twin_ID, &
|
|
shearrate_twin_ID, &
|
|
resolvedstress_twin_ID, &
|
|
totalvolfrac_ID
|
|
end enum
|
|
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
|
constitutive_phenopowerlaw_outputID !< ID of each post result output
|
|
|
|
public :: &
|
|
constitutive_phenopowerlaw_init, &
|
|
#ifndef NEWSTATE
|
|
constitutive_phenopowerlaw_stateInit, &
|
|
constitutive_phenopowerlaw_aTolState, &
|
|
#endif
|
|
constitutive_phenopowerlaw_LpAndItsTangent, &
|
|
constitutive_phenopowerlaw_dotState, &
|
|
constitutive_phenopowerlaw_postResults
|
|
|
|
#ifdef NEWSTATE
|
|
private :: &
|
|
constitutive_phenopowerlaw_aTolState, &
|
|
constitutive_phenopowerlaw_stateInit
|
|
#endif
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_phenopowerlaw_init(fileUnit)
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use prec, only: &
|
|
tol_math_check
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_constitutive,&
|
|
debug_levelBasic
|
|
use math, only: &
|
|
math_Mandel3333to66, &
|
|
math_Voigt66to3333
|
|
use IO, only: &
|
|
IO_read, &
|
|
IO_lc, &
|
|
IO_getTag, &
|
|
IO_isBlank, &
|
|
IO_stringPos, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_intValue, &
|
|
IO_warning, &
|
|
IO_error, &
|
|
IO_timeStamp, &
|
|
IO_EOF
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
phase_plasticity, &
|
|
phase_plasticityInstance, &
|
|
phase_Noutput, &
|
|
PLASTICITY_PHENOPOWERLAW_label, &
|
|
PLASTICITY_PHENOPOWERLAW_ID, &
|
|
material_phase, &
|
|
#ifdef NEWSTATE
|
|
plasticState, &
|
|
#endif
|
|
MATERIAL_partPhase
|
|
use lattice
|
|
use numerics,only: &
|
|
numerics_integrator
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: fileUnit
|
|
|
|
integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt
|
|
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
|
|
integer(pInt) :: &
|
|
maxNinstance, &
|
|
instance,phase,j,k, f,o, &
|
|
Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, &
|
|
Nchunks_SlipFamilies, Nchunks_TwinFamilies, Nchunks_nonSchmid, &
|
|
index_myFamily, index_otherFamily, &
|
|
mySize=0_pInt,sizeState,sizeDotState
|
|
character(len=65536) :: &
|
|
tag = '', &
|
|
line = ''
|
|
integer(pInt) :: NofMyPhase
|
|
real(pReal), dimension(:), allocatable :: tempPerSlip
|
|
|
|
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_PHENOPOWERLAW_label//' init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
|
|
maxNinstance = int(count(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID),pInt)
|
|
if (maxNinstance == 0_pInt) return
|
|
|
|
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
|
#ifndef NEWSTATE
|
|
allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_sizeState(maxNinstance), source=0_pInt)
|
|
#endif
|
|
allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance), &
|
|
source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance))
|
|
constitutive_phenopowerlaw_output = ''
|
|
allocate(constitutive_phenopowerlaw_outputID(maxval(phase_Noutput),maxNinstance),source=undefined_ID)
|
|
allocate(constitutive_phenopowerlaw_Noutput(maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance), source=0_pInt)
|
|
allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_n_slip(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_n_twin(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_spr(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_twinB(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_twinC(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_twinD(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_twinE(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_h0_SlipSlip(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_h0_SlipTwin(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_h0_TwinSlip(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_h0_TwinTwin(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_a_slip(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_aTolShear(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_aTolTwinfrac(maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), &
|
|
source=0.0_pReal)
|
|
|
|
rewind(fileUnit)
|
|
phase = 0_pInt
|
|
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
|
|
line = IO_read(fileUnit)
|
|
enddo
|
|
|
|
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
|
|
line = IO_read(fileUnit)
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
|
|
line = IO_read(fileUnit, .true.) ! reset IO_read
|
|
exit
|
|
endif
|
|
if (IO_getTag(line,'[',']') /= '') then ! next phase
|
|
phase = phase + 1_pInt ! advance phase section counter
|
|
if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then
|
|
Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt)
|
|
Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt)
|
|
Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase))
|
|
Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase))
|
|
Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase))
|
|
Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase))
|
|
Nchunks_nonSchmid = lattice_NnonSchmid(phase)
|
|
if(allocated(tempPerSlip)) deallocate(tempPerSlip)
|
|
allocate(tempPerSlip(Nchunks_SlipFamilies))
|
|
endif
|
|
cycle ! skip to next line
|
|
endif
|
|
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_PHENOPOWERLAW_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
|
|
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
|
|
positions = IO_stringPos(line,MAXNCHUNKS)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('plasticity','elasticity','lattice_structure', &
|
|
'covera_ratio','c/a_ratio','c/a', &
|
|
'c11','c12','c13','c22','c23','c33','c44','c55','c66')
|
|
case ('(output)')
|
|
constitutive_phenopowerlaw_Noutput(instance) = constitutive_phenopowerlaw_Noutput(instance) + 1_pInt
|
|
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
|
|
case ('resistance_slip')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = resistance_slip_ID
|
|
case ('accumulatedshear_slip')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_slip_ID
|
|
case ('shearrate_slip')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = shearrate_slip_ID
|
|
case ('resolvedstress_slip')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = resolvedstress_slip_ID
|
|
case ('totalshear')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = totalshear_ID
|
|
case ('resistance_twin')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = resistance_twin_ID
|
|
case ('accumulatedshear_twin')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = accumulatedshear_twin_ID
|
|
case ('shearrate_twin')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = shearrate_twin_ID
|
|
case ('resolvedstress_twin')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = resolvedstress_twin_ID
|
|
case ('totalvolfrac')
|
|
constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(instance),instance) = totalvolfrac_ID
|
|
case default
|
|
call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
end select
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on number of slip families
|
|
case ('nslip')
|
|
if (positions(1) < Nchunks_SlipFamilies + 1_pInt) &
|
|
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (positions(1) > Nchunks_SlipFamilies + 1_pInt) &
|
|
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
Nchunks_SlipFamilies = positions(1) - 1_pInt
|
|
do j = 1_pInt, Nchunks_SlipFamilies
|
|
constitutive_phenopowerlaw_Nslip(j,instance) = IO_intValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('tausat_slip','tau0_slip')
|
|
do j = 1_pInt, Nchunks_SlipFamilies
|
|
tempPerSlip(j) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
select case(tag)
|
|
case ('tausat_slip')
|
|
constitutive_phenopowerlaw_tausat_slip(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('tau0_slip')
|
|
constitutive_phenopowerlaw_tau0_slip(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
end select
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on number of twin families
|
|
case ('ntwin')
|
|
if (positions(1) < Nchunks_TwinFamilies + 1_pInt) &
|
|
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (positions(1) > Nchunks_TwinFamilies + 1_pInt) &
|
|
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
Nchunks_TwinFamilies = positions(1) - 1_pInt
|
|
do j = 1_pInt, Nchunks_TwinFamilies
|
|
constitutive_phenopowerlaw_Ntwin(j,instance) = IO_intValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('tau0_twin')
|
|
do j = 1_pInt, Nchunks_TwinFamilies
|
|
constitutive_phenopowerlaw_tau0_twin(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on number of interactions
|
|
case ('interaction_sliptwin')
|
|
if (positions(1) < 1_pInt + Nchunks_SlipTwin) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
do j = 1_pInt, Nchunks_SlipTwin
|
|
constitutive_phenopowerlaw_interaction_SlipTwin(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('interaction_twinslip')
|
|
if (positions(1) < 1_pInt + Nchunks_TwinSlip) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
do j = 1_pInt, Nchunks_TwinSlip
|
|
constitutive_phenopowerlaw_interaction_TwinSlip(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('interaction_twintwin')
|
|
if (positions(1) < 1_pInt + Nchunks_TwinTwin) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
do j = 1_pInt, Nchunks_TwinTwin
|
|
constitutive_phenopowerlaw_interaction_TwinTwin(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('nonschmid_coefficients')
|
|
if (positions(1) < 1_pInt + Nchunks_nonSchmid) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
do j = 1_pInt,Nchunks_nonSchmid
|
|
constitutive_phenopowerlaw_nonSchmidCoeff(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters independent of number of slip/twin systems
|
|
case ('gdot0_slip')
|
|
constitutive_phenopowerlaw_gdot0_slip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('n_slip')
|
|
constitutive_phenopowerlaw_n_slip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('a_slip', 'w0_slip')
|
|
constitutive_phenopowerlaw_a_slip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('gdot0_twin')
|
|
constitutive_phenopowerlaw_gdot0_twin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('n_twin')
|
|
constitutive_phenopowerlaw_n_twin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('s_pr')
|
|
constitutive_phenopowerlaw_spr(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('twin_b')
|
|
constitutive_phenopowerlaw_twinB(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('twin_c')
|
|
constitutive_phenopowerlaw_twinC(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('twin_d')
|
|
constitutive_phenopowerlaw_twinD(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('twin_e')
|
|
constitutive_phenopowerlaw_twinE(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('h0_slipslip')
|
|
constitutive_phenopowerlaw_h0_SlipSlip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('h0_sliptwin')
|
|
constitutive_phenopowerlaw_h0_SlipTwin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
case ('h0_twinslip')
|
|
constitutive_phenopowerlaw_h0_TwinSlip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('h0_twintwin')
|
|
constitutive_phenopowerlaw_h0_TwinTwin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_resistance')
|
|
constitutive_phenopowerlaw_aTolResistance(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_shear')
|
|
constitutive_phenopowerlaw_aTolShear(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_twinfrac')
|
|
constitutive_phenopowerlaw_aTolTwinfrac(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('interaction_slipslip')
|
|
if (positions(1) < 1_pInt + Nchunks_SlipSlip) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
do j = 1_pInt, Nchunks_SlipSlip
|
|
constitutive_phenopowerlaw_interaction_SlipSlip(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case default
|
|
call IO_error(210_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
end select
|
|
endif; endif
|
|
enddo parsingFile
|
|
|
|
sanityChecks: do phase = 1_pInt, size(phase_plasticity)
|
|
myPhase: if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then
|
|
instance = phase_plasticityInstance(phase)
|
|
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,instance) = &
|
|
min(lattice_NslipSystem(1:lattice_maxNslipFamily,phase),& ! limit active slip systems per family to min of available and requested
|
|
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,instance))
|
|
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,instance) = &
|
|
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,phase),& ! limit active twin systems per family to min of available and requested
|
|
constitutive_phenopowerlaw_Ntwin(:,instance))
|
|
constitutive_phenopowerlaw_totalNslip(instance) = sum(constitutive_phenopowerlaw_Nslip(:,instance)) ! how many slip systems altogether
|
|
constitutive_phenopowerlaw_totalNtwin(instance) = sum(constitutive_phenopowerlaw_Ntwin(:,instance)) ! how many twin systems altogether
|
|
|
|
if (any(constitutive_phenopowerlaw_tau0_slip(:,instance) < 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='tau0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (constitutive_phenopowerlaw_gdot0_slip(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='gdot0_slip ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (constitutive_phenopowerlaw_n_slip(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='n_slip ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (any(constitutive_phenopowerlaw_tausat_slip(:,instance) <= 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='tausat_slip ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (any(constitutive_phenopowerlaw_a_slip(instance) == 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='a_slip ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (any(constitutive_phenopowerlaw_tau0_twin(:,instance) < 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Ntwin(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='tau0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if ( constitutive_phenopowerlaw_gdot0_twin(instance) <= 0.0_pReal .and. &
|
|
any(constitutive_phenopowerlaw_Ntwin(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='gdot0_twin ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if ( constitutive_phenopowerlaw_n_twin(instance) <= 0.0_pReal .and. &
|
|
any(constitutive_phenopowerlaw_Ntwin(:,instance) > 0)) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='n_twin ('//PLASTICITY_PHENOPOWERLAW_label//')')
|
|
if (constitutive_phenopowerlaw_aTolResistance(instance) <= 0.0_pReal) &
|
|
constitutive_phenopowerlaw_aTolResistance(instance) = 1.0_pReal ! default absolute tolerance 1 Pa
|
|
if (constitutive_phenopowerlaw_aTolShear(instance) <= 0.0_pReal) &
|
|
constitutive_phenopowerlaw_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
|
|
if (constitutive_phenopowerlaw_aTolTwinfrac(instance) <= 0.0_pReal) &
|
|
constitutive_phenopowerlaw_aTolTwinfrac(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
|
|
endif myPhase
|
|
enddo sanityChecks
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocation of variables whose size depends on the total number of active slip systems
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity
|
|
maxval(constitutive_phenopowerlaw_totalNslip),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from twin activity
|
|
maxval(constitutive_phenopowerlaw_totalNtwin),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from slip activity
|
|
maxval(constitutive_phenopowerlaw_totalNslip),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity
|
|
maxval(constitutive_phenopowerlaw_totalNtwin),&
|
|
maxNinstance), source=0.0_pReal)
|
|
|
|
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
|
if (phase_plasticity(phase) == PLASTICITY_phenopowerlaw_ID) then
|
|
NofMyPhase=count(material_phase==phase)
|
|
instance = phase_plasticityInstance(phase)
|
|
outputsLoop: do o = 1_pInt,constitutive_phenopowerlaw_Noutput(instance)
|
|
select case(constitutive_phenopowerlaw_outputID(o,instance))
|
|
case(resistance_slip_ID, &
|
|
shearrate_slip_ID, &
|
|
accumulatedshear_slip_ID, &
|
|
resolvedstress_slip_ID &
|
|
)
|
|
mySize = constitutive_phenopowerlaw_totalNslip(instance)
|
|
case(resistance_twin_ID, &
|
|
shearrate_twin_ID, &
|
|
accumulatedshear_twin_ID, &
|
|
resolvedstress_twin_ID &
|
|
)
|
|
mySize = constitutive_phenopowerlaw_totalNtwin(instance)
|
|
case(totalshear_ID, &
|
|
totalvolfrac_ID &
|
|
)
|
|
mySize = 1_pInt
|
|
case default
|
|
end select
|
|
|
|
outputFound: if (mySize > 0_pInt) then
|
|
constitutive_phenopowerlaw_sizePostResult(o,instance) = mySize
|
|
constitutive_phenopowerlaw_sizePostResults(instance) = constitutive_phenopowerlaw_sizePostResults(instance) + mySize
|
|
endif outputFound
|
|
enddo outputsLoop
|
|
|
|
#ifndef NEWSTATE
|
|
constitutive_phenopowerlaw_sizeDotState(instance) = constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)+ &
|
|
2_pInt + &
|
|
constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance) ! s_slip, s_twin, sum(gamma), sum(f), accshear_slip, accshear_twin
|
|
constitutive_phenopowerlaw_sizeState(instance) = constitutive_phenopowerlaw_sizeDotState(instance)
|
|
#else
|
|
sizeState = constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)+ &
|
|
2_pInt + &
|
|
constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance) ! s_slip, s_twin, sum(gamma), sum(f), accshear_slip, accshear_twin
|
|
plasticState(phase)%sizeState = sizeState
|
|
plasticState(phase)%sizeDotState = sizeState
|
|
allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%partionedState0(sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
|
|
|
|
allocate(plasticState(phase)%dotState (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%deltaState (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%dotState_backup(sizeState,NofMyPhase), source=0.0_pReal)
|
|
if (any(numerics_integrator == 1_pInt)) then
|
|
allocate(plasticState(phase)%previousDotState (sizeState,NofMyPhase),source=0.0_pReal)
|
|
allocate(plasticState(phase)%previousDotState2 (sizeState,NofMyPhase),source=0.0_pReal)
|
|
endif
|
|
if (any(numerics_integrator == 4_pInt)) &
|
|
allocate(plasticState(phase)%RK4dotState (sizeState,NofMyPhase), source=0.0_pReal)
|
|
if (any(numerics_integrator == 5_pInt)) &
|
|
allocate(plasticState(phase)%RKCK45dotState (6,sizeState,NofMyPhase),source=0.0_pReal)
|
|
#endif
|
|
do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X
|
|
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,instance))
|
|
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! loop over (active) systems in my family (slip)
|
|
do o = 1_pInt,lattice_maxNslipFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,instance))
|
|
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,instance) ! loop over (active) systems in other family (slip)
|
|
constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
constitutive_phenopowerlaw_interaction_SlipSlip(lattice_interactionSlipSlip( &
|
|
sum(lattice_NslipSystem(1:f-1,phase))+j, &
|
|
sum(lattice_NslipSystem(1:o-1,phase))+k, &
|
|
phase), instance )
|
|
enddo; enddo
|
|
|
|
do o = 1_pInt,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,instance))
|
|
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,instance) ! loop over (active) systems in other family (twin)
|
|
constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
constitutive_phenopowerlaw_interaction_SlipTwin(lattice_interactionSlipTwin( &
|
|
sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo; enddo
|
|
|
|
enddo; enddo
|
|
|
|
do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X
|
|
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,instance))
|
|
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! loop over (active) systems in my family (twin)
|
|
|
|
do o = 1_pInt,lattice_maxNslipFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,instance))
|
|
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,instance) ! loop over (active) systems in other family (slip)
|
|
constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
constitutive_phenopowerlaw_interaction_TwinSlip(lattice_interactionTwinSlip( &
|
|
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo; enddo
|
|
|
|
do o = 1_pInt,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,instance))
|
|
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,instance) ! loop over (active) systems in other family (twin)
|
|
constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
constitutive_phenopowerlaw_interaction_TwinTwin(lattice_interactionTwinTwin( &
|
|
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo; enddo
|
|
|
|
enddo; enddo
|
|
#ifdef NEWSTATE
|
|
call constitutive_phenopowerlaw_stateInit(phase,instance)
|
|
call constitutive_phenopowerlaw_aTolState(phase,instance)
|
|
#endif
|
|
endif
|
|
enddo initializeInstances
|
|
|
|
end subroutine constitutive_phenopowerlaw_init
|
|
|
|
|
|
#ifdef NEWSTATE
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the initial microstructural state for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_phenopowerlaw_stateInit(phase,instance)
|
|
use lattice, only: &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily
|
|
use material, only: &
|
|
plasticState
|
|
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
instance, & !< number specifying the instance of the plasticity
|
|
phase
|
|
integer(pInt) :: &
|
|
i
|
|
real(pReal), dimension(size(plasticState(phase)%state(:,1))) :: tempState
|
|
|
|
tempState = 0.0_pReal
|
|
do i = 1_pInt,lattice_maxNslipFamily
|
|
tempState(1+&
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i-1,instance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i ,instance))) = &
|
|
constitutive_phenopowerlaw_tau0_slip(i,instance)
|
|
|
|
enddo
|
|
|
|
do i = 1_pInt,lattice_maxNtwinFamily
|
|
|
|
tempState(1+sum(constitutive_phenopowerlaw_Nslip(:,instance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i-1,instance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(:,instance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i ,instance))) = &
|
|
constitutive_phenopowerlaw_tau0_twin(i,instance)
|
|
|
|
enddo
|
|
|
|
plasticState(phase)%state = spread(tempState,2,size(plasticState(phase)%state(1,:)))
|
|
plasticState(phase)%state0 = plasticState(phase)%state
|
|
plasticState(phase)%partionedState0 = plasticState(phase)%state
|
|
|
|
end subroutine constitutive_phenopowerlaw_stateInit
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the relevant state values for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_phenopowerlaw_aTolState(phase,instance)
|
|
use material, only: &
|
|
plasticState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
instance, & !< number specifying the instance of the plasticity
|
|
phase
|
|
real(pReal), dimension(size(plasticState(phase)%aTolState(:))) :: tempTol
|
|
|
|
tempTol = 0.0_pReal
|
|
|
|
tempTol(1:constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolResistance(instance)
|
|
tempTol(1+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolShear(instance)
|
|
tempTol(2+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolTwinFrac(instance)
|
|
tempTol(3+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance): &
|
|
2+2*(constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance))) = &
|
|
constitutive_phenopowerlaw_aTolShear(instance)
|
|
|
|
plasticState(phase)%aTolState = tempTol
|
|
end subroutine constitutive_phenopowerlaw_aTolState
|
|
|
|
#else
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the initial microstructural state for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_phenopowerlaw_stateInit(instance)
|
|
use lattice, only: &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
instance !< number specifying the instance of the plasticity
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(instance)) :: &
|
|
constitutive_phenopowerlaw_stateInit
|
|
integer(pInt) :: &
|
|
i
|
|
|
|
constitutive_phenopowerlaw_stateInit = 0.0_pReal
|
|
|
|
do i = 1_pInt,lattice_maxNslipFamily
|
|
constitutive_phenopowerlaw_stateInit(1+&
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i-1,instance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i ,instance))) = &
|
|
constitutive_phenopowerlaw_tau0_slip(i,instance)
|
|
enddo
|
|
|
|
do i = 1_pInt,lattice_maxNtwinFamily
|
|
constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,instance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i-1,instance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(:,instance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i ,instance))) = &
|
|
constitutive_phenopowerlaw_tau0_twin(i,instance)
|
|
enddo
|
|
|
|
end function constitutive_phenopowerlaw_stateInit
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the relevant state values for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_phenopowerlaw_aTolState(instance)
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: instance !< number specifying the instance of the plasticity
|
|
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(instance)) :: &
|
|
constitutive_phenopowerlaw_aTolState
|
|
|
|
constitutive_phenopowerlaw_aTolState(1:constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolResistance(instance)
|
|
constitutive_phenopowerlaw_aTolState(1+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolShear(instance)
|
|
constitutive_phenopowerlaw_aTolState(2+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance)) = &
|
|
constitutive_phenopowerlaw_aTolTwinFrac(instance)
|
|
constitutive_phenopowerlaw_aTolState(3+constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance): &
|
|
2+2*(constitutive_phenopowerlaw_totalNslip(instance)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(instance))) = &
|
|
constitutive_phenopowerlaw_aTolShear(instance)
|
|
|
|
end function constitutive_phenopowerlaw_aTolState
|
|
|
|
#endif
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates plastic velocity gradient and its tangent
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use math, only: &
|
|
math_Plain3333to99, &
|
|
math_Mandel6to33
|
|
use lattice, only: &
|
|
lattice_Sslip, &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin, &
|
|
lattice_Stwin_v, &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_NnonSchmid
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance
|
|
|
|
implicit none
|
|
real(pReal), dimension(3,3), intent(out) :: &
|
|
Lp !< plastic velocity gradient
|
|
real(pReal), dimension(9,9), intent(out) :: &
|
|
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
|
|
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
#ifdef NEWSTATE
|
|
real(pReal), dimension(:), intent(in) :: &
|
|
state
|
|
#else
|
|
type(p_vec), intent(in) :: &
|
|
state !< microstructure state
|
|
#endif
|
|
|
|
integer(pInt) :: &
|
|
instance, &
|
|
nSlip, &
|
|
nTwin,phase,index_Gamma,index_F,index_myFamily, &
|
|
f,i,j,k,l,m,n
|
|
real(pReal), dimension(3,3,3,3) :: &
|
|
dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor
|
|
real(pReal), dimension(3,3,2) :: &
|
|
nonSchmid_tensor
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg,tau_slip_pos,tau_slip_neg
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_twin,dgdot_dtautwin,tau_twin
|
|
|
|
|
|
phase = material_phase(ipc,ip,el)
|
|
instance = phase_plasticityInstance(phase)
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(instance)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(instance)
|
|
index_Gamma = nSlip + nTwin + 1_pInt
|
|
index_F = nSlip + nTwin + 2_pInt
|
|
|
|
Lp = 0.0_pReal
|
|
dLp_dTstar3333 = 0.0_pReal
|
|
dLp_dTstar99 = 0.0_pReal
|
|
|
|
j = 0_pInt
|
|
slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of Lp
|
|
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,phase))
|
|
tau_slip_neg(j) = tau_slip_pos(j)
|
|
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,phase)
|
|
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
|
|
do k = 1,lattice_NnonSchmid(phase)
|
|
tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,phase))
|
|
tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,phase))
|
|
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)*&
|
|
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,phase)
|
|
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)*&
|
|
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,phase)
|
|
enddo
|
|
#ifdef NEWSTATE
|
|
gdot_slip_pos(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(instance)* &
|
|
((abs(tau_slip_pos(j))/state(j))**constitutive_phenopowerlaw_n_slip(instance))*&
|
|
sign(1.0_pReal,tau_slip_pos(j))
|
|
|
|
gdot_slip_neg(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(instance)* &
|
|
((abs(tau_slip_neg(j))/state(j))**constitutive_phenopowerlaw_n_slip(instance))*&
|
|
sign(1.0_pReal,tau_slip_neg(j))
|
|
|
|
Lp = Lp + (1.0_pReal-state(index_F))*& ! 1-F
|
|
(gdot_slip_pos(j)+gdot_slip_neg(j))*lattice_Sslip(1:3,1:3,1,index_myFamily+i,phase)
|
|
#else
|
|
gdot_slip_pos(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(instance)* &
|
|
((abs(tau_slip_pos(j))/state%p(j))**constitutive_phenopowerlaw_n_slip(instance))*&
|
|
sign(1.0_pReal,tau_slip_pos(j))
|
|
|
|
gdot_slip_neg(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(instance)* &
|
|
((abs(tau_slip_neg(j))/state%p(j))**constitutive_phenopowerlaw_n_slip(instance))*&
|
|
sign(1.0_pReal,tau_slip_neg(j))
|
|
|
|
Lp = Lp + (1.0_pReal-state%p(index_F))*& ! 1-F
|
|
(gdot_slip_pos(j)+gdot_slip_neg(j))*lattice_Sslip(1:3,1:3,1,index_myFamily+i,phase)
|
|
#endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of the tangent of Lp
|
|
if (gdot_slip_pos(j) /= 0.0_pReal) then
|
|
dgdot_dtauslip_pos(j) = gdot_slip_pos(j)*constitutive_phenopowerlaw_n_slip(instance)/tau_slip_pos(j)
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
|
dgdot_dtauslip_pos(j)*lattice_Sslip(k,l,1,index_myFamily+i,phase)* &
|
|
nonSchmid_tensor(m,n,1)
|
|
endif
|
|
|
|
if (gdot_slip_neg(j) /= 0.0_pReal) then
|
|
dgdot_dtauslip_neg(j) = gdot_slip_neg(j)*constitutive_phenopowerlaw_n_slip(instance)/tau_slip_neg(j)
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
|
dgdot_dtauslip_neg(j)*lattice_Sslip(k,l,1,index_myFamily+i,phase)* &
|
|
nonSchmid_tensor(m,n,2)
|
|
endif
|
|
enddo
|
|
enddo slipFamiliesLoop
|
|
|
|
j = 0_pInt
|
|
twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of Lp
|
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,phase))
|
|
#ifdef NEWSTATE
|
|
gdot_twin(j) = (1.0_pReal-state(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau_twin(j))/state(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
#else
|
|
gdot_twin(j) = (1.0_pReal-state%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau_twin(j))/state%p(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
#endif
|
|
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,phase)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of the tangent of Lp
|
|
if (gdot_twin(j) /= 0.0_pReal) then
|
|
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(instance)/tau_twin(j)
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
|
dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,phase)* &
|
|
lattice_Stwin(m,n,index_myFamily+i,phase)
|
|
endif
|
|
enddo
|
|
enddo twinFamiliesLoop
|
|
|
|
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
|
|
|
end subroutine constitutive_phenopowerlaw_LpAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates the rate of change of microstructure
|
|
!--------------------------------------------------------------------------------------------------
|
|
function constitutive_phenopowerlaw_dotState(Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use lattice, only: &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin_v, &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_shearTwin, &
|
|
lattice_NnonSchmid
|
|
use mesh, only: &
|
|
mesh_NcpElems,&
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance
|
|
|
|
implicit none
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element !< microstructure state
|
|
#ifdef NEWSTATE
|
|
real(pReal), dimension(:), intent(in) :: &
|
|
state
|
|
real(pReal), dimension(size(state)) :: &
|
|
constitutive_phenopowerlaw_dotState
|
|
#else
|
|
type(p_vec), intent(in) :: &
|
|
state !< microstructure state
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
constitutive_phenopowerlaw_dotState
|
|
#endif
|
|
|
|
|
|
integer(pInt) :: &
|
|
instance,phase, &
|
|
nSlip,nTwin, &
|
|
f,i,j,k, &
|
|
index_Gamma,index_F,index_myFamily, &
|
|
offset_accshear_slip,offset_accshear_twin
|
|
real(pReal) :: &
|
|
c_SlipSlip,c_SlipTwin,c_TwinSlip,c_TwinTwin, &
|
|
ssat_offset
|
|
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip,tau_slip_pos,tau_slip_neg,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_twin,tau_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin
|
|
phase = material_phase(ipc,ip,el)
|
|
instance = phase_plasticityInstance(phase)
|
|
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(instance)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(instance)
|
|
|
|
index_Gamma = nSlip + nTwin + 1_pInt
|
|
index_F = nSlip + nTwin + 2_pInt
|
|
offset_accshear_slip = nSlip + nTwin + 2_pInt
|
|
offset_accshear_twin = nSlip + nTwin + 2_pInt + nSlip
|
|
|
|
constitutive_phenopowerlaw_dotState = 0.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
|
#ifdef NEWSTATE
|
|
c_SlipSlip = constitutive_phenopowerlaw_h0_SlipSlip(instance)*&
|
|
(1.0_pReal + constitutive_phenopowerlaw_twinC(instance)*state(index_F)**&
|
|
constitutive_phenopowerlaw_twinB(instance))
|
|
c_SlipTwin = 0.0_pReal
|
|
c_TwinSlip = constitutive_phenopowerlaw_h0_TwinSlip(instance)*&
|
|
state(index_Gamma)**constitutive_phenopowerlaw_twinE(instance)
|
|
c_TwinTwin = constitutive_phenopowerlaw_h0_TwinTwin(instance)*&
|
|
state(index_F)**constitutive_phenopowerlaw_twinD(instance)
|
|
#else
|
|
c_SlipSlip = constitutive_phenopowerlaw_h0_SlipSlip(instance)*&
|
|
(1.0_pReal + constitutive_phenopowerlaw_twinC(instance)*state%p(index_F)**&
|
|
constitutive_phenopowerlaw_twinB(instance))
|
|
c_SlipTwin = 0.0_pReal
|
|
c_TwinSlip = constitutive_phenopowerlaw_h0_TwinSlip(instance)*&
|
|
state%p(index_Gamma)**constitutive_phenopowerlaw_twinE(instance)
|
|
c_TwinTwin = constitutive_phenopowerlaw_h0_TwinTwin(instance)*&
|
|
state%p(index_F)**constitutive_phenopowerlaw_twinD(instance)
|
|
#endif
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate left and right vectors and calculate dot gammas
|
|
#ifdef NEWSTATE
|
|
ssat_offset = constitutive_phenopowerlaw_spr(instance)*sqrt(state(index_F))
|
|
#else
|
|
ssat_offset = constitutive_phenopowerlaw_spr(instance)*sqrt(state%p(index_F)) !< microstructure state
|
|
#endif
|
|
j = 0_pInt
|
|
slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
left_SlipSlip(j) = 1.0_pReal ! no system-dependent left part
|
|
left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part
|
|
#ifdef NEWSTATE
|
|
|
|
right_SlipSlip(j) = abs(1.0_pReal-state(j) / &
|
|
(constitutive_phenopowerlaw_tausat_slip(f,instance)+ssat_offset)) &
|
|
**constitutive_phenopowerlaw_a_slip(instance)&
|
|
*sign(1.0_pReal,1.0_pReal-state(j) / &
|
|
(constitutive_phenopowerlaw_tausat_slip(f,instance)+ssat_offset))
|
|
#else
|
|
right_SlipSlip(j) = abs(1.0_pReal-state%p(j) / &
|
|
(constitutive_phenopowerlaw_tausat_slip(f,instance)+ssat_offset)) &
|
|
**constitutive_phenopowerlaw_a_slip(instance)&
|
|
*sign(1.0_pReal,1.0_pReal-state%p(j) / &
|
|
(constitutive_phenopowerlaw_tausat_slip(f,instance)+ssat_offset)) !< microstructure state
|
|
#endif
|
|
right_TwinSlip(j) = 1.0_pReal ! no system-dependent part
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of dot gamma
|
|
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,phase))
|
|
tau_slip_neg(j) = tau_slip_pos(j)
|
|
do k = 1,lattice_NnonSchmid(phase)
|
|
tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,phase))
|
|
tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,phase))
|
|
enddo
|
|
#ifdef NEWSTATE
|
|
|
|
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* &
|
|
((abs(tau_slip_pos(j))/state(j))**constitutive_phenopowerlaw_n_slip(instance) &
|
|
+(abs(tau_slip_neg(j))/state(j))**constitutive_phenopowerlaw_n_slip(instance))&
|
|
*sign(1.0_pReal,tau_slip_pos(j))
|
|
#else
|
|
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* &
|
|
((abs(tau_slip_pos(j))/state%p(j))**constitutive_phenopowerlaw_n_slip(instance) &
|
|
+(abs(tau_slip_neg(j))/state%p(j))**constitutive_phenopowerlaw_n_slip(instance))&
|
|
*sign(1.0_pReal,tau_slip_pos(j))
|
|
#endif
|
|
enddo
|
|
enddo slipFamiliesLoop1
|
|
|
|
|
|
j = 0_pInt
|
|
twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
left_TwinSlip(j) = 1.0_pReal ! no system-dependent right part
|
|
left_TwinTwin(j) = 1.0_pReal ! no system-dependent right part
|
|
right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part
|
|
right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of dot vol frac
|
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,phase))
|
|
#ifdef NEWSTATE
|
|
gdot_twin(j) = (1.0_pReal-state(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau_twin(j))/state(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
#else
|
|
gdot_twin(j) = (1.0_pReal-state%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau_twin(j))/state%p(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
#endif
|
|
enddo
|
|
enddo twinFamiliesLoop1
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate the overall hardening based on above
|
|
j = 0_pInt
|
|
slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
|
|
c_SlipSlip * left_SlipSlip(j) * &
|
|
dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(j,1:nSlip,instance), &
|
|
right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
|
c_SlipTwin * left_SlipTwin(j) * &
|
|
dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(j,1:nTwin,instance), &
|
|
right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
|
constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + &
|
|
abs(gdot_slip(j))
|
|
constitutive_phenopowerlaw_dotState(offset_accshear_slip+j) = abs(gdot_slip(j))
|
|
enddo
|
|
enddo slipFamiliesLoop2
|
|
|
|
j = 0_pInt
|
|
twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
|
|
c_TwinSlip * left_TwinSlip(j) * &
|
|
dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(j,1:nSlip,instance), &
|
|
right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
|
|
c_TwinTwin * left_TwinTwin(j) * &
|
|
dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(j,1:nTwin,instance), &
|
|
right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
|
|
#ifndef NEWSTATE
|
|
if (state%p(index_F) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0
|
|
constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + &
|
|
gdot_twin(j)/lattice_shearTwin(index_myFamily+i,phase)
|
|
#else
|
|
if (state(index_F) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0
|
|
constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + &
|
|
gdot_twin(j)/lattice_shearTwin(index_myFamily+i,phase)
|
|
#endif
|
|
|
|
|
|
|
|
constitutive_phenopowerlaw_dotState(offset_accshear_twin+j) = abs(gdot_twin(j))
|
|
enddo
|
|
enddo twinFamiliesLoop2
|
|
|
|
end function constitutive_phenopowerlaw_dotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of constitutive results
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_phenopowerlaw_postResults(Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance, &
|
|
phase_Noutput
|
|
use lattice, only: &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin_v, &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_NnonSchmid
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
|
|
implicit none
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element !< microstructure state
|
|
#ifdef NEWSTATE
|
|
real(pReal), dimension(:), intent(in) :: &
|
|
state
|
|
#else
|
|
type(p_vec), intent(in) :: &
|
|
state !< microstructure state
|
|
#endif
|
|
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
constitutive_phenopowerlaw_postResults
|
|
|
|
integer(pInt) :: &
|
|
instance,phase, &
|
|
nSlip,nTwin, &
|
|
o,f,i,c,j,k, &
|
|
index_Gamma,index_F,index_accshear_slip,index_accshear_twin,index_myFamily
|
|
real(pReal) :: &
|
|
tau_slip_pos,tau_slip_neg,tau
|
|
|
|
phase = material_phase(ipc,ip,el)
|
|
instance = phase_plasticityInstance(phase)
|
|
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(instance)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(instance)
|
|
|
|
index_Gamma = nSlip + nTwin + 1_pInt
|
|
index_F = nSlip + nTwin + 2_pInt
|
|
index_accshear_slip = nSlip + nTwin + 3_pInt
|
|
index_accshear_twin = nSlip + nTwin + 3_pInt + nSlip
|
|
|
|
constitutive_phenopowerlaw_postResults = 0.0_pReal
|
|
c = 0_pInt
|
|
|
|
outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
|
|
select case(constitutive_phenopowerlaw_outputID(o,instance))
|
|
case (resistance_slip_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(1:nSlip)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state%p(1:nSlip)
|
|
#endif
|
|
c = c + nSlip
|
|
|
|
case (accumulatedshear_slip_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(index_accshear_slip:&
|
|
index_accshear_slip+nSlip-1_pInt)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state%p(index_accshear_slip:&
|
|
index_accshear_slip+nSlip-1_pInt)
|
|
#endif
|
|
c = c + nSlip
|
|
|
|
case (shearrate_slip_ID)
|
|
j = 0_pInt
|
|
slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! process each (active) slip system in family
|
|
j = j + 1_pInt
|
|
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,phase))
|
|
tau_slip_neg = tau_slip_pos
|
|
do k = 1,lattice_NnonSchmid(phase)
|
|
tau_slip_pos = tau_slip_pos + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,phase))
|
|
tau_slip_neg = tau_slip_neg + constitutive_phenopowerlaw_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,phase))
|
|
enddo
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* &
|
|
((abs(tau_slip_pos)/state(j))**constitutive_phenopowerlaw_n_slip(instance) &
|
|
+(abs(tau_slip_neg)/state(j))**constitutive_phenopowerlaw_n_slip(instance))&
|
|
*sign(1.0_pReal,tau_slip_pos)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(instance)*0.5_pReal* &
|
|
((abs(tau_slip_pos)/state%p(j))**constitutive_phenopowerlaw_n_slip(instance) &
|
|
+(abs(tau_slip_neg)/state%p(j))**constitutive_phenopowerlaw_n_slip(instance))&
|
|
*sign(1.0_pReal,tau_slip_pos)
|
|
#endif
|
|
enddo
|
|
enddo slipFamiliesLoop1
|
|
c = c + nSlip
|
|
|
|
case (resolvedstress_slip_ID)
|
|
j = 0_pInt
|
|
slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,instance) ! process each (active) slip system in family
|
|
j = j + 1_pInt
|
|
constitutive_phenopowerlaw_postResults(c+j) = &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,phase))
|
|
enddo
|
|
enddo slipFamiliesLoop2
|
|
c = c + nSlip
|
|
|
|
case (totalshear_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt) = &
|
|
state(index_Gamma)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt) = &
|
|
state%p(index_Gamma)
|
|
#endif
|
|
c = c + 1_pInt
|
|
|
|
case (resistance_twin_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
|
state(1_pInt+nSlip:nTwin+nSlip-1_pInt)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
|
state%p(1_pInt+nSlip:nTwin+nSlip-1_pInt)
|
|
#endif
|
|
c = c + nTwin
|
|
|
|
case (accumulatedshear_twin_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
|
state(index_accshear_twin:index_accshear_twin+nTwin-1_pInt)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = &
|
|
state%p(index_accshear_twin:index_accshear_twin+nTwin-1_pInt)
|
|
#endif
|
|
c = c + nTwin
|
|
|
|
case (shearrate_twin_ID)
|
|
j = 0_pInt
|
|
twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! process each (active) twin system in family
|
|
j = j + 1_pInt
|
|
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,phase))
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau)/state(j+nSlip))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau))
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(instance)*&
|
|
(abs(tau)/state%p(j+nSlip))**&
|
|
constitutive_phenopowerlaw_n_twin(instance)*max(0.0_pReal,sign(1.0_pReal,tau))
|
|
#endif
|
|
enddo
|
|
enddo twinFamiliesLoop1
|
|
c = c + nTwin
|
|
|
|
case (resolvedstress_twin_ID)
|
|
j = 0_pInt
|
|
twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
|
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,instance) ! process each (active) twin system in family
|
|
j = j + 1_pInt
|
|
constitutive_phenopowerlaw_postResults(c+j) = &
|
|
dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,phase))
|
|
enddo
|
|
enddo twinFamiliesLoop2
|
|
c = c + nTwin
|
|
|
|
case (totalvolfrac_ID)
|
|
#ifdef NEWSTATE
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt) = state(index_F)
|
|
#else
|
|
constitutive_phenopowerlaw_postResults(c+1_pInt) = state%p(index_F)
|
|
#endif
|
|
c = c + 1_pInt
|
|
|
|
end select
|
|
enddo outputsLoop
|
|
|
|
end function constitutive_phenopowerlaw_postResults
|
|
|
|
|
|
|
|
end module constitutive_phenopowerlaw
|