DAMASK_EICMD/src/homogenization.f90

975 lines
48 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec, only: &
pReal
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
implicit none
private
real(pReal), dimension(:,:,:,:), allocatable, public :: &
materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
materialpoint_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
materialpoint_dPdF !< tangent of first P--K stress at IP
real(pReal), dimension(:,:,:), allocatable, public :: &
materialpoint_results !< results array of material point
integer, public, protected :: &
materialpoint_sizeResults, &
homogenization_maxSizePostResults, &
thermal_maxSizePostResults, &
damage_maxSizePostResults
real(pReal), dimension(:,:,:,:), allocatable, private :: &
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment
materialpoint_subF !< def grad of IP to be reached at end of homog inc
real(pReal), dimension(:,:), allocatable, private :: &
materialpoint_subFrac, &
materialpoint_subStep, &
materialpoint_subdt
logical, dimension(:,:), allocatable, private :: &
materialpoint_requested, &
materialpoint_converged
logical, dimension(:,:,:), allocatable, private :: &
materialpoint_doneAndHappy
interface
module subroutine mech_none_init
end subroutine mech_none_init
module subroutine mech_isostrain_init
end subroutine mech_isostrain_init
module subroutine mech_isostrain_partitionDeformation(F,avgF)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
end subroutine mech_isostrain_partitionDeformation
module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
end subroutine mech_isostrain_averageStressAndItsTangent
end interface
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
private :: &
partitionDeformation, &
updateState, &
averageStressAndItsTangent, &
postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
use math, only: &
math_I3
use debug, only: &
debug_level, &
debug_homogenization, &
debug_levelBasic, &
debug_e, &
debug_g
use mesh, only: &
theMesh, &
mesh_element
use constitutive, only: &
constitutive_plasticity_maxSizePostResults, &
constitutive_source_maxSizePostResults
use crystallite, only: &
crystallite_maxSizePostResults
use config, only: &
config_deallocate, &
config_homogenization, &
homogenization_name
use material
use homogenization_mech_RGC
use thermal_isothermal
use thermal_adiabatic
use thermal_conduction
use damage_none
use damage_local
use damage_nonlocal
use IO
use numerics, only: &
worldrank
implicit none
integer, parameter :: FILEUNIT = 200
integer :: e,i,p
integer, dimension(:,:), pointer :: thisSize
integer, dimension(:) , pointer :: thisNoutput
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
logical :: valid
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) call mech_isostrain_init
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) call homogenization_RGC_init
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_local_ID)) call damage_local_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
!--------------------------------------------------------------------------------------------------
! write description file for homogenization output
mainProcess2: if (worldrank == 0) then
call IO_write_jobFile(FILEUNIT,'outputHomogenization')
do p = 1,size(config_homogenization)
if (any(material_homogenizationAt == p)) then
i = homogenization_typeInstance(p) ! which instance of this homogenization type
valid = .true. ! assume valid
select case(homogenization_type(p)) ! split per homogenization type
case (HOMOGENIZATION_NONE_ID)
outputName = HOMOGENIZATION_NONE_label
thisOutput => null()
thisSize => null()
case (HOMOGENIZATION_ISOSTRAIN_ID)
outputName = HOMOGENIZATION_ISOSTRAIN_label
thisOutput => null()
thisSize => null()
case (HOMOGENIZATION_RGC_ID)
outputName = HOMOGENIZATION_RGC_label
thisOutput => homogenization_RGC_output
thisSize => homogenization_RGC_sizePostResult
case default
valid = .false.
end select
write(FILEUNIT,'(/,a,/)') '['//trim(homogenization_name(p))//']'
if (valid) then
write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName)
write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
if (homogenization_type(p) /= HOMOGENIZATION_NONE_ID .and. &
homogenization_type(p) /= HOMOGENIZATION_ISOSTRAIN_ID) then
do e = 1,size(thisOutput(:,i))
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = thermal_typeInstance(p) ! which instance of this thermal type
valid = .true. ! assume valid
select case(thermal_type(p)) ! split per thermal type
case (THERMAL_isothermal_ID)
outputName = THERMAL_isothermal_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (THERMAL_adiabatic_ID)
outputName = THERMAL_adiabatic_label
thisNoutput => thermal_adiabatic_Noutput
thisOutput => thermal_adiabatic_output
thisSize => thermal_adiabatic_sizePostResult
case (THERMAL_conduction_ID)
outputName = THERMAL_conduction_label
thisNoutput => thermal_conduction_Noutput
thisOutput => thermal_conduction_output
thisSize => thermal_conduction_sizePostResult
case default
valid = .false.
end select
if (valid) then
write(FILEUNIT,'(a)') '(thermal)'//char(9)//trim(outputName)
if (thermal_type(p) /= THERMAL_isothermal_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = damage_typeInstance(p) ! which instance of this damage type
valid = .true. ! assume valid
select case(damage_type(p)) ! split per damage type
case (DAMAGE_none_ID)
outputName = DAMAGE_none_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (DAMAGE_local_ID)
outputName = DAMAGE_local_label
thisNoutput => damage_local_Noutput
thisOutput => damage_local_output
thisSize => damage_local_sizePostResult
case (DAMAGE_nonlocal_ID)
outputName = DAMAGE_nonlocal_label
thisNoutput => damage_nonlocal_Noutput
thisOutput => damage_nonlocal_output
thisSize => damage_nonlocal_sizePostResult
case default
valid = .false.
end select
if (valid) then
write(FILEUNIT,'(a)') '(damage)'//char(9)//trim(outputName)
if (damage_type(p) /= DAMAGE_none_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
endif
enddo
close(FILEUNIT)
endif mainProcess2
call config_deallocate('material.config/homogenization')
!--------------------------------------------------------------------------------------------------
! allocate and initialize global variables
allocate(materialpoint_dPdF(3,3,3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_F0(3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
materialpoint_F0 = spread(spread(math_I3,3,theMesh%elem%nIPs),4,theMesh%nElems) ! initialize to identity
allocate(materialpoint_F(3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
materialpoint_F = materialpoint_F0 ! initialize to identity
allocate(materialpoint_subF0(3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_subF(3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_P(3,3,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_subFrac(theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_subStep(theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_subdt(theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(materialpoint_requested(theMesh%elem%nIPs,theMesh%nElems), source=.false.)
allocate(materialpoint_converged(theMesh%elem%nIPs,theMesh%nElems), source=.true.)
allocate(materialpoint_doneAndHappy(2,theMesh%elem%nIPs,theMesh%nElems), source=.true.)
!--------------------------------------------------------------------------------------------------
! allocate and initialize global state and postresutls variables
homogenization_maxSizePostResults = 0
thermal_maxSizePostResults = 0
damage_maxSizePostResults = 0
do p = 1,size(config_homogenization)
homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState (p)%sizePostResults)
thermal_maxSizePostResults = max(thermal_maxSizePostResults, thermalState (p)%sizePostResults)
damage_maxSizePostResults = max(damage_maxSizePostResults ,damageState (p)%sizePostResults)
enddo
materialpoint_sizeResults = 1 & ! grain count
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
+ thermal_maxSizePostResults &
+ damage_maxSizePostResults &
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
+ 1 + constitutive_plasticity_maxSizePostResults & ! constitutive size & constitutive results
+ constitutive_source_maxSizePostResults)
allocate(materialpoint_results(materialpoint_sizeResults,theMesh%elem%nIPs,theMesh%nElems))
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
#ifdef TODO
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0)
write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0)
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state)
#endif
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
endif
flush(6)
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) &
call IO_error(602,ext_msg='constituent', el=debug_e, g=debug_g)
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
use numerics, only: &
subStepMinHomog, &
subStepSizeHomog, &
stepIncreaseHomog, &
nMPstate
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP, &
terminallyIll
use mesh, only: &
mesh_element
use material, only: &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
phase_Nsources, &
material_homogenizationAt, &
mappingHomogenization, &
phaseAt, phasememberAt, &
homogenization_Ngrains
use crystallite, only: &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Fi0, &
crystallite_Fi, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Li0, &
crystallite_Li, &
crystallite_S0, &
crystallite_S, &
crystallite_partionedF0, &
crystallite_partionedF, &
crystallite_partionedFp0, &
crystallite_partionedLp0, &
crystallite_partionedFi0, &
crystallite_partionedLi0, &
crystallite_partionedS0, &
crystallite_dt, &
crystallite_requested, &
crystallite_stress, &
crystallite_stressTangent, &
crystallite_orientations
#ifdef DEBUG
use debug, only: &
debug_level, &
debug_homogenization, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i
#endif
implicit none
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: updateJaco !< initiating Jacobian update
integer :: &
NiterationHomog, &
NiterationMPstate, &
g, & !< grain number
i, & !< integration point number
e, & !< element number
mySource, &
myNgrains
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
transpose(materialpoint_F0(1:3,1:3,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
transpose(materialpoint_F(1:3,1:3,debug_i,debug_e))
endif
#endif
!--------------------------------------------------------------------------------------------------
! initialize restoration points of ...
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do g = 1,myNgrains
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%state0( :,phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%state0( :,phasememberAt(g,i,e))
enddo
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) ! ...intermediate def grads
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) ! ...intermediate velocity grads
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads
crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e) ! ...2nd PK stress
enddo; enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e))
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
materialpoint_subFrac(i,e) = 0.0_pReal
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
endforall
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal damage state
enddo
NiterationHomog = 0
cutBackLooping: do while (.not. terminallyIll .and. &
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
converged: if ( materialpoint_converged(i,e) ) then
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
endif
#endif
!---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
! wind forward grain starting point of...
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_Li(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
crystallite_partionedS0(1:3,1:3,1:myNgrains,i,e) = &
crystallite_S(1:3,1:3,1:myNgrains,i,e) ! ...2nd PK stress
do g = 1,myNgrains
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e))
enddo
enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) ! ...internal damage state
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
endif steppingNeeded
else converged
if ( (myNgrains == 1 .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense
!$OMP FLUSH(terminallyIll)
if (.not. terminallyIll) then ! so first signals terminally ill...
!$OMP CRITICAL (write2out)
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
!$OMP END CRITICAL (write2out)
endif
!$OMP CRITICAL (setTerminallyIll)
terminallyIll = .true. ! ...and kills all others
!$OMP END CRITICAL (setTerminallyIll)
else ! cutback makes sense
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
materialpoint_subStep(i,e),' at el ip',e,i
endif
#endif
!--------------------------------------------------------------------------------------------------
! restore...
if (materialpoint_subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
endif ! maybe protecting everything from overwriting (not only L) makes even more sense
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
crystallite_S(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedS0(1:3,1:3,1:myNgrains,i,e) ! ...2nd PK stress
do g = 1, myNgrains
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e)) = &
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e)) = &
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e))
enddo
enddo
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal homogenization state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal thermal state
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal damage state
endif
endif converged
if (materialpoint_subStep(i,e) > subStepMinHomog) then
materialpoint_requested(i,e) = .true.
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) &
+ materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) &
- materialpoint_F0(1:3,1:3,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll .and. &
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < nMPstate)
NiterationMPstate = NiterationMPstate + 1
!--------------------------------------------------------------------------------------------------
! deformation partitioning
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
! results in crystallite_partionedF
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. & ! process requested but...
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
call partitionDeformation(i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! crystallite integration
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
materialpoint_converged = crystallite_stress() !ToDo: MD not sure if that is the best logic
!--------------------------------------------------------------------------------------------------
! state update
!$OMP PARALLEL DO
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. &
.not. materialpoint_doneAndHappy(1,i,e)) then
if (.not. materialpoint_converged(i,e)) then
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
else
materialpoint_doneAndHappy(1:2,i,e) = updateState(i,e)
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy
endif
endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping
NiterationHomog = NiterationHomog + 1
enddo cutBackLooping
if(updateJaco) call crystallite_stressTangent
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
call averageStressAndItsTangent(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
else
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
endif
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of result array at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_postResults
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element
use material, only: &
material_homogenizationAt, &
homogState, &
thermalState, &
damageState, &
plasticState, &
sourceState, &
material_phase, &
homogenization_Ngrains, &
microstructure_crystallite
use crystallite, only: &
crystallite_sizePostResults, &
crystallite_postResults
implicit none
integer :: &
thePos, &
theSize, &
myNgrains, &
myCrystallite, &
g, & !< grain number
i, & !< integration point number
e !< element number
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
myCrystallite = microstructure_crystallite(mesh_element(4,e))
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
thePos = 0
theSize = homogState (material_homogenizationAt(e))%sizePostResults &
+ thermalState (material_homogenizationAt(e))%sizePostResults &
+ damageState (material_homogenizationAt(e))%sizePostResults
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
thePos = thePos + 1
if (theSize > 0) then ! any homogenization results to mention?
materialpoint_results(thePos+1:thePos+theSize,i,e) = postResults(i,e) ! tell homogenization results
thePos = thePos + theSize
endif
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
thePos = thePos + 1
grainLooping :do g = 1,myNgrains
theSize = 1 + crystallite_sizePostResults(myCrystallite) + &
1 + plasticState (material_phase(g,i,e))%sizePostResults + & !ToDo
sum(sourceState(material_phase(g,i,e))%p(:)%sizePostResults)
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results
thePos = thePos + theSize
enddo grainLooping
enddo IpLooping
enddo elementLooping
!$OMP END PARALLEL DO
end subroutine materialpoint_postResults
!--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
subroutine partitionDeformation(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
homogenization_Ngrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: &
crystallite_partionedF
use homogenization_mech_RGC, only: &
homogenization_RGC_partitionDeformation
implicit none
integer, intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partionedF(1:3,1:3,1,ip,el) = materialpoint_subF(1:3,1:3,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call homogenization_RGC_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el),&
ip, &
el)
end select chosenHomogenization
end subroutine partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function updateState(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
thermal_type, &
damage_type, &
homogenization_Ngrains, &
HOMOGENIZATION_RGC_ID, &
THERMAL_adiabatic_ID, &
DAMAGE_local_ID
use crystallite, only: &
crystallite_P, &
crystallite_dPdF, &
crystallite_partionedF,&
crystallite_partionedF0
use homogenization_mech_RGC, only: &
homogenization_RGC_updateState
use thermal_adiabatic, only: &
thermal_adiabatic_updateState
use damage_local, only: &
damage_local_updateState
implicit none
integer, intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: updateState
updateState = .true.
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
updateState = &
updateState .and. &
homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
materialpoint_subdt(ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
ip, &
el)
end select chosenHomogenization
chosenThermal: select case (thermal_type(mesh_element(3,el)))
case (THERMAL_adiabatic_ID) chosenThermal
updateState = &
updateState .and. &
thermal_adiabatic_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenThermal
chosenDamage: select case (damage_type(mesh_element(3,el)))
case (DAMAGE_local_ID) chosenDamage
updateState = &
updateState .and. &
damage_local_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenDamage
end function updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine averageStressAndItsTangent(ip,el)
use mesh, only: &
mesh_element
use material, only: &
homogenization_type, &
homogenization_typeInstance, &
homogenization_Ngrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: &
crystallite_P,crystallite_dPdF
use homogenization_mech_RGC, only: &
homogenization_RGC_averageStressAndItsTangent
implicit none
integer, intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
homogenization_typeInstance(mesh_element(3,el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call homogenization_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(mesh_element(3,el)),ip,el), &
homogenization_typeInstance(mesh_element(3,el)))
end select chosenHomogenization
end subroutine averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only,
!> if homogenization_sizePostResults(i,e) > 0 !!
!--------------------------------------------------------------------------------------------------
function postResults(ip,el)
use mesh, only: &
mesh_element
use material, only: &
thermalMapping, &
thermal_typeInstance, &
material_homogenizationAt, &
homogenization_typeInstance,&
mappingHomogenization, &
homogState, &
thermalState, &
damageState, &
homogenization_type, &
thermal_type, &
damage_type, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID, &
THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID, &
DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID
use homogenization_mech_RGC, only: &
homogenization_RGC_postResults
use thermal_adiabatic, only: &
thermal_adiabatic_postResults
use thermal_conduction, only: &
thermal_conduction_postResults
use damage_local, only: &
damage_local_postResults
use damage_nonlocal, only: &
damage_nonlocal_postResults
implicit none
integer, intent(in) :: &
ip, & !< integration point
el !< element number
real(pReal), dimension( homogState (material_homogenizationAt(el))%sizePostResults &
+ thermalState (material_homogenizationAt(el))%sizePostResults &
+ damageState (material_homogenizationAt(el))%sizePostResults) :: &
postResults
integer :: &
startPos, endPos ,&
of, instance, homog
postResults = 0.0_pReal
startPos = 1
endPos = homogState(material_homogenizationAt(el))%sizePostResults
chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
instance = homogenization_typeInstance(material_homogenizationAt(el))
of = mappingHomogenization(1,ip,el)
postResults(startPos:endPos) = homogenization_RGC_postResults(instance,of)
end select chosenHomogenization
startPos = endPos + 1
endPos = endPos + thermalState(material_homogenizationAt(el))%sizePostResults
chosenThermal: select case (thermal_type(mesh_element(3,el)))
case (THERMAL_adiabatic_ID) chosenThermal
homog = material_homogenizationAt(el)
postResults(startPos:endPos) = &
thermal_adiabatic_postResults(homog,thermal_typeInstance(homog),thermalMapping(homog)%p(ip,el))
case (THERMAL_conduction_ID) chosenThermal
homog = material_homogenizationAt(el)
postResults(startPos:endPos) = &
thermal_conduction_postResults(homog,thermal_typeInstance(homog),thermalMapping(homog)%p(ip,el))
end select chosenThermal
startPos = endPos + 1
endPos = endPos + damageState(material_homogenizationAt(el))%sizePostResults
chosenDamage: select case (damage_type(mesh_element(3,el)))
case (DAMAGE_local_ID) chosenDamage
postResults(startPos:endPos) = damage_local_postResults(ip, el)
case (DAMAGE_nonlocal_ID) chosenDamage
postResults(startPos:endPos) = damage_nonlocal_postResults(ip, el)
end select chosenDamage
end function postResults
end module homogenization