4748 lines
192 KiB
Fortran
4748 lines
192 KiB
Fortran
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!--------------------------------------------------------------------------------------------------
|
|
!* $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!! Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!! Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
|
|
!! Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!! Krishna Komerla, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
|
|
module mesh
|
|
use, intrinsic :: iso_c_binding
|
|
use prec, only: pReal, pInt
|
|
|
|
implicit none
|
|
private
|
|
|
|
integer(pInt), public :: &
|
|
mesh_NcpElems, & !< total number of CP elements in mesh
|
|
mesh_NelemSets, &
|
|
mesh_maxNelemInSet, &
|
|
mesh_Nmaterials, &
|
|
mesh_Nnodes, & !< total number of nodes in mesh
|
|
mesh_maxNnodes, & !< max number of nodes in any CP element
|
|
mesh_maxNips, & !< max number of IPs in any CP element
|
|
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
|
|
mesh_maxNsharedElems, & !< max number of CP elements sharing a node
|
|
mesh_maxNsubNodes
|
|
|
|
integer(pInt), dimension(:,:), allocatable, public :: &
|
|
mesh_element, & !< FEid, type(internal representation), material, texture, node indices
|
|
mesh_sharedElem, & !< entryCount and list of elements containing node
|
|
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
|
|
|
|
integer(pInt), dimension(:,:,:,:), allocatable, public :: &
|
|
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
|
|
|
|
real(pReal), dimension(:,:), allocatable, public :: &
|
|
mesh_ipVolume, & !< volume associated with IP (initially!)
|
|
mesh_node0, & !< node x,y,z coordinates (initially!)
|
|
mesh_node !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
mesh_ipCenterOfGravity, & !< center of gravity of IP (after deformation!)
|
|
mesh_ipArea !< area of interface to neighboring IP (initially!)
|
|
|
|
real(pReal),dimension(:,:,:,:), allocatable, public :: &
|
|
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
|
|
|
|
logical, dimension(3), public :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
|
|
|
|
integer(pInt), private :: &
|
|
mesh_Nelems !< total number of elements in mesh
|
|
#ifdef Marc
|
|
integer(pInt), private :: &
|
|
hypoelasticTableStyle, & !< Table style (Marc only)
|
|
initialcondTableStyle !< Table style (Marc only)
|
|
#endif
|
|
|
|
integer(pInt), dimension(2), private :: &
|
|
mesh_maxValStateVar = 0_pInt
|
|
|
|
character(len=64), dimension(:), allocatable, private :: &
|
|
mesh_nameElemSet, & !< names of elementSet
|
|
mesh_nameMaterial, & !< names of material in solid section
|
|
mesh_mapMaterial !< name of elementSet for material
|
|
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
mesh_mapElemSet !< list of elements in elementSet
|
|
|
|
integer(pInt), dimension(:,:), allocatable, target, private :: &
|
|
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
|
|
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
|
|
|
|
real(pReal),dimension(:,:,:), allocatable, private :: &
|
|
mesh_subNodeCoord !< coordinates of subnodes per element
|
|
|
|
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
|
|
|
|
#ifdef Spectral
|
|
include 'fftw3.f03'
|
|
real(pReal), dimension(3), public :: geomdim, virt_dim ! physical dimension of volume element per direction
|
|
integer(pInt), dimension(3), public :: res
|
|
real(pReal), public :: wgt
|
|
integer(pInt), public :: res1_red, homog
|
|
integer(pInt), private :: i
|
|
#endif
|
|
|
|
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
|
|
! Hence, I suggest to prefix with "FE_"
|
|
|
|
integer(pInt), parameter, public :: &
|
|
FE_Nelemtypes = 10_pInt, &
|
|
FE_maxNnodes = 8_pInt, &
|
|
FE_maxNsubNodes = 56_pInt, &
|
|
FE_maxNips = 27_pInt, &
|
|
FE_maxNipNeighbors = 6_pInt, &
|
|
FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP
|
|
FE_NipFaceNodes = 4_pInt
|
|
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< nodes in a specific type of element (how we use it)
|
|
int([8, & ! element 7
|
|
4, & ! element 134
|
|
4, & ! element 11
|
|
4, & ! element 27
|
|
4, & ! element 157
|
|
6, & ! element 136
|
|
8, & ! element 21
|
|
8, & ! element 117
|
|
8, & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
3 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nips = & !< IPs in a specific type of element
|
|
int([8, & ! element 7
|
|
1, & ! element 134
|
|
4, & ! element 11
|
|
9, & ! element 27
|
|
4, & ! element 157
|
|
6, & ! element 136
|
|
27,& ! element 21
|
|
1, & ! element 117
|
|
8, & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
3 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_NipNeighbors = & !< IP neighbors in a specific type of element
|
|
int([6, & ! element 7
|
|
4, & ! element 134
|
|
4, & ! element 11
|
|
4, & ! element 27
|
|
6, & ! element 157
|
|
6, & ! element 136
|
|
6, & ! element 21
|
|
6, & ! element 117
|
|
6, & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
4 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: FE_NsubNodes = & !< subnodes required to fully define all IP volumes
|
|
int([19,& ! element 7 ! order is +x,-x,+y,-y,+z,-z but meaning strongly depends on Elemtype
|
|
0, & ! element 134
|
|
5, & ! element 11
|
|
12,& ! element 27
|
|
0, & ! element 157
|
|
15,& ! element 136
|
|
56,& ! element 21
|
|
0, & ! element 117
|
|
19,& ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
4 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: FE_NoriginalNodes = & !< nodes in a specific type of element (how it is originally defined by marc)
|
|
int([8, & ! element 7
|
|
4, & ! element 134
|
|
4, & ! element 11
|
|
8, & ! element 27
|
|
4, & ! element 157
|
|
6, & ! element 136
|
|
20,& ! element 21
|
|
8, & ! element 117
|
|
20,& ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
6 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_maxNipNeighbors,FE_Nelemtypes), parameter, private :: FE_NfaceNodes = &!< nodes per face in a specific type of element
|
|
reshape(int([&
|
|
4,4,4,4,4,4, & ! element 7
|
|
3,3,3,3,0,0, & ! element 134
|
|
2,2,2,2,0,0, & ! element 11
|
|
2,2,2,2,0,0, & ! element 27
|
|
3,3,3,3,0,0, & ! element 157
|
|
3,4,4,4,3,0, & ! element 136
|
|
4,4,4,4,4,4, & ! element 21
|
|
4,4,4,4,4,4, & ! element 117
|
|
4,4,4,4,4,4, & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
2,2,2,0,0,0 & ! element 155, 125, 128
|
|
],pInt),[FE_maxNipNeighbors,FE_Nelemtypes])
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: FE_maxNnodesAtIP = & !< map IP index to two node indices in a specific type of element
|
|
int([1, & ! element 7
|
|
4, & ! element 134
|
|
1, & ! element 11
|
|
2, & ! element 27
|
|
1, & ! element 157
|
|
1, & ! element 136
|
|
4, & ! element 21
|
|
8, & ! element 117
|
|
1, & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
1 & ! element 155, 125, 128
|
|
],pInt)
|
|
integer(pInt), dimension(FE_NipFaceNodes,FE_maxNipNeighbors,FE_Nelemtypes), parameter, private :: &
|
|
FE_nodeOnFace = & !< List of node indices on each face of a specific type of element
|
|
reshape(int([&
|
|
1,2,3,4 , & ! element 7
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,0 , & ! element 134
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 11
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 27
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 157
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 136
|
|
1,4,5,2 , &
|
|
2,5,6,3 , &
|
|
1,3,6,4 , &
|
|
4,6,5,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,4 , & ! element 21
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 117
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,0,0 , & ! element 155,125,128
|
|
2,3,0,0 , &
|
|
3,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 &
|
|
],pInt),[FE_NipFaceNodes,FE_maxNipNeighbors,FE_Nelemtypes])
|
|
|
|
integer(pInt), dimension(:,:,:), allocatable, private :: &
|
|
FE_nodesAtIP, & !< map IP index to two node indices in a specific type of element
|
|
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
|
|
FE_subNodeParent
|
|
|
|
integer(pInt), dimension(:,:,:,:), allocatable, private :: &
|
|
FE_subNodeOnIPFace
|
|
|
|
public :: mesh_init, &
|
|
mesh_FEasCP, &
|
|
mesh_build_subNodeCoords, &
|
|
mesh_build_ipVolumes, &
|
|
mesh_build_ipCoordinates
|
|
#ifdef Spectral
|
|
public :: mesh_regrid, &
|
|
mesh_regular_grid, &
|
|
deformed_linear, &
|
|
deformed_fft, &
|
|
volume_compare, &
|
|
shape_compare
|
|
#endif
|
|
|
|
private :: &
|
|
#ifdef Spectral
|
|
mesh_spectral_getResolution, &
|
|
mesh_spectral_getDimension, &
|
|
mesh_spectral_getHomogenization, &
|
|
mesh_spectral_count_nodesAndElements, &
|
|
mesh_spectral_count_cpElements, &
|
|
mesh_spectral_map_elements, &
|
|
mesh_spectral_map_nodes, &
|
|
mesh_spectral_count_cpSizes, &
|
|
mesh_spectral_build_nodes, &
|
|
mesh_spectral_build_elements, &
|
|
#endif
|
|
#ifdef Marc
|
|
mesh_marc_get_tableStyles, &
|
|
mesh_marc_count_nodesAndElements, &
|
|
mesh_marc_count_elementSets, &
|
|
mesh_marc_map_elementSets, &
|
|
mesh_marc_count_cpElements, &
|
|
mesh_marc_map_Elements, &
|
|
mesh_marc_map_nodes, &
|
|
mesh_marc_build_nodes, &
|
|
mesh_marc_count_cpSizes, &
|
|
mesh_marc_build_elements, &
|
|
#endif
|
|
#ifdef Abaqus
|
|
mesh_abaqus_count_nodesAndElements, &
|
|
mesh_abaqus_count_elementSets, &
|
|
mesh_abaqus_count_materials, &
|
|
mesh_abaqus_map_elementSets, &
|
|
mesh_abaqus_map_materials, &
|
|
mesh_abaqus_count_cpElements, &
|
|
mesh_abaqus_map_elements, &
|
|
mesh_abaqus_map_nodes, &
|
|
mesh_abaqus_build_nodes, &
|
|
mesh_abaqus_count_cpSizes, &
|
|
mesh_abaqus_build_elements, &
|
|
#endif
|
|
mesh_get_damaskOptions, &
|
|
mesh_build_ipAreas, &
|
|
mesh_build_nodeTwins, &
|
|
mesh_build_sharedElems, &
|
|
mesh_build_ipNeighborhood, &
|
|
mesh_tell_statistics, &
|
|
FE_mapElemtype, &
|
|
mesh_faceMatch, &
|
|
mesh_build_FEdata
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief initializes the mesh by calling all necessary private routines the mesh module
|
|
!! Order and routines strongly depend on type of solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_init(ip,element)
|
|
|
|
use DAMASK_interface
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use IO, only: &
|
|
IO_error, &
|
|
#ifdef Abaqus
|
|
IO_abaqus_hasNoPart, &
|
|
#endif
|
|
#ifdef Spectral
|
|
IO_open_file
|
|
use numerics, only: &
|
|
divergence_correction
|
|
#else
|
|
IO_open_InputFile
|
|
#endif
|
|
|
|
use FEsolving, only: &
|
|
parallelExecution, &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
calcMode, &
|
|
lastMode, &
|
|
modelName
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: fileUnit = 222_pInt
|
|
integer(pInt) :: e, element, ip
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,*) '<<<+- mesh init -+>>>'
|
|
write(6,*) '$Id$'
|
|
#include "compilation_info.f90"
|
|
!$OMP END CRITICAL (write2out)
|
|
if (allocated(mesh_mapFEtoCPelem)) deallocate(mesh_mapFEtoCPelem)
|
|
if (allocated(mesh_mapFEtoCPnode)) deallocate(mesh_mapFEtoCPnode)
|
|
if (allocated(mesh_node0)) deallocate(mesh_node0)
|
|
if (allocated(mesh_node)) deallocate(mesh_node)
|
|
if (allocated(mesh_element)) deallocate(mesh_element)
|
|
if (allocated(mesh_subNodeCoord)) deallocate(mesh_subNodeCoord)
|
|
if (allocated(mesh_ipCenterOfGravity)) deallocate(mesh_ipCenterOfGravity)
|
|
if (allocated(mesh_ipArea)) deallocate(mesh_ipArea)
|
|
if (allocated(mesh_ipAreaNormal)) deallocate(mesh_ipAreaNormal)
|
|
if (allocated(mesh_sharedElem)) deallocate(mesh_sharedElem)
|
|
if (allocated(mesh_ipNeighborhood)) deallocate(mesh_ipNeighborhood)
|
|
if (allocated(mesh_ipVolume)) deallocate(mesh_ipVolume)
|
|
if (allocated(mesh_nodeTwins)) deallocate(mesh_nodeTwins)
|
|
if (allocated(FE_nodesAtIP)) deallocate(FE_nodesAtIP)
|
|
if (allocated(FE_ipNeighbor))deallocate(FE_ipNeighbor)
|
|
if (allocated(FE_subNodeParent)) deallocate(FE_subNodeParent)
|
|
if (allocated(FE_subNodeOnIPFace)) deallocate(FE_subNodeOnIPFace)
|
|
call mesh_build_FEdata ! get properties of the different types of elements
|
|
#ifdef Spectral
|
|
call IO_open_file(fileUnit,geometryFile) ! parse info from geometry file...
|
|
res = mesh_spectral_getResolution(fileUnit)
|
|
res1_red = res(1)/2_pInt + 1_pInt
|
|
wgt = 1.0/real(res(1)*res(2)*res(3),pReal)
|
|
geomdim = mesh_spectral_getDimension(fileUnit)
|
|
homog = mesh_spectral_getHomogenization(fileUnit)
|
|
if (divergence_correction) then
|
|
do i = 1_pInt, 3_pInt
|
|
if (i /= minloc(geomdim,1) .and. i /= maxloc(geomdim,1)) virt_dim = geomdim/geomdim(i)
|
|
enddo
|
|
else
|
|
virt_dim = geomdim
|
|
endif
|
|
write(6,'(a,3(i12 ))') ' resolution a b c:', res
|
|
write(6,'(a,3(f12.5))') ' dimension x y z:', geomdim
|
|
write(6,'(a,i5,/)') ' homogenization: ', homog
|
|
call mesh_spectral_count_nodesAndElements
|
|
call mesh_spectral_count_cpElements
|
|
call mesh_spectral_map_elements
|
|
call mesh_spectral_map_nodes
|
|
call mesh_spectral_count_cpSizes
|
|
call mesh_spectral_build_nodes
|
|
call mesh_spectral_build_elements(fileUnit)
|
|
#endif
|
|
#ifdef Marc
|
|
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
|
|
call mesh_marc_get_tableStyles(fileUnit)
|
|
call mesh_marc_count_nodesAndElements(fileUnit)
|
|
call mesh_marc_count_elementSets(fileUnit)
|
|
call mesh_marc_map_elementSets(fileUnit)
|
|
call mesh_marc_count_cpElements(fileUnit)
|
|
call mesh_marc_map_elements(fileUnit)
|
|
call mesh_marc_map_nodes(fileUnit)
|
|
call mesh_marc_build_nodes(fileUnit)
|
|
call mesh_marc_count_cpSizes(fileunit)
|
|
call mesh_marc_build_elements(fileUnit)
|
|
#endif
|
|
#ifdef Abaqus
|
|
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
|
|
noPart = IO_abaqus_hasNoPart(fileUnit)
|
|
call mesh_abaqus_count_nodesAndElements(fileUnit)
|
|
call mesh_abaqus_count_elementSets(fileUnit)
|
|
call mesh_abaqus_count_materials(fileUnit)
|
|
call mesh_abaqus_map_elementSets(fileUnit)
|
|
call mesh_abaqus_map_materials(fileUnit)
|
|
call mesh_abaqus_count_cpElements(fileUnit)
|
|
call mesh_abaqus_map_elements(fileUnit)
|
|
call mesh_abaqus_map_nodes(fileUnit)
|
|
call mesh_abaqus_build_nodes(fileUnit)
|
|
call mesh_abaqus_count_cpSizes(fileunit)
|
|
call mesh_abaqus_build_elements(fileUnit)
|
|
#endif
|
|
|
|
call mesh_get_damaskOptions(fileUnit)
|
|
close (fileUnit)
|
|
|
|
call mesh_build_subNodeCoords
|
|
call mesh_build_ipCoordinates
|
|
call mesh_build_ipVolumes
|
|
call mesh_build_ipAreas
|
|
call mesh_build_nodeTwins
|
|
call mesh_build_sharedElems
|
|
call mesh_build_ipNeighborhood
|
|
call mesh_tell_statistics
|
|
|
|
parallelExecution = (parallelExecution .and. (mesh_Nelems == mesh_NcpElems)) ! plus potential killer from non-local constitutive
|
|
|
|
FEsolving_execElem = [ 1_pInt,mesh_NcpElems]
|
|
if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP)
|
|
allocate(FEsolving_execIP(2_pInt,mesh_NcpElems)); FEsolving_execIP = 1_pInt
|
|
forall (e = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,e) = FE_Nips(mesh_element(2,e))
|
|
|
|
if (allocated(calcMode)) deallocate(calcMode)
|
|
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
|
|
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
|
|
calcMode(ip,mesh_FEasCP('elem',element)) = .true. ! first ip,el needs to be already pingponged to "calc"
|
|
lastMode = .true. ! and its mode is already known...
|
|
|
|
end subroutine mesh_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
|
|
!! valid questions (what) are 'elem', 'node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer(pInt) function mesh_FEasCP(what,myID)
|
|
|
|
use IO, only: IO_lc
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: what
|
|
integer(pInt), intent(in) :: myID
|
|
|
|
integer(pInt), dimension(:,:), pointer :: lookupMap
|
|
integer(pInt) :: lower,upper,center
|
|
|
|
mesh_FEasCP = 0_pInt
|
|
select case(IO_lc(what(1:4)))
|
|
case('elem')
|
|
lookupMap => mesh_mapFEtoCPelem
|
|
case('node')
|
|
lookupMap => mesh_mapFEtoCPnode
|
|
case default
|
|
return
|
|
endselect
|
|
|
|
lower = 1_pInt
|
|
upper = int(size(lookupMap,2_pInt),pInt)
|
|
|
|
if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
|
|
mesh_FEasCP = lookupMap(2_pInt,lower)
|
|
return
|
|
elseif (lookupMap(1_pInt,upper) == myID) then
|
|
mesh_FEasCP = lookupMap(2_pInt,upper)
|
|
return
|
|
endif
|
|
|
|
do while (upper-lower > 1_pInt) ! binary search in between bounds
|
|
center = (lower+upper)/2_pInt
|
|
if (lookupMap(1_pInt,center) < myID) then
|
|
lower = center
|
|
elseif (lookupMap(1_pInt,center) > myID) then
|
|
upper = center
|
|
else
|
|
mesh_FEasCP = lookupMap(2_pInt,center)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
end function mesh_FEasCP
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Assigns coordinates for subnodes in each CP element.
|
|
!! Allocates global array 'mesh_subNodeCoord'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_subNodeCoords
|
|
|
|
implicit none
|
|
integer(pInt) e,t,n,p,Nparents
|
|
|
|
if (.not. allocated(mesh_subNodeCoord)) then
|
|
allocate(mesh_subNodeCoord(3,mesh_maxNnodes+mesh_maxNsubNodes,mesh_NcpElems))
|
|
endif
|
|
mesh_subNodeCoord = 0.0_pReal
|
|
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do n = 1_pInt,FE_Nnodes(t)
|
|
mesh_subNodeCoord(1:3,n,e) = mesh_node(1:3,mesh_FEasCP('node',mesh_element(4_pInt+n,e))) ! loop over nodes of this element type
|
|
enddo
|
|
do n = 1_pInt,FE_NsubNodes(t) ! now for the true subnodes
|
|
Nparents = count(FE_subNodeParent(1_pInt:FE_Nips(t),n,t) > 0_pInt)
|
|
do p = 1_pInt,Nparents ! loop through present parent nodes
|
|
mesh_subNodeCoord(1:3,FE_Nnodes(t)+n,e) &
|
|
= mesh_subNodeCoord(1:3,FE_Nnodes(t)+n,e) &
|
|
+ mesh_node(1:3,mesh_FEasCP('node',mesh_element(4_pInt+FE_subNodeParent(p,n,t),e))) ! add up parents
|
|
enddo
|
|
mesh_subNodeCoord(1:3,n+FE_Nnodes(t),e) = mesh_subNodeCoord(1:3,n+FE_Nnodes(t),e)/real(Nparents,pReal)
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_subNodeCoords
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipVolumes
|
|
|
|
use math, only: math_volTetrahedron
|
|
implicit none
|
|
|
|
integer(pInt) :: e,f,t,i,j,n
|
|
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2_pInt ! each interface is made up of this many triangles
|
|
real(pReal), dimension(3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
|
|
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: volume ! volumes of possible tetrahedra
|
|
|
|
if (.not. allocated(mesh_ipVolume)) then
|
|
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems))
|
|
endif
|
|
|
|
mesh_ipVolume = 0.0_pReal
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2_pInt,e) ! get elemType
|
|
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
|
|
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP and add tetrahedra which connect to CoG
|
|
forall (n = 1_pInt:FE_NipFaceNodes) &
|
|
nPos(:,n) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles) & ! start at each interface node and build valid triangles to cover interface
|
|
volume(j,n) = math_volTetrahedron(nPos(:,n), & ! calc volume of respective tetrahedron to CoG
|
|
nPos(:,1_pInt+mod(n-1_pInt +j ,FE_NipFaceNodes)),& ! start at offset j
|
|
nPos(:,1_pInt+mod(n-1_pInt +j+1_pInt,FE_NipFaceNodes)),& ! and take j's neighbor
|
|
mesh_ipCenterOfGravity(:,i,e))
|
|
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) + sum(volume) ! add contribution from this interface
|
|
enddo
|
|
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) / FE_NipFaceNodes ! renormalize with interfaceNodeNum due to loop over them
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_ipVolumes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCenterOfGravity'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipCoordinates
|
|
|
|
use prec, only: tol_gravityNodePos
|
|
|
|
implicit none
|
|
integer(pInt) :: e,f,t,i,j,k,n
|
|
logical, dimension(mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNode ! flagList to find subnodes determining center of grav
|
|
real(pReal), dimension(3,mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNodePos ! coordinates of subnodes determining center of grav
|
|
real(pReal), dimension(3) :: centerOfGravity
|
|
|
|
if (.not. allocated(mesh_ipCenterOfGravity)) allocate(mesh_ipCenterOfGravity(3,mesh_maxNips,mesh_NcpElems))
|
|
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
|
|
gravityNode = .false. ! reset flagList
|
|
gravityNodePos = 0.0_pReal ! reset coordinates
|
|
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
|
|
do n = 1_pInt,FE_NipFaceNodes ! loop over nodes on interface
|
|
gravityNode(FE_subNodeOnIPFace(n,f,i,t)) = .true.
|
|
gravityNodePos(:,FE_subNodeOnIPFace(n,f,i,t)) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
enddo
|
|
enddo
|
|
|
|
do j = 1_pInt,mesh_maxNnodes+mesh_maxNsubNodes-1_pInt ! walk through entire flagList except last
|
|
if (gravityNode(j)) then ! valid node index
|
|
do k = j+1_pInt,mesh_maxNnodes+mesh_maxNsubNodes ! walk through remainder of list
|
|
if (gravityNode(k) .and. all(abs(gravityNodePos(:,j) - gravityNodePos(:,k)) < tol_gravityNodePos)) then ! found duplicate
|
|
gravityNode(j) = .false. ! delete first instance
|
|
gravityNodePos(:,j) = 0.0_pReal
|
|
exit ! continue with next suspect
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
centerOfGravity = sum(gravityNodePos,2)/real(count(gravityNode),pReal)
|
|
mesh_ipCenterOfGravity(:,i,e) = centerOfGravity
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_ipCoordinates
|
|
|
|
|
|
#ifdef Spectral
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads resolution information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_spectral_getResolution(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_floatValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b c + 3 values + keyword
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
integer(pInt), dimension(3) :: mesh_spectral_getResolution
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i, j
|
|
logical :: gotResolution = .false.
|
|
integer(pInt) :: myUnit
|
|
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getResolution')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1_pInt)) )
|
|
case ('resolution')
|
|
gotResolution = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('a')
|
|
mesh_spectral_getResolution(1) = IO_intValue(line,positions,j+1_pInt)
|
|
case('b')
|
|
mesh_spectral_getResolution(2) = IO_intValue(line,positions,j+1_pInt)
|
|
case('c')
|
|
mesh_spectral_getResolution(3) = IO_intValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotResolution) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='resolution')
|
|
if((mod(mesh_spectral_getResolution(1),2_pInt)/=0_pInt .or. & ! must be a even number
|
|
mesh_spectral_getResolution(1) < 2_pInt .or. & ! and larger than 1
|
|
mod(mesh_spectral_getResolution(2),2_pInt)/=0_pInt .or. & ! -"-
|
|
mesh_spectral_getResolution(2) < 2_pInt .or. & ! -"-
|
|
(mod(mesh_spectral_getResolution(3),2_pInt)/=0_pInt .and. &
|
|
mesh_spectral_getResolution(3)/= 1_pInt)) .or. & ! third res might be 1
|
|
mesh_spectral_getResolution(3) < 1_pInt) &
|
|
call IO_error(error_ID = 843_pInt, ext_msg='mesh_spectral_getResolution')
|
|
|
|
end function mesh_spectral_getResolution
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads dimension information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_spectral_getDimension(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_floatValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b c + 3 values + keyword
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
real(pReal), dimension(3) :: mesh_spectral_getDimension
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i, j
|
|
logical :: gotDimension = .false.
|
|
integer(pInt) :: myUnit
|
|
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getDimension')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1)) )
|
|
case ('dimension')
|
|
gotDimension = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('x')
|
|
mesh_spectral_getDimension(1) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('y')
|
|
mesh_spectral_getDimension(2) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('z')
|
|
mesh_spectral_getDimension(3) = IO_floatValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotDimension) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='dimension')
|
|
if (any(mesh_spectral_getDimension<=0.0_pReal)) &
|
|
call IO_error(error_ID = 844_pInt, ext_msg='mesh_spectral_getDimension')
|
|
|
|
end function mesh_spectral_getDimension
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Reads homogenization information from geometry file. If fileUnit is given,
|
|
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_spectral_getHomogenization(fileUnit)
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_open_file, &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a, b, c + 3 values + keyword
|
|
integer(pInt), intent(in), optional :: fileUnit
|
|
integer(pInt) :: headerLength = 0_pInt
|
|
integer(pInt) :: mesh_spectral_getHomogenization
|
|
character(len=1024) :: line, &
|
|
keyword
|
|
integer(pInt) :: i
|
|
logical :: gotHomogenization = .false.
|
|
integer(pInt) :: myUnit
|
|
|
|
if(.not. present(fileUnit)) then
|
|
myUnit = 289_pInt
|
|
call IO_open_file(myUnit,trim(geometryFile))
|
|
else
|
|
myUnit = fileUnit
|
|
endif
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getHomogenization')
|
|
endif
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,7_pInt)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1)) )
|
|
case ('homogenization')
|
|
gotHomogenization = .true.
|
|
mesh_spectral_getHomogenization = IO_intValue(line,positions,2_pInt)
|
|
end select
|
|
enddo
|
|
|
|
if(.not. present(fileUnit)) close(myUnit)
|
|
|
|
if (.not. gotHomogenization ) &
|
|
call IO_error(error_ID = 845_pInt, ext_msg='homogenization')
|
|
if (mesh_spectral_getHomogenization<1_pInt) &
|
|
call IO_error(error_ID = 842_pInt, ext_msg='mesh_spectral_getHomogenization')
|
|
|
|
end function mesh_spectral_getHomogenization
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_nodesAndElements()
|
|
|
|
implicit none
|
|
mesh_Nelems = res(1)*res(2)*res(3)
|
|
mesh_Nnodes = (1_pInt + res(1))*(1_pInt + res(2))*(1_pInt + res(3))
|
|
|
|
end subroutine mesh_spectral_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_cpElements
|
|
|
|
implicit none
|
|
|
|
mesh_NcpElems = mesh_Nelems
|
|
|
|
end subroutine mesh_spectral_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_map_elements
|
|
|
|
implicit none
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPelem(2_pInt,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
forall (i = 1_pInt:mesh_NcpElems) &
|
|
mesh_mapFEtoCPelem(1:2,i) = i
|
|
|
|
end subroutine mesh_spectral_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_map_nodes
|
|
|
|
implicit none
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
forall (i = 1_pInt:mesh_Nnodes) &
|
|
mesh_mapFEtoCPnode(1:2,i) = i
|
|
|
|
end subroutine mesh_spectral_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNsubNodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_count_cpSizes
|
|
|
|
implicit none
|
|
integer(pInt) :: t
|
|
|
|
t = FE_mapElemtype('C3D8R') ! fake 3D hexahedral 8 node 1 IP element
|
|
|
|
mesh_maxNnodes = FE_Nnodes(t)
|
|
mesh_maxNips = FE_Nips(t)
|
|
mesh_maxNipNeighbors = FE_NipNeighbors(t)
|
|
mesh_maxNsubNodes = FE_NsubNodes(t)
|
|
|
|
end subroutine mesh_spectral_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_nodes()
|
|
|
|
use IO, only: &
|
|
IO_error
|
|
use numerics, only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt) :: n
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
|
|
mesh_node0(1,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(1) * real(mod(n,(res(1)+1_pInt) ),pReal) &
|
|
/ real(res(1),pReal)
|
|
mesh_node0(2,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(2) * real(mod(n/(res(1)+1_pInt),(res(2)+1_pInt)),pReal) &
|
|
/ real(res(2),pReal)
|
|
mesh_node0(3,n+1_pInt) = numerics_unitlength * &
|
|
geomdim(3) * real(mod(n/(res(1)+1_pInt)/(res(2)+1_pInt),(res(3)+1_pInt)),pReal) &
|
|
/ real(res(3),pReal)
|
|
end forall
|
|
|
|
mesh_node = mesh_node0 !why?
|
|
|
|
end subroutine mesh_spectral_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, material, texture, and node list per element.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_elements(myUnit)
|
|
|
|
use IO, only: &
|
|
IO_checkAndRewind, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_continuousIntValues, &
|
|
IO_intValue, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 7_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
integer(pInt) :: e, i, headerLength = 0_pInt, maxIntCount
|
|
integer(pInt), dimension(:), allocatable :: microstructures
|
|
integer(pInt), dimension(1,1) :: dummySet = 0_pInt
|
|
character(len=65536) :: line,keyword
|
|
character(len=64), dimension(1) :: dummyName = ''
|
|
|
|
call IO_checkAndRewind(myUnit)
|
|
|
|
read(myUnit,'(a65536)') line
|
|
myPos = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,myPos,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,myPos,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_build_elements')
|
|
endif
|
|
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a65536)') line
|
|
enddo
|
|
|
|
maxIntCount = 0_pInt
|
|
i = 1_pInt
|
|
|
|
do while (i > 0_pInt)
|
|
i = IO_countContinuousIntValues(myUnit)
|
|
maxIntCount = max(maxIntCount, i)
|
|
enddo
|
|
|
|
rewind (myUnit)
|
|
do i=1_pInt,headerLength ! skip header
|
|
read(myUnit,'(a65536)') line
|
|
enddo
|
|
|
|
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
allocate (microstructures (1_pInt+maxIntCount)) ; microstructures = 2_pInt
|
|
|
|
e = 0_pInt
|
|
do while (e < mesh_NcpElems .and. microstructures(1) > 0_pInt) ! fill expected number of elements, stop at end of data (or blank line!)
|
|
microstructures = IO_continuousIntValues(myUnit,maxIntCount,dummyName,dummySet,0_pInt) ! get affected elements
|
|
do i = 1_pInt,microstructures(1_pInt)
|
|
e = e+1_pInt ! valid element entry
|
|
mesh_element( 1,e) = e ! FE id
|
|
mesh_element( 2,e) = FE_mapElemtype('C3D8R') ! elem type
|
|
mesh_element( 3,e) = homog ! homogenization
|
|
mesh_element( 4,e) = microstructures(1_pInt+i) ! microstructure
|
|
mesh_element( 5,e) = e + (e-1_pInt)/res(1) + &
|
|
((e-1_pInt)/(res(1)*res(2)))*(res(1)+1_pInt) ! base node
|
|
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
|
|
mesh_element( 7,e) = mesh_element(5,e) + res(1) + 2_pInt
|
|
mesh_element( 8,e) = mesh_element(5,e) + res(1) + 1_pInt
|
|
mesh_element( 9,e) = mesh_element(5,e) +(res(1) + 1_pInt) * (res(2) + 1_pInt) ! second floor base node
|
|
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
|
|
mesh_element(11,e) = mesh_element(9,e) + res(1) + 2_pInt
|
|
mesh_element(12,e) = mesh_element(9,e) + res(1) + 1_pInt
|
|
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),mesh_element(3,e)) !needed for statistics
|
|
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),mesh_element(4,e))
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(microstructures)
|
|
if (e /= mesh_NcpElems) call IO_error(880_pInt,e)
|
|
|
|
end subroutine mesh_spectral_build_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Performes a regridding from saved restart information
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_regrid(adaptive,resNewInput,minRes)
|
|
use prec, only: &
|
|
pInt, &
|
|
pReal
|
|
use DAMASK_interface, only: &
|
|
getSolverWorkingDirectoryName, &
|
|
getSolverJobName, &
|
|
GeometryFile
|
|
use IO, only: &
|
|
IO_read_jobBinaryFile ,&
|
|
IO_read_jobBinaryIntFile ,&
|
|
IO_write_jobBinaryFile, &
|
|
IO_write_jobBinaryIntFile, &
|
|
IO_write_jobFile, &
|
|
IO_error
|
|
use math, only: &
|
|
math_nearestNeighborSearch, &
|
|
math_mul33x3
|
|
character(len=1024):: formatString, N_Digits
|
|
logical, intent(in) :: adaptive ! if true, choose adaptive grid based on resNewInput, otherwise keep it constant
|
|
integer(pInt), dimension(3), optional, intent(in) :: resNewInput ! f2py cannot handle optional arguments correctly (they are always present)
|
|
integer(pInt), dimension(3), optional, intent(in) :: minRes
|
|
integer(pInt), dimension(3) :: mesh_regrid, ratio
|
|
integer(pInt), dimension(3,2) :: possibleResNew
|
|
integer(pInt):: maxsize, i, j, k, ielem, NpointsNew, spatialDim
|
|
integer(pInt), dimension(3) :: resNew
|
|
integer(pInt), dimension(:), allocatable :: indices
|
|
real(pReal), dimension(3) :: geomdimNew
|
|
real(pReal), dimension(3,3) :: Favg, Favg_LastInc, &
|
|
FavgNew, Favg_LastIncNew, &
|
|
deltaF, deltaF_lastInc
|
|
real(pReal), dimension(:,:), allocatable :: &
|
|
coordinatesNew, &
|
|
coordinatesLinear
|
|
real(pReal), dimension(:,:,:), allocatable :: &
|
|
F_Linear, F_Linear_New, &
|
|
stateHomog
|
|
real(pReal), dimension (:,:,:,:), allocatable :: &
|
|
coordinates, &
|
|
Tstar, TstarNew, &
|
|
stateConst
|
|
real(pReal), dimension(:,:,:,:,:), allocatable :: &
|
|
F, FNew, &
|
|
Fp, FpNew, &
|
|
Lp, LpNew, &
|
|
dcsdE, dcsdENew, &
|
|
F_lastInc, F_lastIncNew
|
|
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
|
dPdF, dPdFNew
|
|
|
|
integer(pInt), dimension(:,:), allocatable :: &
|
|
sizeStateHomog
|
|
integer(pInt), dimension(:,:,:), allocatable :: &
|
|
material_phase, material_phaseNew, &
|
|
sizeStateConst
|
|
|
|
write(6,*) 'Regridding geometry'
|
|
if (adaptive) then
|
|
write(6,*) 'adaptive resolution determination'
|
|
if (present(minRes)) then
|
|
if (all(minRes /= -1_pInt)) & !the f2py way to tell it is present
|
|
write(6,'(a,3(i12))') ' given minimum resolution ', minRes
|
|
endif
|
|
if (present(resNewInput)) then
|
|
if (any (resNewInput<1)) call IO_error(890_pInt, ext_msg = 'resNewInput') !the f2py way to tell it is not present
|
|
write(6,'(a,3(i12))') ' target resolution ', resNewInput
|
|
else
|
|
call IO_error(890_pInt, ext_msg = 'resNewInput')
|
|
endif
|
|
endif
|
|
|
|
!---------------------------------------------------------
|
|
allocate(F(res(1),res(2),res(3),3,3))
|
|
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',trim(getSolverJobName()),size(F))
|
|
read (777,rec=1) F
|
|
close (777)
|
|
|
|
! ----read in average deformation-------------------------
|
|
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(Favg))
|
|
read (777,rec=1) Favg
|
|
close (777)
|
|
|
|
! ----Store coordinates into a linear list--------------
|
|
allocate(coordinates(res(1),res(2),res(3),3))
|
|
call deformed_fft(res,geomdim,Favg,1.0_pReal,F,coordinates)
|
|
allocate(coordinatesLinear(3,mesh_NcpElems))
|
|
ielem = 0_pInt
|
|
do k=1_pInt,res(3); do j=1_pInt, res(2); do i=1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
coordinatesLinear(1:3,ielem) = coordinates(i,j,k,1:3)
|
|
enddo; enddo; enddo
|
|
deallocate(coordinates)
|
|
|
|
! ----sanity check 2D /3D case----------------------------------
|
|
if (res(3)== 1_pInt) then
|
|
spatialDim = 2_pInt
|
|
if (present (minRes)) then
|
|
if (minRes(1) > 0_pInt .or. minRes(2) > 0_pInt) then
|
|
if (minRes(3) /= 1_pInt .or. &
|
|
mod(minRes(1),2_pInt) /= 0_pInt .or. &
|
|
mod(minRes(2),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '2D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
|
|
endif; endif
|
|
else
|
|
spatialDim = 3_pInt
|
|
if (present (minRes)) then
|
|
if (any(minRes > 0_pInt)) then
|
|
if (mod(minRes(1),2_pInt) /= 0_pInt.or. &
|
|
mod(minRes(2),2_pInt) /= 0_pInt .or. &
|
|
mod(minRes(3),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '3D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
|
|
endif; endif
|
|
endif
|
|
|
|
!---- Automatic detection based on current geom -----------------
|
|
geomdimNew = math_mul33x3(Favg,geomdim)
|
|
if (adaptive) then
|
|
ratio = floor(real(resNewInput,pReal) * (geomdimNew/geomdim), pInt)
|
|
|
|
possibleResNew = 1_pInt
|
|
do i = 1_pInt, spatialDim
|
|
if (mod(ratio(i),2) == 0_pInt) then
|
|
possibleResNew(i,1:2) = [ratio(i),ratio(i) + 2_pInt]
|
|
else
|
|
possibleResNew(i,1:2) = [ratio(i)-1_pInt, ratio(i) + 1_pInt]
|
|
endif
|
|
if (.not.present(minRes)) then ! calling from fortran, optional argument not given
|
|
possibleResNew = possibleResNew
|
|
else ! optional argument is there
|
|
if (any(minRes<1_pInt)) then
|
|
possibleResNew = possibleResNew ! f2py calling, but without specification (or choosing invalid values), standard from pyf = -1
|
|
else ! given useful values
|
|
do k = 1_pInt,3_pInt; do j = 1_pInt,3_pInt
|
|
possibleResNew(j,k) = max(possibleResNew(j,k), minRes(j))
|
|
enddo; enddo
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
k = huge(1_pInt)
|
|
do i = 0_pInt, 2_pInt**spatialDim - 1
|
|
j = abs( possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt) &
|
|
* possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt) &
|
|
* possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) &
|
|
- resNewInput(1)*resNewInput(2)*resNewInput(3))
|
|
|
|
if (j < k) then
|
|
k = j
|
|
resNew =[ possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt), &
|
|
possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt), &
|
|
possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) ]
|
|
endif
|
|
enddo
|
|
else
|
|
resNew = res
|
|
endif
|
|
|
|
mesh_regrid = resNew
|
|
NpointsNew = resNew(1)*resNew(2)*resNew(3)
|
|
|
|
! ----Calculate regular new coordinates-----------------------------
|
|
allocate(coordinatesNew(3,NpointsNew))
|
|
ielem = 0_pInt
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
ielem = ielem + 1_pInt
|
|
coordinatesNew(1:3,ielem) = math_mul33x3(Favg, geomdim/real(resNew,pReal)*real([i,j,k],pReal) &
|
|
- geomdim/real(2_pInt*resNew,pReal))
|
|
enddo; enddo; enddo
|
|
|
|
!----- Nearest neighbour search ------------------------------------
|
|
allocate(indices(NpointsNew))
|
|
call math_nearestNeighborSearch(spatialDim, Favg, geomdim, NpointsNew, mesh_NcpElems, &
|
|
coordinatesNew, coordinatesLinear, indices)
|
|
deallocate(coordinatesNew)
|
|
|
|
|
|
!----- write out indices periodic-------------------------------------------
|
|
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
|
|
call IO_write_jobFile(777,'IDX') ! make it a general open-write file
|
|
write(777, '(A)') '1 header'
|
|
write(777, '(A)') 'Numbered indices as per the large set'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') indices(i), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
|
|
!----- calculalte and write out indices non periodic-------------------------------------------
|
|
do i = 1_pInt, NpointsNew
|
|
indices(i) = indices(i) / 3_pInt**spatialDim +1_pInt ! +1 b'coz index count starts from '0'
|
|
enddo
|
|
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
|
|
call IO_write_jobFile(777,'idx') ! make it a general open-write file
|
|
write(777, '(A)') '1 header'
|
|
write(777, '(A)') 'Numbered indices as per the small set'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') indices(i), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
|
|
!------ write out new geom file ---------------------
|
|
write(N_Digits, '(I16.16)') 1_pInt+int(log10(real(maxval(mesh_element(4,1:mesh_NcpElems)),pReal)),pInt)
|
|
N_Digits = adjustl(N_Digits)
|
|
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
|
|
open(777,file=trim(getSolverWorkingDirectoryName())//trim(GeometryFile),status='REPLACE')
|
|
write(777, '(A)') '3 header'
|
|
write(777, '(A, I8, A, I8, A, I8)') 'resolution a ', resNew(1), ' b ', resNew(2), ' c ', resNew(3)
|
|
write(777, '(A, g17.10, A, g17.10, A, g17.10)') 'dimension x ', geomdim(1), ' y ', geomdim(2), ' z ', geomdim(3)
|
|
write(777, '(A)') 'homogenization 1'
|
|
do i = 1_pInt, NpointsNew
|
|
write(777,trim(formatString),advance='no') mesh_element(4,indices(i)), ' '
|
|
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
|
|
enddo
|
|
close(777)
|
|
|
|
!---relocate F and F_lastInc and set them average to old average (data from spectral method)------------------------------
|
|
allocate(F_Linear(3,3,mesh_NcpElems))
|
|
allocate(F_Linear_New(3,3,NpointsNew))
|
|
allocate(FNew(resNew(1),resNew(2),resNew(3),3,3))
|
|
|
|
ielem = 0_pInt
|
|
do k=1_pInt,res(3); do j=1_pInt, res(2); do i=1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
F_Linear(1:3,1:3, ielem) = F(i,j,k,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
|
|
do i=1_pInt, NpointsNew
|
|
F_Linear_New(1:3,1:3,i) = F_Linear(1:3,1:3,indices(i)) ! -- mapping old to new ...based on indices
|
|
enddo
|
|
|
|
ielem = 0_pInt
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
ielem = ielem + 1_pInt
|
|
FNew(i,j,k,1:3,1:3) = F_Linear_New(1:3,1:3,ielem)
|
|
enddo; enddo; enddo
|
|
|
|
do i=1_pInt,3_pInt; do j=1_pInt,3_pInt
|
|
FavgNew(i,j) = real(sum(FNew(1:resNew(1),1:resNew(2),1:resNew(3),i,j))/ NpointsNew,pReal)
|
|
enddo; enddo
|
|
|
|
deltaF = Favg - FavgNew
|
|
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
FNew(i,j,k,1:3,1:3) = FNew(i,j,k,1:3,1:3) + deltaF
|
|
enddo; enddo; enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(FNew))
|
|
write (777,rec=1) FNew
|
|
close (777)
|
|
|
|
deallocate(F_Linear)
|
|
deallocate(F_Linear_New)
|
|
deallocate(F)
|
|
deallocate(FNew)
|
|
allocate(F_lastInc(res(1),res(2),res(3),3,3))
|
|
allocate(F_lastIncNew(resNew(1),resNew(2),resNew(3),3,3))
|
|
allocate(F_Linear(3,3,mesh_NcpElems))
|
|
allocate(F_Linear_New(3,3,NpointsNew))
|
|
|
|
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc', &
|
|
trim(getSolverJobName()),size(F_lastInc))
|
|
read (777,rec=1) F_lastInc
|
|
close (777)
|
|
|
|
call IO_read_jobBinaryFile(777,'F_aim_lastInc', &
|
|
trim(getSolverJobName()),size(Favg_LastInc))
|
|
read (777,rec=1) Favg_LastInc
|
|
close (777)
|
|
|
|
ielem = 0_pInt
|
|
do k=1_pInt,res(3); do j=1_pInt, res(2); do i=1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
F_Linear(1:3,1:3, ielem) = F_lastInc(i,j,k,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
|
|
! -- mapping old to new ...based on indices
|
|
do i=1,NpointsNew
|
|
F_Linear_New(1:3,1:3,i) = F_Linear(1:3,1:3,indices(i))
|
|
enddo
|
|
|
|
ielem = 0_pInt
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
ielem = ielem + 1_pInt
|
|
F_lastIncNew(i,j,k,1:3,1:3) = F_Linear_New(1:3,1:3,ielem)
|
|
enddo; enddo; enddo
|
|
|
|
! -- calculating the Favg_lastincNew
|
|
|
|
do i=1_pInt,3_pInt; do j=1_pInt,3_pInt
|
|
Favg_LastIncNew(i,j) = real(sum(F_lastIncNew(1:resNew(1),1:resNew(2),1:resNew(3),i,j))/ NpointsNew,pReal)
|
|
enddo; enddo
|
|
|
|
deltaF_lastInc = Favg_LastInc - Favg_LastIncNew
|
|
|
|
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
|
|
F_LastIncNew(i,j,k,1:3,1:3) = F_LastIncNew(i,j,k,1:3,1:3) + deltaF_lastInc
|
|
enddo; enddo; enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',size(F_LastIncNew))
|
|
write (777,rec=1) F_LastIncNew
|
|
close (777)
|
|
deallocate(F_Linear)
|
|
deallocate(F_Linear_New)
|
|
deallocate(F_lastInc)
|
|
deallocate(F_lastIncNew)
|
|
|
|
! relocating data of material subroutine ---------------------------------------------------------
|
|
allocate(material_phase (1,1, mesh_NcpElems))
|
|
allocate(material_phaseNew (1,1, NpointsNew))
|
|
call IO_read_jobBinaryIntFile(777,'recordedPhase',trim(getSolverJobName()),size(material_phase))
|
|
read (777,rec=1) material_phase
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
material_phaseNew(1,1,i) = material_phase(1,1,indices(i))
|
|
enddo
|
|
do i = 1, mesh_NcpElems
|
|
if (all(material_phaseNew(1,1,:) /= material_phase(1,1,i))) then
|
|
write(6,*) 'mismatch in regridding'
|
|
write(6,*) material_phase(1,1,i), 'not found in material_phaseNew'
|
|
endif
|
|
enddo
|
|
call IO_write_jobBinaryIntFile(777,'recordedPhase',size(material_phaseNew))
|
|
write (777,rec=1) material_phaseNew
|
|
close (777)
|
|
deallocate(material_phase)
|
|
deallocate(material_phaseNew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(F (3,3,1,1, mesh_NcpElems))
|
|
allocate(FNew (3,3,1,1, NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedF',trim(getSolverJobName()),size(F))
|
|
read (777,rec=1) F
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
FNew(1:3,1:3,1,1,i) = F(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedF',size(FNew))
|
|
write (777,rec=1) FNew
|
|
close (777)
|
|
deallocate(F)
|
|
deallocate(FNew)
|
|
!---------------------------------------------------------------------
|
|
allocate(Fp (3,3,1,1,mesh_NcpElems))
|
|
allocate(FpNew (3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedFp',trim(getSolverJobName()),size(Fp))
|
|
read (777,rec=1) Fp
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
FpNew(1:3,1:3,1,1,i) = Fp(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
|
|
call IO_write_jobBinaryFile(777,'convergedFp',size(FpNew))
|
|
write (777,rec=1) FpNew
|
|
close (777)
|
|
deallocate(Fp)
|
|
deallocate(FpNew)
|
|
!------------------------------------------------------------------------
|
|
allocate(Lp (3,3,1,1,mesh_NcpElems))
|
|
allocate(LpNew (3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedLp',trim(getSolverJobName()),size(Lp))
|
|
read (777,rec=1) Lp
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
LpNew(1:3,1:3,1,1,i) = Lp(1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergedLp',size(LpNew))
|
|
write (777,rec=1) LpNew
|
|
close (777)
|
|
deallocate(Lp)
|
|
deallocate(LpNew)
|
|
!----------------------------------------------------------------------------
|
|
allocate(dcsdE (6,6,1,1,mesh_NcpElems))
|
|
allocate(dcsdENew (6,6,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergeddcsdE',trim(getSolverJobName()),size(dcsdE))
|
|
read (777,rec=1) dcsdE
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
dcsdENew(1:6,1:6,1,1,i) = dcsdE(1:6,1:6,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergeddcsdE',size(dcsdENew))
|
|
write (777,rec=1) dcsdENew
|
|
close (777)
|
|
deallocate(dcsdE)
|
|
deallocate(dcsdENew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(dPdF (3,3,3,3,1,1,mesh_NcpElems))
|
|
allocate(dPdFNew (3,3,3,3,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergeddPdF',trim(getSolverJobName()),size(dPdF))
|
|
read (777,rec=1) dPdF
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
dPdFNew(1:3,1:3,1:3,1:3,1,1,i) = dPdF(1:3,1:3,1:3,1:3,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergeddPdF',size(dPdFNew))
|
|
write (777,rec=1) dPdFNew
|
|
close (777)
|
|
deallocate(dPdF)
|
|
deallocate(dPdFNew)
|
|
!---------------------------------------------------------------------------
|
|
allocate(Tstar (6,1,1,mesh_NcpElems))
|
|
allocate(TstarNew (6,1,1,NpointsNew))
|
|
call IO_read_jobBinaryFile(777,'convergedTstar',trim(getSolverJobName()),size(Tstar))
|
|
read (777,rec=1) Tstar
|
|
close (777)
|
|
do i = 1, NpointsNew
|
|
TstarNew(1:6,1,1,i) = Tstar(1:6,1,1,indices(i))
|
|
enddo
|
|
call IO_write_jobBinaryFile(777,'convergedTstar',size(TstarNew))
|
|
write (777,rec=1) TstarNew
|
|
close (777)
|
|
deallocate(Tstar)
|
|
deallocate(TstarNew)
|
|
|
|
! for the state, we first have to know the size------------------------------------------------------------------
|
|
allocate(sizeStateConst(1,1,mesh_NcpElems))
|
|
call IO_read_jobBinaryIntFile(777,'sizeStateConst',trim(getSolverJobName()),size(sizeStateConst))
|
|
read (777,rec=1) sizeStateConst
|
|
close (777)
|
|
maxsize = maxval(sizeStateConst(1,1,1:mesh_NcpElems))
|
|
allocate(StateConst (1,1,mesh_NcpElems,maxsize))
|
|
|
|
call IO_read_jobBinaryFile(777,'convergedStateConst',trim(getSolverJobName()))
|
|
k = 0_pInt
|
|
do i =1, mesh_NcpElems
|
|
do j = 1,sizeStateConst(1,1,i)
|
|
k = k+1_pInt
|
|
read(777,rec=k) StateConst(1,1,i,j)
|
|
enddo
|
|
enddo
|
|
close(777)
|
|
call IO_write_jobBinaryFile(777,'convergedStateConst')
|
|
k = 0_pInt
|
|
do i = 1,NpointsNew
|
|
do j = 1,sizeStateConst(1,1,indices(i))
|
|
k=k+1_pInt
|
|
write(777,rec=k) StateConst(1,1,indices(i),j)
|
|
enddo
|
|
enddo
|
|
close (777)
|
|
deallocate(sizeStateConst)
|
|
deallocate(StateConst)
|
|
!----------------------------------------------------------------------------
|
|
allocate(sizeStateHomog(1,mesh_NcpElems))
|
|
call IO_read_jobBinaryIntFile(777,'sizeStateHomog',trim(getSolverJobName()),size(sizeStateHomog))
|
|
read (777,rec=1) sizeStateHomog
|
|
close (777)
|
|
maxsize = maxval(sizeStateHomog(1,1:mesh_NcpElems))
|
|
allocate(stateHomog (1,mesh_NcpElems,maxsize))
|
|
|
|
call IO_read_jobBinaryFile(777,'convergedStateHomog',trim(getSolverJobName()))
|
|
k = 0_pInt
|
|
do i =1, mesh_NcpElems
|
|
do j = 1,sizeStateHomog(1,i)
|
|
k = k+1_pInt
|
|
read(777,rec=k) stateHomog(1,i,j)
|
|
enddo
|
|
enddo
|
|
close(777)
|
|
call IO_write_jobBinaryFile(777,'convergedStateHomog')
|
|
k = 0_pInt
|
|
do i = 1,NpointsNew
|
|
do j = 1,sizeStateHomog(1,indices(i))
|
|
k=k+1_pInt
|
|
write(777,rec=k) stateHomog(1,indices(i),j)
|
|
enddo
|
|
enddo
|
|
close (777)
|
|
deallocate(sizeStateHomog)
|
|
deallocate(stateHomog)
|
|
|
|
deallocate(indices)
|
|
write(6,*) 'finished regridding'
|
|
|
|
end function mesh_regrid
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine mesh_regular_grid(res,geomdim,defgrad_av,centroids,nodes)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to build mesh of (distorted) cubes for given coordinates (= center of the cubes)
|
|
!
|
|
use debug, only: debug_math, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
! output variables
|
|
real(pReal),intent(out), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
! variables with dimension depending on input
|
|
real(pReal), dimension(res(1)+2_pInt,res(2)+2_pInt,res(3)+2_pInt,3) :: wrappedCentroids
|
|
! other variables
|
|
integer(pInt) :: i,j,k,n
|
|
integer(pInt), dimension(3), parameter :: diag = 1_pInt
|
|
integer(pInt), dimension(3) :: shift = 0_pInt, lookup = 0_pInt, me = 0_pInt
|
|
integer(pInt), dimension(3,8) :: neighbor = reshape((/ &
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
0_pInt, 1_pInt, 1_pInt &
|
|
/), &
|
|
(/3,8/))
|
|
|
|
if (iand(debug_level(debug_math),debug_levelBasic) /= 0_pInt) then
|
|
print*, 'Meshing cubes around centroids'
|
|
print '(a,3(e12.5))', ' Dimension: ', geomdim
|
|
print '(a,3(i5))', ' Resolution:', res
|
|
endif
|
|
|
|
nodes = 0.0_pReal
|
|
wrappedCentroids = 0.0_pReal
|
|
wrappedCentroids(2_pInt:res(1)+1_pInt,2_pInt:res(2)+1_pInt,2_pInt:res(3)+1_pInt,1:3) = centroids
|
|
|
|
do k = 0_pInt,res(3)+1_pInt
|
|
do j = 0_pInt,res(2)+1_pInt
|
|
do i = 0_pInt,res(1)+1_pInt
|
|
if (k==0_pInt .or. k==res(3)+1_pInt .or. & ! z skin
|
|
j==0_pInt .or. j==res(2)+1_pInt .or. & ! y skin
|
|
i==0_pInt .or. i==res(1)+1_pInt ) then ! x skin
|
|
me = (/i,j,k/) ! me on skin
|
|
shift = sign(abs(res+diag-2_pInt*me)/(res+diag),res+diag-2_pInt*me)
|
|
lookup = me-diag+shift*res
|
|
wrappedCentroids(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
|
centroids(lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt,1:3) - &
|
|
matmul(defgrad_av, shift*geomdim)
|
|
endif
|
|
enddo; enddo; enddo
|
|
do k = 0_pInt,res(3)
|
|
do j = 0_pInt,res(2)
|
|
do i = 0_pInt,res(1)
|
|
do n = 1_pInt,8_pInt
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) + wrappedCentroids(i+1_pInt+neighbor(1_pInt,n), &
|
|
j+1_pInt+neighbor(2,n), &
|
|
k+1_pInt+neighbor(3,n),1:3)
|
|
enddo; enddo; enddo; enddo
|
|
nodes = nodes/8.0_pReal
|
|
|
|
end subroutine mesh_regular_grid
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine deformed_linear(res,geomdim,defgrad_av,defgrad,coord)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
! using linear interpolation (blurres out high frequency defomation)
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in), dimension( res(1),res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension( res(1),res(2),res(3),3) :: coord
|
|
! variables with dimension depending on input
|
|
real(pReal), dimension( 8,res(1),res(2),res(3),3) :: coord_avgOrder
|
|
! other variables
|
|
real(pReal), dimension(3) :: myStep, fones = 1.0_pReal, parameter_coords, negative, positive, offset_coords
|
|
integer(pInt), dimension(3) :: rear, init, ones = 1_pInt, oppo, me
|
|
integer(pInt) i, j, k, s, o
|
|
integer(pInt), dimension(3,8) :: corner = reshape([ &
|
|
0_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 0_pInt,&
|
|
0_pInt, 1_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 0_pInt, 1_pInt,&
|
|
1_pInt, 0_pInt, 1_pInt &
|
|
],[3,8])
|
|
integer(pInt), dimension(3,8) :: step = reshape([&
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt, 1_pInt,&
|
|
1_pInt,-1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt, 1_pInt,-1_pInt,&
|
|
-1_pInt, 1_pInt,-1_pInt &
|
|
], [3,8])
|
|
integer(pInt), dimension(3,6) :: order = reshape([ &
|
|
1_pInt, 2_pInt, 3_pInt,&
|
|
1_pInt, 3_pInt, 2_pInt,&
|
|
2_pInt, 1_pInt, 3_pInt,&
|
|
2_pInt, 3_pInt, 1_pInt,&
|
|
3_pInt, 1_pInt, 2_pInt,&
|
|
3_pInt, 2_pInt, 1_pInt &
|
|
], [3,6])
|
|
|
|
coord_avgOrder = 0.0_pReal
|
|
|
|
do s = 0_pInt, 7_pInt ! corners (from 0 to 7)
|
|
init = corner(:,s+1_pInt)*(res-ones) +ones
|
|
oppo = corner(:,mod((s+4_pInt),8_pInt)+1_pInt)*(res-ones) +ones
|
|
|
|
do o=1_pInt,6_pInt ! orders (from 1 to 6)
|
|
coord = 0_pReal
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1_pInt)
|
|
rear(order(2,o)) = init(order(2,o))
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1_pInt)
|
|
rear(order(1,o)) = init(order(1,o))
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1_pInt)
|
|
me(order(1:3,o)) = [i,j,k]
|
|
if ( all(me==init)) then
|
|
coord(me(1),me(2),me(3),1:3) = geomdim * (matmul(defgrad_av,real(corner(1:3,s+1),pReal)) + &
|
|
matmul(defgrad(me(1),me(2),me(3),1:3,1:3),0.5_pReal*real(step(1:3,s+1_pInt)/res,pReal)))
|
|
else
|
|
myStep = (me-rear)*geomdim/res
|
|
coord(me(1),me(2),me(3),1:3) = coord(rear(1),rear(2),rear(3),1:3) + &
|
|
0.5_pReal*matmul(defgrad(me(1),me(2),me(3),1:3,1:3) + &
|
|
defgrad(rear(1),rear(2),rear(3),1:3,1:3),myStep)
|
|
endif
|
|
rear = me
|
|
enddo; enddo; enddo
|
|
coord_avgOrder(s+1_pInt,1:res(1),1:res(2),1:res(3),1:3) = &
|
|
coord_avgOrder(s+1_pInt,1:res(1),1:res(2),1:res(3),1:3) + coord/6.0_pReal
|
|
enddo
|
|
offset_coords = coord_avgOrder(s+1,1,1,1,1:3)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
coord_avgOrder(s+1,i,j,k,1:3) = coord_avgOrder(s+1,i,j,k,1:3) - offset_coords
|
|
enddo; enddo; enddo
|
|
enddo
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
do i = 0_pInt, res(1)-1_pInt
|
|
parameter_coords = (2.0_pReal*real([i,j,k]+1,pReal)-real(res,pReal))/(real(res,pReal))
|
|
positive = fones + parameter_coords
|
|
negative = fones - parameter_coords
|
|
coord(i+1_pInt,j+1_pInt,k+1_pInt,1:3)&
|
|
=(coord_avgOrder(1,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(2,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(3,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(4,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(5,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(6,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(7,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*positive(3)&
|
|
+ coord_avgOrder(8,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*positive(3))*0.125_pReal
|
|
enddo; enddo; enddo
|
|
|
|
offset_coords = matmul(defgrad(1,1,1,1:3,1:3),geomdim/real(res, pReal)/2.0_pReal) - coord(1,1,1,1:3)
|
|
do k = 1_pInt, res(3)
|
|
do j = 1_pInt, res(2)
|
|
do i = 1_pInt, res(1)
|
|
coord(i,j,k,1:3) = coord(i,j,k,1:3)+ offset_coords
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine deformed_linear
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine deformed_fft(res,geomdim,defgrad_av,scaling,defgrad,coords)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
! using integration in Fourier space (more accurate than deformed(...))
|
|
!
|
|
use IO, only: IO_error
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
use debug, only: debug_math, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: PI
|
|
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in) :: scaling
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3) :: coords
|
|
! allocatable arrays for fftw c routines
|
|
type(C_PTR) :: fftw_forth, fftw_back
|
|
type(C_PTR) :: coords_fftw, defgrad_fftw
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: defgrad_real
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: defgrad_fourier
|
|
real(pReal), dimension(:,:,:,:), pointer :: coords_real
|
|
complex(pReal), dimension(:,:,:,:), pointer :: coords_fourier
|
|
! other variables
|
|
integer(pInt) :: i, j, k, m, res1_red
|
|
integer(pInt), dimension(3) :: k_s
|
|
real(pReal), dimension(3) :: step, offset_coords, integrator
|
|
|
|
integrator = geomdim / 2.0_pReal / pi ! see notes where it is used
|
|
|
|
if (iand(debug_level(debug_math),debug_levelBasic) /= 0_pInt) then
|
|
print*, 'Restore geometry using FFT-based integration'
|
|
print '(a,3(e12.5))', ' Dimension: ', geomdim
|
|
print '(a,3(i5))', ' Resolution:', res
|
|
endif
|
|
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
|
step = geomdim/real(res, pReal)
|
|
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt)
|
|
call fftw_set_timelimit(fftw_timelimit)
|
|
defgrad_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*9_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(defgrad_fftw, defgrad_real, [res(1)+2_pInt,res(2),res(3),3_pInt,3_pInt])
|
|
call c_f_pointer(defgrad_fftw, defgrad_fourier,[res1_red ,res(2),res(3),3_pInt,3_pInt])
|
|
coords_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(coords_fftw, coords_real, [res(1)+2_pInt,res(2),res(3),3_pInt])
|
|
call c_f_pointer(coords_fftw, coords_fourier, [res1_red ,res(2),res(3),3_pInt])
|
|
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,(/res(3),res(2) ,res(1)/),9_pInt,& ! dimensions , length in each dimension in reversed order
|
|
defgrad_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
|
1_pInt, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
|
defgrad_fourier,(/res(3),res(2) ,res1_red/),&
|
|
1_pInt, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
fftw_back = fftw_plan_many_dft_c2r(3_pInt,(/res(3),res(2) ,res(1)/),3_pInt,&
|
|
coords_fourier,(/res(3),res(2) ,res1_red/),&
|
|
1_pInt, res(3)*res(2)* res1_red,&
|
|
coords_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
1_pInt, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
defgrad_real(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
|
enddo; enddo; enddo
|
|
|
|
call fftw_execute_dft_r2c(fftw_forth, defgrad_real, defgrad_fourier)
|
|
|
|
!remove highest frequency in each direction
|
|
if(res(1)>1_pInt) &
|
|
defgrad_fourier( res(1)/2_pInt+1_pInt,1:res(2) ,1:res(3) ,&
|
|
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
if(res(2)>1_pInt) &
|
|
defgrad_fourier(1:res1_red ,res(2)/2_pInt+1_pInt,1:res(3) ,&
|
|
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
if(res(3)>1_pInt) &
|
|
defgrad_fourier(1:res1_red ,1:res(2) ,res(3)/2_pInt+1_pInt,&
|
|
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
|
|
coords_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
do k = 1_pInt, res(3)
|
|
k_s(3) = k-1_pInt
|
|
if(k > res(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-res(3)
|
|
do j = 1_pInt, res(2)
|
|
k_s(2) = j-1_pInt
|
|
if(j > res(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-res(2)
|
|
do i = 1_pInt, res1_red
|
|
k_s(1) = i-1_pInt
|
|
do m = 1_pInt,3_pInt
|
|
coords_fourier(i,j,k,m) = sum(defgrad_fourier(i,j,k,m,1:3)*cmplx(0.0_pReal,real(k_s,pReal)*integrator,pReal))
|
|
enddo
|
|
if (k_s(3) /= 0_pInt .or. k_s(2) /= 0_pInt .or. k_s(1) /= 0_pInt) &
|
|
coords_fourier(i,j,k,1:3) = coords_fourier(i,j,k,1:3) / real(-sum(k_s*k_s),pReal)
|
|
! if(i/=1_pInt) coords_fourier(i,j,k,1:3) = coords_fourier(i,j,k,1:3)& ! substituting division by (on the fly calculated) xi * 2pi * img by multiplication with reversed img/real part
|
|
! - defgrad_fourier(i,j,k,1:3,1)*cmplx(0.0_pReal,integrator(1)/real(k_s(1),pReal),pReal)
|
|
! if(j/=1_pInt) coords_fourier(i,j,k,1:3) = coords_fourier(i,j,k,1:3)&
|
|
! - defgrad_fourier(i,j,k,1:3,2)*cmplx(0.0_pReal,integrator(2)/real(k_s(2),pReal),pReal)
|
|
! if(k/=1_pInt) coords_fourier(i,j,k,1:3) = coords_fourier(i,j,k,1:3)&
|
|
! - defgrad_fourier(i,j,k,1:3,3)*cmplx(0.0_pReal,integrator(3)/real(k_s(3),pReal),pReal)
|
|
enddo; enddo; enddo
|
|
|
|
call fftw_execute_dft_c2r(fftw_back,coords_fourier,coords_real)
|
|
coords_real = coords_real/real(res(1)*res(2)*res(3),pReal)
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
coords(i,j,k,1:3) = coords_real(i,j,k,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
|
enddo; enddo; enddo
|
|
|
|
offset_coords = matmul(defgrad(1,1,1,1:3,1:3),step/2.0_pReal) - scaling*coords(1,1,1,1:3)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
coords(i,j,k,1:3) = scaling*coords(i,j,k,1:3) + offset_coords + matmul(defgrad_av,&
|
|
(/step(1)*real(i-1_pInt,pReal),&
|
|
step(2)*real(j-1_pInt,pReal),&
|
|
step(3)*real(k-1_pInt,pReal)/))
|
|
|
|
enddo; enddo; enddo
|
|
|
|
call fftw_destroy_plan(fftw_forth)
|
|
call fftw_destroy_plan(fftw_back)
|
|
call fftw_free(defgrad_fftw)
|
|
call fftw_free(coords_fftw)
|
|
|
|
end subroutine deformed_fft
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine volume_compare(res,geomdim,defgrad,nodes,volume_mismatch)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate the mismatch between volume of reconstructed (compatible
|
|
! cube and determinant of defgrad at the FP
|
|
|
|
use debug, only: debug_math, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
use math, only: PI, &
|
|
math_det33, &
|
|
math_volTetrahedron
|
|
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: volume_mismatch
|
|
! other variables
|
|
real(pReal), dimension(8,3) :: coords
|
|
integer(pInt) i,j,k
|
|
real(pReal) vol_initial
|
|
|
|
if (iand(debug_level(debug_math),debug_levelBasic) /= 0_pInt) then
|
|
print*, 'Calculating volume mismatch'
|
|
print '(a,3(e12.5))', ' Dimension: ', geomdim
|
|
print '(a,3(i5))', ' Resolution:', res
|
|
endif
|
|
|
|
vol_initial = geomdim(1)*geomdim(2)*geomdim(3)/(real(res(1)*res(2)*res(3), pReal))
|
|
do k = 1_pInt,res(3)
|
|
do j = 1_pInt,res(2)
|
|
do i = 1_pInt,res(1)
|
|
coords(1,1:3) = nodes(i, j, k ,1:3)
|
|
coords(2,1:3) = nodes(i+1_pInt,j, k ,1:3)
|
|
coords(3,1:3) = nodes(i+1_pInt,j+1_pInt,k ,1:3)
|
|
coords(4,1:3) = nodes(i, j+1_pInt,k ,1:3)
|
|
coords(5,1:3) = nodes(i, j, k+1_pInt,1:3)
|
|
coords(6,1:3) = nodes(i+1_pInt,j, k+1_pInt,1:3)
|
|
coords(7,1:3) = nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3)
|
|
coords(8,1:3) = nodes(i, j+1_pInt,k+1_pInt,1:3)
|
|
volume_mismatch(i,j,k) = abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(4,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(5,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(4,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(2,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(6,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(1,1:3)))
|
|
volume_mismatch(i,j,k) = volume_mismatch(i,j,k)/math_det33(defgrad(i,j,k,1:3,1:3))
|
|
enddo; enddo; enddo
|
|
volume_mismatch = volume_mismatch/vol_initial
|
|
|
|
end subroutine volume_compare
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine shape_compare(res,geomdim,defgrad,nodes,centroids,shape_mismatch)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate the mismatch between the vectors from the central point to
|
|
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
|
! the initial volume element with the current deformation gradient
|
|
|
|
use debug, only: debug_math, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: shape_mismatch
|
|
! other variables
|
|
real(pReal), dimension(8,3) :: coords_initial
|
|
integer(pInt) i,j,k
|
|
|
|
if (iand(debug_level(debug_math),debug_levelBasic) /= 0_pInt) then
|
|
print*, 'Calculating shape mismatch'
|
|
print '(a,3(e12.5))', ' Dimension: ', geomdim
|
|
print '(a,3(i5))', ' Resolution:', res
|
|
endif
|
|
|
|
coords_initial(1,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(2,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(3,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(4,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(5,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(6,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(7,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(8,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
do i=1_pInt,8_pInt
|
|
enddo
|
|
do k = 1_pInt,res(3)
|
|
do j = 1_pInt,res(2)
|
|
do i = 1_pInt,res(1)
|
|
shape_mismatch(i,j,k) = &
|
|
sqrt(sum((nodes(i, j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(1,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(2,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(3,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(4,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(5,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(6,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(7,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(8,1:3)))**2.0_pReal))
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine shape_compare
|
|
#endif
|
|
|
|
|
|
#ifdef Marc
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Figures out table styles (Marc only) and stores to 'initialcondTableStyle' and
|
|
!! 'hypoelasticTableStyle'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_get_tableStyles(myUnit)
|
|
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_intValue, &
|
|
IO_stringValue, &
|
|
IO_stringPos
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 6_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
initialcondTableStyle = 0_pInt
|
|
hypoelasticTableStyle = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'table' .and. myPos(1_pInt) .GT. 5) then
|
|
initialcondTableStyle = IO_intValue(line,myPos,4_pInt)
|
|
hypoelasticTableStyle = IO_intValue(line,myPos,5_pInt)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_get_tableStyles
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_nodesAndElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_IntValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
mesh_Nnodes = 0_pInt
|
|
mesh_Nelems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'sizing') then
|
|
mesh_Nelems = IO_IntValue (line,myPos,3_pInt)
|
|
mesh_Nnodes = IO_IntValue (line,myPos,4_pInt)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of element sets in mesh. Stores to 'mesh_NelemSets', and
|
|
!! 'mesh_maxNelemInSet'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
mesh_NelemSets = 0_pInt
|
|
mesh_maxNelemInSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'define' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'element' ) then
|
|
mesh_NelemSets = mesh_NelemSets + 1_pInt
|
|
mesh_maxNelemInSet = max(mesh_maxNelemInSet, &
|
|
IO_countContinuousIntValues(myUnit))
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_elementSets
|
|
|
|
|
|
!********************************************************************
|
|
! map element sets
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!********************************************************************
|
|
subroutine mesh_marc_map_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: elemSet = 0_pInt
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
|
|
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=640) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'define' ) .and. &
|
|
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'element' ) ) then
|
|
elemSet = elemSet+1_pInt
|
|
mesh_nameElemSet(elemSet) = trim(IO_stringValue(line,myPos,4_pInt))
|
|
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
endif
|
|
enddo
|
|
|
|
640 end subroutine mesh_marc_map_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_cpElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countContinuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
integer(pInt) :: i
|
|
character(len=300):: line
|
|
|
|
mesh_NcpElems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic') then
|
|
do i=1_pInt,3_pInt+hypoelasticTableStyle ! Skip 3 or 4 lines
|
|
read (myUnit,610,END=620) line
|
|
enddo
|
|
mesh_NcpElems = mesh_NcpElems + IO_countContinuousIntValues(myUnit)
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_marc_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_map_elements(myUnit)
|
|
|
|
use math, only: qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension (1_pInt+mesh_NcpElems) :: contInts
|
|
integer(pInt) :: i,cpElem = 0_pInt
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=660) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic' ) then
|
|
do i=1_pInt,3_pInt+hypoelasticTableStyle ! skip three (or four if new table style!) lines
|
|
read (myUnit,610,END=660) line
|
|
enddo
|
|
contInts = IO_continuousIntValues(myUnit,mesh_NcpElems,mesh_nameElemSet,&
|
|
mesh_mapElemSet,mesh_NelemSets)
|
|
do i = 1_pInt,contInts(1)
|
|
cpElem = cpElem+1_pInt
|
|
mesh_mapFEtoCPelem(1,cpElem) = contInts(1_pInt+i)
|
|
mesh_mapFEtoCPelem(2,cpElem) = cpElem
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
660 call qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
|
|
|
|
end subroutine mesh_marc_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_map_nodes(myUnit)
|
|
|
|
use math, only: qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_fixedIntValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt) :: i
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
node_count = 0_pInt
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
|
|
read (myUnit,610,END=650) line ! skip crap line
|
|
do i = 1_pInt,mesh_Nnodes
|
|
read (myUnit,610,END=650) line
|
|
mesh_mapFEtoCPnode(1_pInt,i) = IO_fixedIntValue (line,[ 0_pInt,10_pInt],1_pInt)
|
|
mesh_mapFEtoCPnode(2_pInt,i) = i
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
650 call qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
|
|
|
|
end subroutine mesh_marc_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_build_nodes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_fixedIntValue, &
|
|
IO_fixedNoEFloatValue
|
|
use numerics, only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), dimension(5), parameter :: node_ends = int([0,10,30,50,70],pInt)
|
|
integer(pInt), parameter :: maxNchunks = 1_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,j,m
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
|
|
read (myUnit,610,END=670) line ! skip crap line
|
|
do i=1_pInt,mesh_Nnodes
|
|
read (myUnit,610,END=670) line
|
|
m = mesh_FEasCP('node',IO_fixedIntValue(line,node_ends,1_pInt))
|
|
forall (j = 1_pInt:3_pInt) mesh_node0(j,m) = numerics_unitlength * IO_fixedNoEFloatValue(line,node_ends,j+1_pInt)
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
670 mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_marc_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNsubNodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_count_cpSizes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_skipChunks
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,t,e
|
|
|
|
mesh_maxNnodes = 0_pInt
|
|
mesh_maxNips = 0_pInt
|
|
mesh_maxNipNeighbors = 0_pInt
|
|
mesh_maxNsubNodes = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
|
|
read (myUnit,610,END=630) line ! Garbage line
|
|
do i=1_pInt,mesh_Nelems ! read all elements
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to id and type
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then
|
|
t = FE_mapElemtype(IO_stringValue(line,myPos,2_pInt))
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(t))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(t))
|
|
mesh_maxNsubNodes = max(mesh_maxNsubNodes,FE_NsubNodes(t))
|
|
call IO_skipChunks(myUnit,FE_NoriginalNodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
|
|
endif
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
630 end subroutine mesh_marc_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, mat, tex, and node list per elemen.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_marc_build_elements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_fixedNoEFloatValue, &
|
|
IO_skipChunks, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_continuousIntValues
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 66_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt), dimension(1_pInt+mesh_NcpElems) :: contInts
|
|
integer(pInt) :: i,j,sv,myVal,e
|
|
|
|
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
|
|
read (myUnit,610,END=620) line ! Garbage line
|
|
do i = 1_pInt,mesh_Nelems
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max (plus ID, type)
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then ! disregard non CP elems
|
|
mesh_element(1,e) = IO_IntValue (line,myPos,1_pInt) ! FE id
|
|
mesh_element(2,e) = FE_mapElemtype(IO_StringValue(line,myPos,2_pInt)) ! elem type
|
|
forall (j = 1_pInt:FE_Nnodes(mesh_element(2,e))) &
|
|
mesh_element(j+4_pInt,e) = IO_IntValue(line,myPos,j+2_pInt) ! copy FE ids of nodes
|
|
call IO_skipChunks(myUnit,FE_NoriginalNodes(mesh_element(2_pInt,e))-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
|
|
endif
|
|
enddo
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 rewind(myUnit) ! just in case "initial state" apears before "connectivity"
|
|
read (myUnit,610,END=620) line
|
|
do
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'initial') .and. &
|
|
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'state') ) then
|
|
if (initialcondTableStyle == 2_pInt) read (myUnit,610,END=620) line ! read extra line for new style
|
|
read (myUnit,610,END=630) line ! read line with index of state var
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
sv = IO_IntValue(line,myPos,1_pInt) ! figure state variable index
|
|
if( (sv == 2_pInt).or.(sv == 3_pInt) ) then ! only state vars 2 and 3 of interest
|
|
read (myUnit,610,END=620) line ! read line with value of state var
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
do while (scan(IO_stringValue(line,myPos,1_pInt),'+-',back=.true.)>1) ! is noEfloat value?
|
|
myVal = nint(IO_fixedNoEFloatValue(line,[0_pInt,20_pInt],1_pInt),pInt) ! state var's value
|
|
mesh_maxValStateVar(sv-1_pInt) = max(myVal,mesh_maxValStateVar(sv-1_pInt)) ! remember max val of homogenization and microstructure index
|
|
if (initialcondTableStyle == 2_pInt) then
|
|
read (myUnit,610,END=630) line ! read extra line
|
|
read (myUnit,610,END=630) line ! read extra line
|
|
endif
|
|
contInts = IO_continuousIntValues& ! get affected elements
|
|
(myUnit,mesh_Nelems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
do i = 1_pInt,contInts(1)
|
|
e = mesh_FEasCP('elem',contInts(1_pInt+i))
|
|
mesh_element(1_pInt+sv,e) = myVal
|
|
enddo
|
|
if (initialcondTableStyle == 0_pInt) read (myUnit,610,END=620) line ! ignore IP range for old table style
|
|
read (myUnit,610,END=630) line
|
|
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
|
|
enddo
|
|
endif
|
|
else
|
|
read (myUnit,610,END=630) line
|
|
endif
|
|
enddo
|
|
|
|
630 end subroutine mesh_marc_build_elements
|
|
#endif
|
|
|
|
#ifdef Abaqus
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_nodesAndElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical :: inPart
|
|
|
|
mesh_Nnodes = 0_pInt
|
|
mesh_Nelems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if (inPart .or. noPart) then
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)))
|
|
case('*node')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
|
|
) &
|
|
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(myUnit)
|
|
case('*element')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
|
|
) then
|
|
mesh_Nelems = mesh_Nelems + IO_countDataLines(myUnit)
|
|
endif
|
|
endselect
|
|
endif
|
|
enddo
|
|
|
|
620 if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt)
|
|
if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_nodesAndElements
|
|
|
|
|
|
!********************************************************************
|
|
! count overall number of element sets in mesh
|
|
!
|
|
! mesh_NelemSets, mesh_maxNelemInSet
|
|
!********************************************************************
|
|
subroutine mesh_abaqus_count_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical :: inPart
|
|
|
|
mesh_NelemSets = 0_pInt
|
|
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) &
|
|
mesh_NelemSets = mesh_NelemSets + 1_pInt
|
|
enddo
|
|
|
|
620 continue
|
|
if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_elementSets
|
|
|
|
|
|
!********************************************************************
|
|
! count overall number of solid sections sets in mesh (Abaqus only)
|
|
!
|
|
! mesh_Nmaterials
|
|
!********************************************************************
|
|
subroutine mesh_abaqus_count_materials(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
logical inPart
|
|
|
|
mesh_Nmaterials = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) &
|
|
mesh_Nmaterials = mesh_Nmaterials + 1_pInt
|
|
enddo
|
|
|
|
620 if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_materials
|
|
|
|
|
|
!********************************************************************
|
|
! Build element set mapping
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!********************************************************************
|
|
subroutine mesh_abaqus_map_elementSets(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_continuousIntValues, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: elemSet = 0_pInt,i
|
|
logical :: inPart = .false.
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
|
|
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=640) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) then
|
|
elemSet = elemSet + 1_pInt
|
|
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'elset'))
|
|
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_Nelems,mesh_nameElemSet,&
|
|
mesh_mapElemSet,elemSet-1_pInt)
|
|
endif
|
|
enddo
|
|
|
|
640 do i = 1_pInt,elemSet
|
|
if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i))
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_elementSets
|
|
|
|
|
|
!********************************************************************
|
|
! map solid section (Abaqus only)
|
|
!
|
|
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
|
|
!********************************************************************
|
|
subroutine mesh_abaqus_map_materials(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 20_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt) :: i,c = 0_pInt
|
|
logical :: inPart = .false.
|
|
character(len=64) :: elemSetName,materialName
|
|
|
|
allocate (mesh_nameMaterial(mesh_Nmaterials)) ; mesh_nameMaterial = ''
|
|
allocate (mesh_mapMaterial(mesh_Nmaterials)) ; mesh_mapMaterial = ''
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) then
|
|
|
|
elemSetName = ''
|
|
materialName = ''
|
|
|
|
do i = 3_pInt,myPos(1_pInt)
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset') /= '') &
|
|
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset'))
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material') /= '') &
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material'))
|
|
enddo
|
|
|
|
if (elemSetName /= '' .and. materialName /= '') then
|
|
c = c + 1_pInt
|
|
mesh_nameMaterial(c) = materialName ! name of material used for this section
|
|
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
620 if (c==0_pInt) call IO_error(error_ID=905_pInt)
|
|
do i=1_pInt,c
|
|
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt)
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_materials
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpElements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_extractValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
integer(pInt) :: i,k
|
|
logical :: materialFound = .false.
|
|
character(len=64) ::materialName,elemSetName
|
|
|
|
mesh_NcpElems = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
|
|
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
620 if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt)
|
|
|
|
end subroutine mesh_abaqus_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_elements(myUnit)
|
|
|
|
use math, only: qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) ::i,j,k,cpElem = 0_pInt
|
|
logical :: materialFound = .false.
|
|
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=660) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1_pInt,mesh_mapElemSet(1,k)
|
|
cpElem = cpElem + 1_pInt
|
|
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id
|
|
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
660 call qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
|
|
|
|
if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt)
|
|
|
|
end subroutine mesh_abaqus_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_nodes(myUnit)
|
|
|
|
use math, only: qsort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_intValue, &
|
|
IO_error
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) line
|
|
|
|
integer(pInt) :: i,c,cpNode = 0_pInt
|
|
logical :: inPart = .false.
|
|
|
|
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(myUnit)
|
|
do i = 1_pInt,c
|
|
backspace(myUnit)
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=650) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
cpNode = cpNode + 1_pInt
|
|
mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,myPos,1_pInt)
|
|
mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
650 call qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
|
|
|
|
if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt)
|
|
|
|
end subroutine mesh_abaqus_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_nodes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
use numerics, only: numerics_unitlength
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 4_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,j,m,c
|
|
logical :: inPart
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
|
|
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(myUnit) ! how many nodes are defined here?
|
|
do i = 1_pInt,c
|
|
backspace(myUnit) ! rewind to first entry
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=670) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
m = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt))
|
|
forall (j=1_pInt:3_pInt) mesh_node0(j,m) = numerics_unitlength * IO_floatValue(line,myPos,j+1_pInt)
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
670 if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt)
|
|
mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_abaqus_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
|
|
!! and mesh_maxNsubNodes
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpSizes(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue ,&
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 2_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
character(len=300) :: line
|
|
integer(pInt) :: i,c,t
|
|
logical :: inPart
|
|
|
|
mesh_maxNnodes = 0_pInt
|
|
mesh_maxNips = 0_pInt
|
|
mesh_maxNipNeighbors = 0_pInt
|
|
mesh_maxNsubNodes = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
|
|
if (t==0_pInt) call IO_error(error_ID=910_pInt,ext_msg='mesh_abaqus_count_cpSizes')
|
|
c = IO_countDataLines(myUnit)
|
|
do i = 1_pInt,c
|
|
backspace(myUnit)
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max
|
|
if (mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt)) /= 0_pInt) then ! disregard non CP elems
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(t))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(t))
|
|
mesh_maxNsubNodes = max(mesh_maxNsubNodes,FE_NsubNodes(t))
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_abaqus_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, mat, tex, and node list per elemen.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_elements(myUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_skipChunks, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_extractValue, &
|
|
IO_floatValue, &
|
|
IO_error, &
|
|
IO_countDataLines
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 65_pInt
|
|
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
|
|
|
|
integer(pInt) :: i,j,k,c,e,t,homog,micro
|
|
logical inPart,materialFound
|
|
character (len=64) :: materialName,elemSetName
|
|
character(len=300) :: line
|
|
|
|
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
inPart = .false.
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
|
|
if (t==0_pInt) call IO_error(error_ID=910_pInt,ext_msg='mesh_abaqus_build_elements')
|
|
c = IO_countDataLines(myUnit)
|
|
do i = 1_pInt,c
|
|
backspace(myUnit)
|
|
enddo
|
|
do i = 1_pInt,c
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max
|
|
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
|
|
if (e /= 0_pInt) then ! disregard non CP elems
|
|
mesh_element(1,e) = IO_intValue(line,myPos,1_pInt) ! FE id
|
|
mesh_element(2,e) = t ! elem type
|
|
forall (j=1_pInt:FE_Nnodes(t)) &
|
|
mesh_element(4_pInt+j,e) = IO_intValue(line,myPos,1_pInt+j) ! copy FE ids of nodes to position 5:
|
|
call IO_skipChunks(myUnit,FE_NoriginalNodes(t)-(myPos(1_pInt)-1_pInt)) ! read on (even multiple lines) if FE_NoriginalNodes exceeds required node count
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
|
|
620 rewind(myUnit) ! just in case "*material" definitions apear before "*element"
|
|
|
|
materialFound = .false.
|
|
do
|
|
read (myUnit,610,END=630) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
select case ( IO_lc(IO_StringValue(line,myPos,1_pInt)))
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,myPos,2_pInt)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if ( IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. &
|
|
materialFound ) then
|
|
read (myUnit,610,END=630) line ! read homogenization and microstructure
|
|
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
|
|
homog = nint(IO_floatValue(line,myPos,1_pInt),pInt)
|
|
micro = nint(IO_floatValue(line,myPos,2_pInt),pInt)
|
|
do i = 1_pInt,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1_pInt,mesh_mapElemSet(1,k)
|
|
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
|
|
mesh_element(3,e) = homog ! store homogenization
|
|
mesh_element(4,e) = micro ! store microstructure
|
|
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
|
|
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
630 end subroutine mesh_abaqus_build_elements
|
|
#endif
|
|
|
|
|
|
!********************************************************************
|
|
! get any additional damask options from input file
|
|
!
|
|
! mesh_periodicSurface
|
|
!********************************************************************
|
|
subroutine mesh_get_damaskOptions(myUnit)
|
|
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myUnit
|
|
|
|
integer(pInt), parameter :: maxNchunks = 5_pInt
|
|
integer(pInt), dimension (1+2*maxNchunks) :: myPos
|
|
integer(pInt) chunk, Nchunks
|
|
character(len=300) :: line, damaskOption, v
|
|
#ifndef Spectral
|
|
character(len=300) :: keyword
|
|
#endif
|
|
mesh_periodicSurface = .false.
|
|
|
|
610 FORMAT(A300)
|
|
|
|
#ifdef Marc
|
|
keyword = '$damask'
|
|
#endif
|
|
#ifdef Abaqus
|
|
keyword = '**damask'
|
|
#endif
|
|
|
|
rewind(myUnit)
|
|
do
|
|
read (myUnit,610,END=620) line
|
|
myPos = IO_stringPos(line,maxNchunks)
|
|
Nchunks = myPos(1)
|
|
#ifndef Spectral
|
|
if (IO_lc(IO_stringValue(line,myPos,1_pInt)) == keyword .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read
|
|
damaskOption = IO_lc(IO_stringValue(line,myPos,2_pInt))
|
|
select case(damaskOption)
|
|
case('periodic') ! damask Option that allows to specify periodic fluxes
|
|
do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword)
|
|
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
|
|
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
|
|
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
|
|
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
|
|
enddo
|
|
endselect
|
|
endif
|
|
#else
|
|
damaskOption = IO_lc(IO_stringValue(line,myPos,1_pInt))
|
|
select case(damaskOption)
|
|
case('periodic') ! damask Option that allows to specify periodic fluxes
|
|
do chunk = 2_pInt,Nchunks ! loop through chunks (skipping the keyword)
|
|
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
|
|
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
|
|
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
|
|
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
|
|
enddo
|
|
endselect
|
|
#endif
|
|
enddo
|
|
|
|
620 end subroutine mesh_get_damaskOptions
|
|
|
|
|
|
!***********************************************************
|
|
! calculation of IP interface areas
|
|
!
|
|
! allocate globals
|
|
! _ipArea, _ipAreaNormal
|
|
!***********************************************************
|
|
subroutine mesh_build_ipAreas
|
|
|
|
use math, only: math_vectorproduct
|
|
|
|
implicit none
|
|
integer(pInt) :: e,f,t,i,j,n
|
|
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2_pInt ! each interface is made up of this many triangles
|
|
real(pReal), dimension (3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
|
|
real(pReal), dimension(3,Ntriangles,FE_NipFaceNodes) :: normal
|
|
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: area
|
|
|
|
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipArea = 0.0_pReal
|
|
allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipAreaNormal = 0.0_pReal
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
|
|
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
|
|
forall (n = 1_pInt:FE_NipFaceNodes) nPos(:,n) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles) ! start at each interface node and build valid triangles to cover interface
|
|
normal(:,j,n) = math_vectorproduct(nPos(:,1_pInt+mod(n+j-1_pInt,FE_NipFaceNodes)) - nPos(:,n), & ! calc their normal vectors
|
|
nPos(:,1_pInt+mod(n+j-0_pInt,FE_NipFaceNodes)) - nPos(:,n))
|
|
area(j,n) = sqrt(sum(normal(:,j,n)*normal(:,j,n))) ! and area
|
|
end forall
|
|
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles, area(j,n) > 0.0_pReal) &
|
|
normal(1:3,j,n) = normal(1:3,j,n) / area(j,n) ! make myUnit normal
|
|
|
|
mesh_ipArea(f,i,e) = sum(area) / (FE_NipFaceNodes*2.0_pReal) ! area of parallelograms instead of triangles
|
|
mesh_ipAreaNormal(:,f,i,e) = sum(sum(normal,3),2_pInt)/& ! average of all valid normals
|
|
real(count(area > 0.0_pReal),pReal)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_ipAreas
|
|
|
|
|
|
!***********************************************************
|
|
! assignment of twin nodes for each cp node
|
|
!
|
|
! allocate globals
|
|
! _nodeTwins
|
|
!***********************************************************
|
|
subroutine mesh_build_nodeTwins
|
|
|
|
implicit none
|
|
integer(pInt) dir, & ! direction of periodicity
|
|
node, &
|
|
minimumNode, &
|
|
maximumNode, &
|
|
n1, &
|
|
n2
|
|
integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
|
|
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
|
|
tolerance ! tolerance below which positions are assumed identical
|
|
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
|
|
logical, dimension(mesh_Nnodes) :: unpaired
|
|
|
|
allocate(mesh_nodeTwins(3,mesh_Nnodes))
|
|
mesh_nodeTwins = 0_pInt
|
|
|
|
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
|
|
|
|
do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z
|
|
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
|
|
|
|
|
|
!*** find out which nodes sit on the surface
|
|
!*** and have a minimum or maximum position in this dimension
|
|
|
|
minimumNodes = 0_pInt
|
|
maximumNodes = 0_pInt
|
|
minCoord = minval(mesh_node0(dir,:))
|
|
maxCoord = maxval(mesh_node0(dir,:))
|
|
do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes
|
|
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
|
|
minimumNodes(1) = minimumNodes(1) + 1_pInt
|
|
minimumNodes(minimumNodes(1)+1_pInt) = node
|
|
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
|
|
maximumNodes(1) = maximumNodes(1) + 1_pInt
|
|
maximumNodes(maximumNodes(1)+1_pInt) = node
|
|
endif
|
|
enddo
|
|
|
|
|
|
!*** find the corresponding node on the other side with the same position in this dimension
|
|
|
|
unpaired = .true.
|
|
do n1 = 1_pInt,minimumNodes(1)
|
|
minimumNode = minimumNodes(n1+1_pInt)
|
|
if (unpaired(minimumNode)) then
|
|
do n2 = 1_pInt,maximumNodes(1)
|
|
maximumNode = maximumNodes(n2+1_pInt)
|
|
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
|
|
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
|
|
mesh_nodeTwins(dir,minimumNode) = maximumNode
|
|
mesh_nodeTwins(dir,maximumNode) = minimumNode
|
|
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
|
|
exit
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
enddo
|
|
|
|
end subroutine mesh_build_nodeTwins
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! get maximum count of shared elements among cpElements and
|
|
! build list of elements shared by each node in mesh
|
|
!
|
|
! _maxNsharedElems
|
|
! _sharedElem
|
|
!********************************************************************
|
|
subroutine mesh_build_sharedElems
|
|
|
|
implicit none
|
|
integer(pint) e, & ! element index
|
|
t, & ! element type
|
|
node, & ! CP node index
|
|
j, & ! node index per element
|
|
myDim, & ! dimension index
|
|
nodeTwin ! node twin in the specified dimension
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt), dimension (:), allocatable :: node_seen
|
|
|
|
allocate(node_seen(maxval(FE_Nnodes)))
|
|
|
|
|
|
node_count = 0_pInt
|
|
|
|
do e = 1_pInt,mesh_NcpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
|
|
node_seen = 0_pInt ! reset node duplicates
|
|
do j = 1_pInt,FE_Nnodes(t) ! check each node of element
|
|
node = mesh_FEasCP('node',mesh_element(4+j,e)) ! translate to internal (consecutive) numbering
|
|
if (all(node_seen /= node)) then
|
|
node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it
|
|
do myDim = 1_pInt,3_pInt ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0_pInt) & ! if I am a twin of some node...
|
|
node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node
|
|
enddo
|
|
endif
|
|
node_seen(j) = node ! remember this node to be counted already
|
|
enddo
|
|
enddo
|
|
|
|
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
|
|
|
|
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes))
|
|
mesh_sharedElem = 0_pInt
|
|
|
|
do e = 1_pInt,mesh_NcpElems
|
|
t = mesh_element(2,e)
|
|
node_seen = 0_pInt
|
|
do j = 1_pInt,FE_Nnodes(t)
|
|
node = mesh_FEasCP('node',mesh_element(4_pInt+j,e))
|
|
if (all(node_seen /= node)) then
|
|
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements
|
|
mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id
|
|
do myDim = 1_pInt,3_pInt ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0_pInt) then ! if i am a twin of some node...
|
|
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin
|
|
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
|
|
endif
|
|
enddo
|
|
endif
|
|
node_seen(j) = node
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(node_seen)
|
|
|
|
end subroutine mesh_build_sharedElems
|
|
|
|
|
|
!***********************************************************
|
|
! build up of IP neighborhood
|
|
!
|
|
! allocate globals
|
|
! _ipNeighborhood
|
|
!***********************************************************
|
|
subroutine mesh_build_ipNeighborhood
|
|
|
|
use math, only: math_mul3x3
|
|
|
|
implicit none
|
|
integer(pInt) myElem, & ! my CP element index
|
|
myIP, &
|
|
myType, & ! my element type
|
|
myFace, &
|
|
neighbor, & ! neighor index
|
|
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
|
|
candidateIP, &
|
|
neighboringType, & ! element type of neighbor
|
|
NlinkedNodes, & ! number of linked nodes
|
|
twin_of_linkedNode, & ! node twin of a specific linkedNode
|
|
NmatchingNodes, & ! number of matching nodes
|
|
dir, & ! direction of periodicity
|
|
matchingElem, & ! CP elem number of matching element
|
|
matchingFace, & ! face ID of matching element
|
|
a, anchor, &
|
|
neighboringIP, &
|
|
neighboringElem, &
|
|
pointingToMe
|
|
integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: &
|
|
linkedNodes = 0_pInt, &
|
|
matchingNodes
|
|
logical checkTwins
|
|
|
|
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipNeighborhood = 0_pInt
|
|
|
|
|
|
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
myType = mesh_element(2,myElem) ! get elemType
|
|
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
|
|
|
|
do neighbor = 1_pInt,FE_NipNeighbors(myType) ! loop over neighbors of IP
|
|
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
|
|
|
|
!*** if the key is positive, the neighbor is inside the element
|
|
!*** that means, we have already found our neighboring IP
|
|
|
|
if (neighboringIPkey > 0_pInt) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
|
|
|
|
|
|
!*** if the key is negative, the neighbor resides in a neighboring element
|
|
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
|
|
|
|
elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP
|
|
myFace = -neighboringIPkey
|
|
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
|
|
if (matchingElem > 0_pInt) then ! found match?
|
|
neighboringType = mesh_element(2,matchingElem)
|
|
|
|
!*** trivial solution if neighbor has only one IP
|
|
|
|
if (FE_Nips(neighboringType) == 1_pInt) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt
|
|
cycle
|
|
endif
|
|
|
|
!*** find those nodes which build the link to the neighbor
|
|
|
|
NlinkedNodes = 0_pInt
|
|
linkedNodes = 0_pInt
|
|
do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
|
|
anchor = FE_nodesAtIP(a,myIP,myType)
|
|
if (anchor /= 0_pInt) then ! valid anchor node
|
|
if (any(FE_nodeOnFace(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
|
|
NlinkedNodes = NlinkedNodes + 1_pInt
|
|
linkedNodes(NlinkedNodes) = &
|
|
mesh_FEasCP('node',mesh_element(4_pInt+anchor,myElem)) ! CP id of anchor node
|
|
else ! something went wrong with the linkage, since not all anchors sit on my face
|
|
NlinkedNodes = 0_pInt
|
|
linkedNodes = 0_pInt
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
!*** loop through the ips of my neighbor
|
|
!*** and try to find an ip with matching nodes
|
|
!*** also try to match with node twins
|
|
|
|
checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType)
|
|
NmatchingNodes = 0_pInt
|
|
matchingNodes = 0_pInt
|
|
do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
|
|
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
|
|
if (anchor /= 0_pInt) then ! valid anchor node
|
|
if (any(FE_nodeOnFace(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
|
|
NmatchingNodes = NmatchingNodes + 1_pInt
|
|
matchingNodes(NmatchingNodes) = &
|
|
mesh_FEasCP('node',mesh_element(4+anchor,matchingElem)) ! CP id of neighbor's anchor node
|
|
else ! no matching, because not all nodes sit on the matching face
|
|
NmatchingNodes = 0_pInt
|
|
matchingNodes = 0_pInt
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
|
|
cycle checkCandidateIP
|
|
|
|
!*** check "normal" nodes whether they match or not
|
|
|
|
checkTwins = .false.
|
|
do a = 1_pInt,NlinkedNodes
|
|
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
|
|
checkTwins = .true.
|
|
exit ! no need to search further
|
|
endif
|
|
enddo
|
|
|
|
!*** if no match found, then also check node twins
|
|
|
|
if(checkTwins) then
|
|
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
|
|
do a = 1_pInt,NlinkedNodes
|
|
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
|
|
if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist...
|
|
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
|
|
cycle checkCandidateIP ! ... then check next candidateIP
|
|
endif
|
|
enddo
|
|
endif
|
|
|
|
!*** we found a match !!!
|
|
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
|
|
exit checkCandidateIP
|
|
enddo checkCandidateIP
|
|
endif ! end of valid external matching
|
|
endif ! end of internal/external matching
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
myType = mesh_element(2,myElem) ! get elemType
|
|
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
|
|
do neighbor = 1_pInt,FE_NipNeighbors(myType) ! loop over neighbors of IP
|
|
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
|
|
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
|
|
if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ...
|
|
neighboringType = mesh_element(2,neighboringElem)
|
|
do pointingToMe = 1_pInt,FE_NipNeighbors(neighboringType) ! find neighboring index that points from my neighbor to myself
|
|
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
|
|
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
|
|
if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
|
|
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
|
|
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
|
|
exit ! so no need to search further
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_ipNeighborhood
|
|
|
|
|
|
!***********************************************************
|
|
! write statistics regarding input file parsing
|
|
! to the output file
|
|
!
|
|
!***********************************************************
|
|
subroutine mesh_tell_statistics
|
|
|
|
use math, only: math_range
|
|
use IO, only: IO_error
|
|
use debug, only: debug_level, &
|
|
debug_mesh, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i
|
|
|
|
implicit none
|
|
integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro
|
|
character(len=64) :: myFmt
|
|
integer(pInt) :: i,e,n,f,t, myDebug
|
|
|
|
myDebug = debug_level(debug_mesh)
|
|
|
|
if (mesh_maxValStateVar(1) < 1_pInt) call IO_error(error_ID=170_pInt) ! no homogenization specified
|
|
if (mesh_maxValStateVar(2) < 1_pInt) call IO_error(error_ID=180_pInt) ! no microstructure specified
|
|
|
|
allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (mesh_element(3,e) < 1_pInt) call IO_error(error_ID=170_pInt,e=e) ! no homogenization specified
|
|
if (mesh_element(4,e) < 1_pInt) call IO_error(error_ID=180_pInt,e=e) ! no microstructure specified
|
|
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) = &
|
|
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) + 1_pInt ! count combinations of homogenization and microstructure
|
|
enddo
|
|
!$OMP CRITICAL (write2out)
|
|
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
|
|
write (6,*)
|
|
write (6,*) 'Input Parser: STATISTICS'
|
|
write (6,*)
|
|
write (6,*) mesh_Nelems, ' : total number of elements in mesh'
|
|
write (6,*) mesh_NcpElems, ' : total number of CP elements in mesh'
|
|
write (6,*) mesh_Nnodes, ' : total number of nodes in mesh'
|
|
write (6,*) mesh_maxNnodes, ' : max number of nodes in any CP element'
|
|
write (6,*) mesh_maxNips, ' : max number of IPs in any CP element'
|
|
write (6,*) mesh_maxNipNeighbors, ' : max number of IP neighbors in any CP element'
|
|
write (6,*) mesh_maxNsubNodes, ' : max number of (additional) subnodes in any CP element'
|
|
write (6,*) mesh_maxNsharedElems, ' : max number of CP elements sharing a node'
|
|
write (6,*)
|
|
write (6,*) 'Input Parser: HOMOGENIZATION/MICROSTRUCTURE'
|
|
write (6,*)
|
|
write (6,*) mesh_maxValStateVar(1), ' : maximum homogenization index'
|
|
write (6,*) mesh_maxValStateVar(2), ' : maximum microstructure index'
|
|
write (6,*)
|
|
write (myFmt,'(a,i32.32,a)') '(9x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
|
|
write (6,myFmt) '+-',math_range(mesh_maxValStateVar(2))
|
|
write (myFmt,'(a,i32.32,a)') '(i8,1x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
|
|
do i=1_pInt,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations
|
|
write (6,myFmt) i,'| ',mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstructures
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: ADDITIONAL MPIE OPTIONS'
|
|
write(6,*)
|
|
write(6,*) 'periodic surface : ', mesh_periodicSurface
|
|
write(6,*)
|
|
call flush(6)
|
|
endif
|
|
|
|
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
|
|
write (6,*)
|
|
write (6,*) 'Input Parser: SUBNODE COORDINATES'
|
|
write (6,*)
|
|
write(6,'(a8,1x,a5,1x,2(a15,1x),a20,3(1x,a12))')&
|
|
'elem','IP','IP neighbor','IPFaceNodes','subNodeOnIPFace','x','y','z'
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
|
|
do n = 1_pInt,FE_NipFaceNodes ! loop over nodes on interface
|
|
write(6,'(i8,1x,i5,2(1x,i15),1x,i20,3(1x,f12.8))') e,i,f,n,FE_subNodeOnIPFace(n,f,i,t),&
|
|
mesh_subNodeCoord(1,FE_subNodeOnIPFace(n,f,i,t),e),&
|
|
mesh_subNodeCoord(2,FE_subNodeOnIPFace(n,f,i,t),e),&
|
|
mesh_subNodeCoord(3,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: IP COORDINATES'
|
|
write(6,'(a8,1x,a5,3(1x,a12))') 'elem','IP','x','y','z'
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
do i = 1_pInt,FE_Nips(mesh_element(2,e))
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
write (6,'(i8,1x,i5,3(1x,f12.8))') e, i, mesh_ipCenterOfGravity(:,i,e)
|
|
enddo
|
|
enddo
|
|
write (6,*)
|
|
write (6,*) 'Input Parser: ELEMENT VOLUME'
|
|
write (6,*)
|
|
write (6,'(a13,1x,e15.8)') 'total volume', sum(mesh_ipVolume)
|
|
write (6,*)
|
|
write (6,'(a8,1x,a5,1x,a15,1x,a5,1x,a15,1x,a16)') 'elem','IP','volume','face','area','-- normal --'
|
|
do e = 1_pInt,mesh_NcpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
do i = 1_pInt,FE_Nips(mesh_element(2,e))
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
write (6,'(i8,1x,i5,1x,e15.8)') e,i,mesh_IPvolume(i,e)
|
|
do f = 1_pInt,FE_NipNeighbors(mesh_element(2,e))
|
|
write (6,'(i33,1x,e15.8,1x,3(f6.3,1x))') f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write (6,*)
|
|
write (6,*) 'Input Parser: NODE TWINS'
|
|
write (6,*)
|
|
write(6,'(a6,3(3x,a6))') ' node','twin_x','twin_y','twin_z'
|
|
do n = 1_pInt,mesh_Nnodes ! loop over cpNodes
|
|
if (debug_e <= mesh_NcpElems) then
|
|
if (any(mesh_element(5:,debug_e) == n)) then
|
|
write(6,'(i6,3(3x,i6))') n, mesh_nodeTwins(1:3,n)
|
|
endif
|
|
endif
|
|
enddo
|
|
write(6,*)
|
|
write(6,*) 'Input Parser: IP NEIGHBORHOOD'
|
|
write(6,*)
|
|
write(6,'(a8,1x,a10,1x,a10,1x,a3,1x,a13,1x,a13)') 'elem','IP','neighbor','','elemNeighbor','ipNeighbor'
|
|
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
|
|
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
|
|
do n = 1_pInt,FE_NipNeighbors(t) ! loop over neighbors of IP
|
|
write (6,'(i8,1x,i10,1x,i10,1x,a3,1x,i13,1x,i13)') e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
deallocate(mesh_HomogMicro)
|
|
|
|
end subroutine mesh_tell_statistics
|
|
|
|
|
|
!***********************************************************
|
|
! mapping of FE element types to internal representation
|
|
!***********************************************************
|
|
integer(pInt) function FE_mapElemtype(what)
|
|
|
|
use IO, only: IO_lc
|
|
|
|
implicit none
|
|
character(len=*), intent(in) :: what
|
|
|
|
select case (IO_lc(what))
|
|
case ( '7', &
|
|
'c3d8')
|
|
FE_mapElemtype = 1_pInt ! Three-dimensional Arbitrarily Distorted Brick
|
|
case ('134', &
|
|
'c3d4')
|
|
FE_mapElemtype = 2_pInt ! Three-dimensional Four-node Tetrahedron
|
|
case ( '11', &
|
|
'cpe4')
|
|
FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain
|
|
case ( '27', &
|
|
'cpe8')
|
|
FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral
|
|
case ('157')
|
|
FE_mapElemtype = 5_pInt ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations
|
|
case ('136', &
|
|
'c3d6')
|
|
FE_mapElemtype = 6_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral
|
|
case ( '21', &
|
|
'c3d20')
|
|
FE_mapElemtype = 7_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
|
|
case ( '117', &
|
|
'123', &
|
|
'c3d8r')
|
|
FE_mapElemtype = 8_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
|
|
case ( '57', &
|
|
'c3d20r')
|
|
FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
|
|
case ( '155', &
|
|
'125', &
|
|
'128')
|
|
FE_mapElemtype = 10_pInt ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric)
|
|
case default
|
|
FE_mapElemtype = 0_pInt ! unknown element --> should raise an error upstream..!
|
|
endselect
|
|
|
|
end function FE_mapElemtype
|
|
|
|
|
|
!***********************************************************
|
|
! find face-matching element of same type
|
|
!***********************************************************
|
|
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
|
|
|
|
implicit none
|
|
!*** output variables
|
|
integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID
|
|
matchingFace ! matching FE face ID
|
|
|
|
!*** input variables
|
|
integer(pInt), intent(in) :: face, & ! FE face ID
|
|
elem ! FE elem ID
|
|
|
|
!*** local variables
|
|
integer(pInt), dimension(FE_NfaceNodes(face,mesh_element(2,elem))) :: &
|
|
myFaceNodes ! global node ids on my face
|
|
integer(pInt) :: myType, &
|
|
candidateType, &
|
|
candidateElem, &
|
|
candidateFace, &
|
|
candidateFaceNode, &
|
|
minNsharedElems, &
|
|
NsharedElems, &
|
|
lonelyNode = 0_pInt, &
|
|
i, &
|
|
n, &
|
|
dir ! periodicity direction
|
|
integer(pInt), dimension(:), allocatable :: element_seen
|
|
logical checkTwins
|
|
|
|
matchingElem = 0_pInt
|
|
matchingFace = 0_pInt
|
|
minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case
|
|
myType = mesh_element(2_pInt,elem) ! figure elemType
|
|
|
|
do n = 1_pInt,FE_NfaceNodes(face,myType) ! loop over nodes on face
|
|
myFaceNodes(n) = mesh_FEasCP('node',mesh_element(4_pInt+FE_nodeOnFace(n,face,myType),elem)) ! CP id of face node
|
|
NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node
|
|
if (NsharedElems < minNsharedElems) then
|
|
minNsharedElems = NsharedElems ! remember min # shared elems
|
|
lonelyNode = n ! remember most lonely node
|
|
endif
|
|
enddo
|
|
|
|
allocate(element_seen(minNsharedElems))
|
|
element_seen = 0_pInt
|
|
|
|
checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements
|
|
candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem
|
|
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
|
|
element_seen(i) = candidateElem
|
|
candidateType = mesh_element(2_pInt,candidateElem) ! figure elemType of candidate
|
|
checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate
|
|
if (FE_NfaceNodes(candidateFace,candidateType) /= FE_NfaceNodes(face,myType) & ! incompatible face
|
|
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
|
|
cycle checkCandidateFace
|
|
endif
|
|
checkTwins = .false.
|
|
do n = 1_pInt,FE_NfaceNodes(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_FEasCP('node', mesh_element(4_pInt+FE_nodeOnFace(n,candidateFace,candidateType),candidateElem))
|
|
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
|
|
checkTwins = .true. ! perhaps the twin nodes do match
|
|
exit
|
|
endif
|
|
enddo
|
|
if(checkTwins) then
|
|
checkCandidateFaceTwins: do dir = 1_pInt,3_pInt
|
|
do n = 1_pInt,FE_NfaceNodes(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_FEasCP('node', mesh_element(4+FE_nodeOnFace(n,candidateFace,candidateType),candidateElem))
|
|
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
|
|
if (dir == 3_pInt) then
|
|
cycle checkCandidateFace
|
|
else
|
|
cycle checkCandidateFaceTwins ! try twins in next dimension
|
|
endif
|
|
endif
|
|
enddo
|
|
exit checkCandidateFaceTwins
|
|
enddo checkCandidateFaceTwins
|
|
endif
|
|
matchingFace = candidateFace
|
|
matchingElem = candidateElem
|
|
exit checkCandidate ! found my matching candidate
|
|
enddo checkCandidateFace
|
|
endif
|
|
enddo checkCandidate
|
|
|
|
deallocate(element_seen)
|
|
|
|
end subroutine mesh_faceMatch
|
|
|
|
|
|
!********************************************************************
|
|
! get properties of different types of finite elements
|
|
!
|
|
! assign globals:
|
|
! FE_nodesAtIP, FE_ipNeighbor, FE_subNodeParent, FE_subNodeOnIPFace
|
|
!********************************************************************
|
|
subroutine mesh_build_FEdata
|
|
|
|
implicit none
|
|
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Nelemtypes)) ; FE_nodesAtIP = 0_pInt
|
|
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes)) ; FE_ipNeighbor = 0_pInt
|
|
allocate(FE_subNodeParent(FE_maxNips,FE_maxNsubNodes,FE_Nelemtypes)) ; FE_subNodeParent = 0_pInt
|
|
allocate(FE_subNodeOnIPFace(FE_NipFaceNodes,FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes)) ; FE_subNodeOnIPFace = 0_pInt
|
|
|
|
! fill FE_nodesAtIP with data
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(1),1:FE_Nips(1),1) = & ! element 7
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3, &
|
|
5, &
|
|
6, &
|
|
8, &
|
|
7 &
|
|
],pInt),[FE_maxNnodesAtIP(1),FE_Nips(1)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(2),1:FE_Nips(2),2) = & ! element 134
|
|
reshape(int([&
|
|
1,2,3,4 &
|
|
],pInt),[FE_maxNnodesAtIP(2),FE_Nips(2)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(3),1:FE_Nips(3),3) = & ! element 11
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(3),FE_Nips(3)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(4),1:FE_Nips(4),4) = & ! element 27
|
|
reshape(int([&
|
|
1,0, &
|
|
1,2, &
|
|
2,0, &
|
|
1,4, &
|
|
0,0, &
|
|
2,3, &
|
|
4,0, &
|
|
3,4, &
|
|
3,0 &
|
|
],pInt),[FE_maxNnodesAtIP(4),FE_Nips(4)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(5),1:FE_Nips(5),5) = & ! element 157
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4 &
|
|
],pInt),[FE_maxNnodesAtIP(5),FE_Nips(5)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(6),1:FE_Nips(6),6) = & ! element 136
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4, &
|
|
5, &
|
|
6 &
|
|
],pInt),[FE_maxNnodesAtIP(6),FE_Nips(6)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(7),1:FE_Nips(7),7) = & ! element 21
|
|
reshape(int([&
|
|
1,0, 0,0, &
|
|
1,2, 0,0, &
|
|
2,0, 0,0, &
|
|
1,4, 0,0, &
|
|
1,3, 2,4, &
|
|
2,3, 0,0, &
|
|
4,0, 0,0, &
|
|
3,4, 0,0, &
|
|
3,0, 0,0, &
|
|
1,5, 0,0, &
|
|
1,6, 2,5, &
|
|
2,6, 0,0, &
|
|
1,8, 4,5, &
|
|
0,0, 0,0, &
|
|
2,7, 3,6, &
|
|
4,8, 0,0, &
|
|
3,8, 4,7, &
|
|
3,7, 0,0, &
|
|
5,0, 0,0, &
|
|
5,6, 0,0, &
|
|
6,0, 0,0, &
|
|
5,8, 0,0, &
|
|
5,7, 6,8, &
|
|
6,7, 0,0, &
|
|
8,0, 0,0, &
|
|
7,8, 0,0, &
|
|
7,0, 0,0 &
|
|
],pInt),[FE_maxNnodesAtIP(7),FE_Nips(7)])
|
|
|
|
! FE_nodesAtIP(:,:FE_Nips(8),8) = & ! element 117 (c3d8r --> single IP per element, so no need for this mapping)
|
|
! reshape((/&
|
|
! 1,2,3,4,5,6,7,8 &
|
|
! /),(/FE_maxNnodesAtIP(8),FE_Nips(8)/))
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(9),1:FE_Nips(9),9) = & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3, &
|
|
5, &
|
|
6, &
|
|
8, &
|
|
7 &
|
|
],pInt),[FE_maxNnodesAtIP(9),FE_Nips(9)])
|
|
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(10),1:FE_Nips(10),10) = & ! element 155, 125, 128
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(10),FE_Nips(10)])
|
|
|
|
! *** FE_ipNeighbor ***
|
|
! is a list of the neighborhood of each IP.
|
|
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
|
|
! Positive integers denote an intra-FE IP identifier.
|
|
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(1),1:FE_Nips(1),1) = & ! element 7
|
|
reshape(int([&
|
|
2,-5, 3,-2, 5,-1, &
|
|
-3, 1, 4,-2, 6,-1, &
|
|
4,-5,-4, 1, 7,-1, &
|
|
-3, 3,-4, 2, 8,-1, &
|
|
6,-5, 7,-2,-6, 1, &
|
|
-3, 5, 8,-2,-6, 2, &
|
|
8,-5,-4, 5,-6, 3, &
|
|
-3, 7,-4, 6,-6, 4 &
|
|
],pInt),[FE_NipNeighbors(1),FE_Nips(1)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(2),1:FE_Nips(2),2) = & ! element 134
|
|
reshape(int([&
|
|
-1,-2,-3,-4 &
|
|
],pInt),[FE_NipNeighbors(2),FE_Nips(2)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(3),1:FE_Nips(3),3) = & ! element 11
|
|
reshape(int([&
|
|
2,-4, 3,-1, &
|
|
-2, 1, 4,-1, &
|
|
4,-4,-3, 1, &
|
|
-2, 3,-3, 2 &
|
|
],pInt),[FE_NipNeighbors(3),FE_Nips(3)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(4),1:FE_Nips(4),4) = & ! element 27
|
|
reshape(int([&
|
|
2,-4, 4,-1, &
|
|
3, 1, 5,-1, &
|
|
-2, 2, 6,-1, &
|
|
5,-4, 7, 1, &
|
|
6, 4, 8, 2, &
|
|
-2, 5, 9, 3, &
|
|
8,-4,-3, 4, &
|
|
9, 7,-3, 5, &
|
|
-2, 8,-3, 6 &
|
|
],pInt),[FE_NipNeighbors(4),FE_Nips(4)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(5),1:FE_Nips(5),5) = & ! element 157
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
3,-2, 1,-3, 4,-1, &
|
|
1,-3, 2,-4, 4,-1, &
|
|
1,-3, 2,-4, 3,-2 &
|
|
],pInt),[FE_NipNeighbors(5),FE_Nips(5)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(6),1:FE_Nips(6),6) = & ! element 136
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
-3, 1, 3,-2, 5,-1, &
|
|
2,-4,-3, 1, 6,-1, &
|
|
5,-4, 6,-2,-5, 1, &
|
|
-3, 4, 6,-2,-5, 2, &
|
|
5,-4,-3, 4,-5, 3 &
|
|
],pInt),[FE_NipNeighbors(6),FE_Nips(6)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(7),1:FE_Nips(7),7) = & ! element 21
|
|
reshape(int([&
|
|
2,-5, 4,-2,10,-1, &
|
|
3, 1, 5,-2,11,-1, &
|
|
-3, 2, 6,-2,12,-1, &
|
|
5,-5, 7, 1,13,-1, &
|
|
6, 4, 8, 2,14,-1, &
|
|
-3, 5, 9, 3,15,-1, &
|
|
8,-5,-4, 4,16,-1, &
|
|
9, 7,-4, 5,17,-1, &
|
|
-3, 8,-4, 6,18,-1, &
|
|
11,-5,13,-2,19, 1, &
|
|
12,10,14,-2,20, 2, &
|
|
-3,11,15,-2,21, 3, &
|
|
14,-5,16,10,22, 4, &
|
|
15,13,17,11,23, 5, &
|
|
-3,14,18,12,24, 6, &
|
|
17,-5,-4,13,25, 7, &
|
|
18,16,-4,14,26, 8, &
|
|
-3,17,-4,15,27, 9, &
|
|
20,-5,22,-2,-6,10, &
|
|
21,19,23,-2,-6,11, &
|
|
-3,20,24,-2,-6,12, &
|
|
23,-5,25,19,-6,13, &
|
|
24,22,26,20,-6,14, &
|
|
-3,23,27,21,-6,15, &
|
|
26,-5,-4,22,-6,16, &
|
|
27,25,-4,23,-6,17, &
|
|
-3,26,-4,24,-6,18 &
|
|
],pInt),[FE_NipNeighbors(7),FE_Nips(7)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(8),1:FE_Nips(8),8) = & ! element 117
|
|
reshape(int([&
|
|
-3,-5,-4,-2,-6,-1 &
|
|
],pInt),[FE_NipNeighbors(8),FE_Nips(8)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(9),1:FE_Nips(9),9) = & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
reshape(int([&
|
|
2,-5, 3,-2, 5,-1, &
|
|
-3, 1, 4,-2, 6,-1, &
|
|
4,-5,-4, 1, 7,-1, &
|
|
-3, 3,-4, 2, 8,-1, &
|
|
6,-5, 7,-2,-6, 1, &
|
|
-3, 5, 8,-2,-6, 2, &
|
|
8,-5,-4, 5,-6, 3, &
|
|
-3, 7,-4, 6,-6, 4 &
|
|
],pInt),[FE_NipNeighbors(9),FE_Nips(9)])
|
|
|
|
FE_ipNeighbor(1:FE_NipNeighbors(10),1:FE_Nips(10),10) = & ! element 155, 125, 128
|
|
reshape(int([&
|
|
2,-3, 3,-1, &
|
|
-2, 1, 3,-1, &
|
|
2,-3,-2, 1 &
|
|
],pInt),[FE_NipNeighbors(10),FE_Nips(10)])
|
|
|
|
! *** FE_subNodeParent ***
|
|
! lists the group of nodes for which the center of gravity
|
|
! corresponds to the location of a each subnode.
|
|
! fill with 0.
|
|
! example: face-centered subnode with faceNodes 1,2,3,4 to be used in,
|
|
! e.g., a 8 IP grid, would be encoded:
|
|
! 1, 2, 3, 4, 0, 0, 0, 0
|
|
|
|
FE_subNodeParent(1:FE_Nips(1),1:FE_NsubNodes(1),1) = & ! element 7
|
|
reshape(int([&
|
|
1, 2, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 0, 0, 0, 0, 0, 0, &
|
|
1, 5, 0, 0, 0, 0, 0, 0, &
|
|
2, 6, 0, 0, 0, 0, 0, 0, &
|
|
3, 7, 0, 0, 0, 0, 0, 0, &
|
|
4, 8, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 0, 0, 0, 0, 0, 0, &
|
|
6, 7, 0, 0, 0, 0, 0, 0, &
|
|
7, 8, 0, 0, 0, 0, 0, 0, &
|
|
8, 5, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 0, 0, 0, 0, &
|
|
1, 2, 6, 5, 0, 0, 0, 0, &
|
|
2, 3, 7, 6, 0, 0, 0, 0, &
|
|
3, 4, 8, 7, 0, 0, 0, 0, &
|
|
1, 4, 8, 5, 0, 0, 0, 0, &
|
|
5, 6, 7, 8, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 5, 6, 7, 8 &
|
|
],pInt),(/FE_Nips(1),FE_NsubNodes(1)/))
|
|
|
|
!FE_subNodeParent(:FE_Nips(2),:FE_NsubNodes(2),2) ! element 134 has no subnodes
|
|
|
|
FE_subNodeParent(1:FE_Nips(3),1:FE_NsubNodes(3),3) = & ! element 11
|
|
reshape(int([&
|
|
1, 2, 0, 0, &
|
|
2, 3, 0, 0, &
|
|
3, 4, 0, 0, &
|
|
4, 1, 0, 0, &
|
|
1, 2, 3, 4 &
|
|
],pInt),[FE_Nips(3),FE_NsubNodes(3)])
|
|
|
|
FE_subNodeParent(1:FE_Nips(4),1:FE_NsubNodes(4),4) = & ! element 27
|
|
reshape(int([&
|
|
1, 1, 2, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 2, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 3, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 3, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 4, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 4, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 1, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 1, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 2, 2, 4, 4, 3, &
|
|
2, 2, 2, 2, 1, 1, 3, 3, 4, &
|
|
3, 3, 3, 3, 2, 2, 4, 4, 1, &
|
|
4, 4, 4, 4, 1, 1, 3, 3, 2 &
|
|
],pInt),[FE_Nips(4),FE_NsubNodes(4)])
|
|
|
|
!FE_subNodeParent(:FE_Nips(5),:FE_NsubNodes(5),5) = & ! element 157
|
|
! reshape((/&
|
|
! *still to be defined*
|
|
! ],pInt),(/FE_Nips(5),FE_NsubNodes(5)/))
|
|
|
|
FE_subNodeParent(1:FE_Nips(6),1:FE_NsubNodes(6),6) = & ! element 136
|
|
reshape(int([&
|
|
1, 2, 0, 0, 0, 0, &
|
|
2, 3, 0, 0, 0, 0, &
|
|
3, 1, 0, 0, 0, 0, &
|
|
1, 4, 0, 0, 0, 0, &
|
|
2, 5, 0, 0, 0, 0, &
|
|
3, 6, 0, 0, 0, 0, &
|
|
4, 5, 0, 0, 0, 0, &
|
|
5, 6, 0, 0, 0, 0, &
|
|
6, 4, 0, 0, 0, 0, &
|
|
1, 2, 3, 0, 0, 0, &
|
|
1, 2, 4, 5, 0, 0, &
|
|
2, 3, 5, 6, 0, 0, &
|
|
1, 3, 4, 6, 0, 0, &
|
|
4, 5, 6, 0, 0, 0, &
|
|
1, 2, 3, 4, 5, 6 &
|
|
],pInt),[FE_Nips(6),FE_NsubNodes(6)])
|
|
|
|
FE_subNodeParent(1:FE_Nips(7),1:FE_NsubNodes(7),7) = & ! element 21
|
|
reshape(int([&
|
|
1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 2, 2, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 1, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 2, 2, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 1, 1, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 2, 2, 5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 1, 1, 6, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 3, 3, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 2, 2, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 4, 4, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 3, 3, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 1, 1, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 4, 4, 5, 5, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 1, 1, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 2, 2, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 2, 2, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 3, 3, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 3, 3, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 4, 4, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 4, 4, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 1, 1, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 6, 6, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 5, 5, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 6, 6, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 5, 5, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 3, 3, 6, 6, 8, 8, 7, &
|
|
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, 4, 4, 5, 5, 7, 7, 8, &
|
|
3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 7, 7, 7, 7, 1, 1, 6, 6, 8, 8, 5, &
|
|
4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 3, 3, 3, 3, 8, 8, 8, 8, 2, 2, 5, 5, 7, 7, 6, &
|
|
5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 6, 6, 6, 6, 8, 8, 8, 8, 2, 2, 4, 4, 7, 7, 3, &
|
|
6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 1, 1, 3, 3, 8, 8, 4, &
|
|
7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 6, 6, 6, 6, 8, 8, 8, 8, 2, 2, 4, 4, 5, 5, 1, &
|
|
8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 1, 1, 3, 3, 6, 6, 2 &
|
|
],pInt),[FE_Nips(7),FE_NsubNodes(7)])
|
|
|
|
!FE_subNodeParent(:FE_Nips(8),:FE_NsubNodes(8),8) ! element 117 has no subnodes
|
|
|
|
FE_subNodeParent(1:FE_Nips(9),1:FE_NsubNodes(9),9) = & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
reshape(int([&
|
|
1, 2, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 0, 0, 0, 0, 0, 0, &
|
|
1, 5, 0, 0, 0, 0, 0, 0, &
|
|
2, 6, 0, 0, 0, 0, 0, 0, &
|
|
3, 7, 0, 0, 0, 0, 0, 0, &
|
|
4, 8, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 0, 0, 0, 0, 0, 0, &
|
|
6, 7, 0, 0, 0, 0, 0, 0, &
|
|
7, 8, 0, 0, 0, 0, 0, 0, &
|
|
8, 5, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 0, 0, 0, 0, &
|
|
1, 2, 6, 5, 0, 0, 0, 0, &
|
|
2, 3, 7, 6, 0, 0, 0, 0, &
|
|
3, 4, 8, 7, 0, 0, 0, 0, &
|
|
1, 4, 8, 5, 0, 0, 0, 0, &
|
|
5, 6, 7, 8, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 5, 6, 7, 8 &
|
|
],pInt),[FE_Nips(9),FE_NsubNodes(9)])
|
|
|
|
FE_subNodeParent(1:FE_Nips(10),1:FE_NsubNodes(10),10) = & ! element 155, 125, 128
|
|
reshape(int([&
|
|
1, 2, 0, &
|
|
2, 3, 0, &
|
|
3, 1, 0, &
|
|
1, 2, 3 &
|
|
],pInt),[FE_Nips(10),FE_NsubNodes(10)])
|
|
|
|
! *** FE_subNodeOnIPFace ***
|
|
! indicates which subnodes make up the interfaces enclosing the IP volume.
|
|
! The sorting convention is such that the outward pointing normal
|
|
! follows from a right-handed traversal of the face node list.
|
|
! For two-dimensional elements, which only have lines as "interface"
|
|
! one nevertheless has to specify each interface by a closed path,
|
|
! e.g., 1,2, 2,1, assuming the line connects nodes 1 and 2.
|
|
! This will result in zero ipVolume and interfaceArea, but is not
|
|
! detrimental at the moment since non-local constitutive laws are
|
|
! currently not foreseen in 2D cases.
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(1),1:FE_Nips(1),1) = & ! element 7
|
|
reshape(int([&
|
|
9,21,27,22, & ! 1
|
|
1,13,25,12, &
|
|
12,25,27,21, &
|
|
1, 9,22,13, &
|
|
13,22,27,25, &
|
|
1,12,21, 9, &
|
|
2,10,23,14, & ! 2
|
|
9,22,27,21, &
|
|
10,21,27,23, &
|
|
2,14,22, 9, &
|
|
14,23,27,22, &
|
|
2, 9,21,10, &
|
|
11,24,27,21, & ! 3
|
|
4,12,25,16, &
|
|
4,16,24,11, &
|
|
12,21,27,25, &
|
|
16,25,27,24, &
|
|
4,11,21,12, &
|
|
3,15,23,10, & ! 4
|
|
11,21,27,24, &
|
|
3,11,24,15, &
|
|
10,23,27,21, &
|
|
15,24,27,23, &
|
|
3,10,21,11, &
|
|
17,22,27,26, & ! 5
|
|
5,20,25,13, &
|
|
20,26,27,25, &
|
|
5,13,22,17, &
|
|
5,17,26,20, &
|
|
13,25,27,22, &
|
|
6,14,23,18, & ! 6
|
|
17,26,27,22, &
|
|
18,23,27,26, &
|
|
6,17,22,14, &
|
|
6,18,26,17, &
|
|
14,22,27,23, &
|
|
19,26,27,24, & ! 7
|
|
8,16,25,20, &
|
|
8,19,24,16, &
|
|
20,25,27,26, &
|
|
8,20,26,19, &
|
|
16,24,27,25, &
|
|
7,18,23,15, & ! 8
|
|
19,24,27,26, &
|
|
7,15,24,19, &
|
|
18,26,27,23, &
|
|
7,19,26,18, &
|
|
15,23,27,24 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(1),FE_Nips(1)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(2),1:FE_Nips(2),2) = & ! element 134
|
|
reshape(int([&
|
|
1, 1, 3, 2, & ! 1
|
|
1, 1, 2, 4, &
|
|
2, 2, 3, 4, &
|
|
1, 1, 4, 3 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(2),FE_Nips(2)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(3),1:FE_Nips(3),3) = & ! element 11
|
|
reshape(int([&
|
|
5, 9, 9, 5 , & ! 1
|
|
1, 8, 8, 1 , &
|
|
8, 9, 9, 8 , &
|
|
1, 5, 5, 1 , &
|
|
2, 6, 6, 2 , & ! 2
|
|
5, 9, 9, 5 , &
|
|
6, 9, 9, 6 , &
|
|
2, 5, 5, 2 , &
|
|
3, 6, 6, 3 , & ! 3
|
|
7, 9, 9, 7 , &
|
|
3, 7, 7, 3 , &
|
|
6, 9, 9, 6 , &
|
|
7, 9, 9, 7 , & ! 4
|
|
4, 8, 8, 4 , &
|
|
4, 7, 7, 4 , &
|
|
8, 9, 9, 8 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(3),FE_Nips(3)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(4),1:FE_Nips(4),4) = & ! element 27
|
|
reshape(int([&
|
|
9,17,17, 9 , & ! 1
|
|
1,16,16, 1 , &
|
|
16,17,17,16 , &
|
|
1, 9, 9, 1 , &
|
|
10,18,18,10 , & ! 2
|
|
9,17,17, 9 , &
|
|
17,18,18,17 , &
|
|
9,10,10, 9 , &
|
|
2,11,11, 2 , & ! 3
|
|
10,18,18,10 , &
|
|
11,18,18,11 , &
|
|
2,10,10, 2 , &
|
|
17,20,20,17 , & ! 4
|
|
15,16,16,15 , &
|
|
15,20,20,15 , &
|
|
16,17,17,16 , &
|
|
18,19,19,18 , & ! 5
|
|
17,20,20,17 , &
|
|
19,20,20,19 , &
|
|
17,18,18,17 , &
|
|
11,12,12,11 , & ! 6
|
|
18,19,19,18 , &
|
|
12,19,19,12 , &
|
|
11,18,18,11 , &
|
|
14,20,20,14 , & ! 7
|
|
4,15,15, 4 , &
|
|
4,14,14, 4 , &
|
|
15,20,20,15 , &
|
|
13,19,19,13 , & ! 8
|
|
14,20,20,14 , &
|
|
13,14,14,13 , &
|
|
19,20,20,19 , &
|
|
3,12,12, 3 , & ! 9
|
|
13,19,19,13 , &
|
|
3,13,13, 3 , &
|
|
12,19,19,12 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(4),FE_Nips(4)])
|
|
|
|
!FE_subNodeOnIPFace(:FE_NipFaceNodes,:FE_NipNeighbors(5),:FE_Nips(5),5) = & ! element 157
|
|
! reshape((/&
|
|
! *still to be defined*
|
|
! /),(/FE_NipFaceNodes,FE_NipNeighbors(5),FE_Nips(5)/))
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(6),1:FE_Nips(6),6) = & ! element 136
|
|
reshape(int([&
|
|
7,16,21,17, & ! 1
|
|
1,10,19, 9, &
|
|
9,19,21,16, &
|
|
1, 7,17,10, &
|
|
10,17,21,19, &
|
|
1, 9,16, 7, &
|
|
2, 8,18,11, & ! 2
|
|
7,17,21,16, &
|
|
8,16,21,18, &
|
|
2,11,17, 7, &
|
|
11,18,21,17, &
|
|
2, 7,16, 8, &
|
|
8,18,21,16, & ! 3
|
|
3, 9,19,12, &
|
|
3,12,18, 8, &
|
|
9,16,21,19, &
|
|
12,19,21,18, &
|
|
3, 8,16, 9, &
|
|
13,17,21,20, & ! 4
|
|
4,15,19,10, &
|
|
15,20,21,19, &
|
|
4,10,17,13, &
|
|
4,13,20,15, &
|
|
10,19,21,17, &
|
|
5,11,18,14, & ! 5
|
|
13,20,21,17, &
|
|
14,18,21,20, &
|
|
5,13,17,11, &
|
|
5,14,20,13, &
|
|
11,17,21,18, &
|
|
14,20,21,18, & ! 6
|
|
6,12,19,15, &
|
|
6,14,18,12, &
|
|
15,19,21,20, &
|
|
6,15,20,14, &
|
|
12,18,21,19 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(6),FE_Nips(6)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(7),1:FE_Nips(7),7) = & ! element 21
|
|
reshape(int([&
|
|
9,33,57,37, & ! 1
|
|
1,17,44,16, &
|
|
33,16,44,57, &
|
|
1, 9,37,17, &
|
|
17,37,57,44, &
|
|
1,16,33, 9, &
|
|
10,34,58,38, & ! 2
|
|
9,37,57,33, &
|
|
34,33,57,58, &
|
|
9,10,38,37, &
|
|
37,38,58,57, &
|
|
9,33,34,10, &
|
|
2,11,39,18, & ! 3
|
|
10,38,58,34, &
|
|
11,34,58,39, &
|
|
10, 2,18,38, &
|
|
38,18,39,58, &
|
|
10,34,11, 2, &
|
|
33,36,60,57, & ! 4
|
|
16,44,43,15, &
|
|
36,15,43,60, &
|
|
16,33,57,44, &
|
|
44,57,60,43, &
|
|
16,15,36,33, &
|
|
34,35,59,58, & ! 5
|
|
33,57,60,36, &
|
|
35,36,60,59, &
|
|
33,34,58,57, &
|
|
57,58,59,60, &
|
|
33,36,35,34, &
|
|
11,12,40,39, & ! 6
|
|
34,58,59,35, &
|
|
12,35,59,40, &
|
|
34,11,39,58, &
|
|
58,39,40,59, &
|
|
34,35,12,11, &
|
|
36,14,42,60, & ! 7
|
|
15,43,20, 4, &
|
|
14, 4,20,42, &
|
|
15,36,60,43, &
|
|
43,60,42,20, &
|
|
15, 4,14,36, &
|
|
35,13,41,59, & ! 8
|
|
36,60,42,14, &
|
|
13,14,42,41, &
|
|
36,35,59,60, &
|
|
60,59,41,42, &
|
|
36,14,13,35, &
|
|
12, 3,19,40, & ! 9
|
|
35,59,41,13, &
|
|
3,13,41,19, &
|
|
35,12,40,59, &
|
|
59,40,19,41, &
|
|
35,13, 3,12, &
|
|
37,57,61,45, & ! 10
|
|
17,21,52,44, &
|
|
57,44,52,61, &
|
|
17,37,45,21, &
|
|
21,45,61,52, &
|
|
17,44,57,37, &
|
|
38,58,62,46, & ! 11
|
|
37,45,61,57, &
|
|
58,57,61,62, &
|
|
37,38,46,45, &
|
|
45,46,62,61, &
|
|
37,57,58,38, &
|
|
18,39,47,22, & ! 12
|
|
38,46,62,58, &
|
|
39,58,62,47, &
|
|
38,18,22,46, &
|
|
46,22,47,62, &
|
|
38,58,39,18, &
|
|
57,60,64,61, & ! 13
|
|
44,52,51,43, &
|
|
60,43,51,64, &
|
|
44,57,61,52, &
|
|
52,61,64,51, &
|
|
44,43,60,57, &
|
|
58,59,63,62, & ! 14
|
|
57,61,64,60, &
|
|
59,60,64,63, &
|
|
57,58,62,61, &
|
|
61,62,63,64, &
|
|
57,60,59,58, &
|
|
39,40,48,47, & ! 15
|
|
58,62,63,59, &
|
|
40,59,63,48, &
|
|
58,39,47,62, &
|
|
62,47,48,63, &
|
|
58,59,40,39, &
|
|
60,42,50,64, & ! 16
|
|
43,51,24,20, &
|
|
42,20,24,50, &
|
|
43,60,64,51, &
|
|
51,64,50,24, &
|
|
43,20,42,60, &
|
|
59,41,49,63, & ! 17
|
|
60,64,50,42, &
|
|
41,42,50,49, &
|
|
60,59,63,64, &
|
|
64,63,49,50, &
|
|
60,42,41,59, &
|
|
40,19,23,48, & ! 18
|
|
59,63,49,41, &
|
|
19,41,49,23, &
|
|
59,40,48,63, &
|
|
63,48,23,49, &
|
|
59,41,19,40, &
|
|
45,61,53,25, & ! 19
|
|
21, 5,32,52, &
|
|
61,52,32,53, &
|
|
21,45,25, 5, &
|
|
5,25,53,32, &
|
|
21,52,61,45, &
|
|
46,62,54,26, & ! 20
|
|
45,25,53,61, &
|
|
62,61,53,54, &
|
|
45,46,26,25, &
|
|
25,26,54,53, &
|
|
45,61,62,46, &
|
|
22,47,27, 6, & ! 21
|
|
46,26,54,62, &
|
|
47,62,54,27, &
|
|
46,22, 6,26, &
|
|
26, 6,27,54, &
|
|
46,62,47,22, &
|
|
61,64,56,53, & ! 22
|
|
52,32,31,51, &
|
|
64,51,31,56, &
|
|
52,61,53,32, &
|
|
32,53,56,31, &
|
|
52,51,64,61, &
|
|
62,63,55,54, & ! 23
|
|
61,53,56,64, &
|
|
63,64,56,55, &
|
|
61,62,54,53, &
|
|
53,54,55,56, &
|
|
61,64,63,62, &
|
|
47,48,28,27, & ! 24
|
|
62,54,55,63, &
|
|
48,63,55,28, &
|
|
62,47,27,54, &
|
|
54,27,28,55, &
|
|
62,63,48,47, &
|
|
64,50,30,56, & ! 25
|
|
51,31, 8,24, &
|
|
50,24, 8,30, &
|
|
51,64,56,31, &
|
|
31,56,30, 8, &
|
|
51,24,50,64, &
|
|
63,49,29,55, & ! 26
|
|
64,56,30,50, &
|
|
49,50,30,29, &
|
|
64,63,55,56, &
|
|
56,55,29,30, &
|
|
64,50,49,63, &
|
|
48,23, 7,28, & ! 27
|
|
63,55,29,49, &
|
|
23,49,29, 7, &
|
|
63,48,28,55, &
|
|
55,28, 7,29, &
|
|
63,49,23,48 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(7),FE_Nips(7)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(8),1:FE_Nips(8),8) = & ! element 117
|
|
reshape(int([&
|
|
2, 3, 7, 6, & ! 1
|
|
1, 5, 8, 4, &
|
|
3, 4, 8, 7, &
|
|
1, 2, 6, 5, &
|
|
5, 6, 7, 8, &
|
|
1, 4, 3, 2 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(8),FE_Nips(8)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(9),1:FE_Nips(9),9) = & ! element 57 (c3d20r == c3d8 --> copy of 7)
|
|
reshape(int([&
|
|
9,21,27,22, & ! 1
|
|
1,13,25,12, &
|
|
12,25,27,21, &
|
|
1, 9,22,13, &
|
|
13,22,27,25, &
|
|
1,12,21, 9, &
|
|
2,10,23,14, & ! 2
|
|
9,22,27,21, &
|
|
10,21,27,23, &
|
|
2,14,22, 9, &
|
|
14,23,27,22, &
|
|
2, 9,21,10, &
|
|
11,24,27,21, & ! 3
|
|
4,12,25,16, &
|
|
4,16,24,11, &
|
|
12,21,27,25, &
|
|
16,25,27,24, &
|
|
4,11,21,12, &
|
|
3,15,23,10, & ! 4
|
|
11,21,27,24, &
|
|
3,11,24,15, &
|
|
10,23,27,21, &
|
|
15,24,27,23, &
|
|
3,10,21,11, &
|
|
17,22,27,26, & ! 5
|
|
5,20,25,13, &
|
|
20,26,27,25, &
|
|
5,13,22,17, &
|
|
5,17,26,20, &
|
|
13,25,27,22, &
|
|
6,14,23,18, & ! 6
|
|
17,26,27,22, &
|
|
18,23,27,26, &
|
|
6,17,22,14, &
|
|
6,18,26,17, &
|
|
14,22,27,23, &
|
|
19,26,27,24, & ! 7
|
|
8,16,25,20, &
|
|
8,19,24,16, &
|
|
20,25,27,26, &
|
|
8,20,26,19, &
|
|
16,24,27,25, &
|
|
7,18,23,15, & ! 8
|
|
19,24,27,26, &
|
|
7,15,24,19, &
|
|
18,26,27,23, &
|
|
7,19,26,18, &
|
|
15,23,27,24 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(9),FE_Nips(9)])
|
|
|
|
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(10),1:FE_Nips(10),10) = & ! element 155, 125, 128
|
|
reshape(int([&
|
|
4, 7, 7, 4 , & ! 1
|
|
1, 6, 6, 1 , &
|
|
6, 7, 7, 6 , &
|
|
1, 4, 4, 1 , &
|
|
2, 5, 5, 2 , & ! 2
|
|
4, 7, 7, 4 , &
|
|
5, 7, 7, 5 , &
|
|
2, 4, 4, 2 , &
|
|
5, 7, 7, 5 , & ! 3
|
|
3, 6, 6, 3 , &
|
|
3, 5, 5, 3 , &
|
|
6, 7, 7, 6 &
|
|
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(10),FE_Nips(10)])
|
|
|
|
end subroutine mesh_build_FEdata
|
|
|
|
end module mesh
|
|
|