DAMASK_EICMD/src/math.f90

2743 lines
115 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Mathematical library, including random number generation and tensor represenations
!--------------------------------------------------------------------------------------------------
module math
use, intrinsic :: iso_c_binding
use prec, only: &
pReal, &
pInt
implicit none
private
real(pReal), parameter, public :: PI = 3.141592653589793_pReal !< ratio of a circle's circumference to its diameter
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)*(PI,0.0_pReal) !< Re(0.0), Im(2xPi)
real(pReal), dimension(3,3), parameter, public :: &
MATH_I3 = reshape([&
1.0_pReal,0.0_pReal,0.0_pReal, &
0.0_pReal,1.0_pReal,0.0_pReal, &
0.0_pReal,0.0_pReal,1.0_pReal &
],[3,3]) !< 3x3 Identity
integer(pInt), dimension (2,6), parameter, private :: &
mapMandel = reshape([&
1_pInt,1_pInt, &
2_pInt,2_pInt, &
3_pInt,3_pInt, &
1_pInt,2_pInt, &
2_pInt,3_pInt, &
1_pInt,3_pInt &
],[2,6]) !< arrangement in Mandel notation
real(pReal), dimension(6), parameter, private :: &
nrmMandel = [&
1.0_pReal, 1.0_pReal, 1.0_pReal,&
1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal ] !< weighting for Mandel notation (forward)
real(pReal), dimension(6), parameter , public :: &
invnrmMandel = [&
1.0_pReal, 1.0_pReal, 1.0_pReal,&
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal ] !< weighting for Mandel notation (backward)
integer(pInt), dimension (2,6), parameter, private :: &
mapVoigt = reshape([&
1_pInt,1_pInt, &
2_pInt,2_pInt, &
3_pInt,3_pInt, &
2_pInt,3_pInt, &
1_pInt,3_pInt, &
1_pInt,2_pInt &
],[2,6]) !< arrangement in Voigt notation
real(pReal), dimension(6), parameter, private :: &
nrmVoigt = 1.0_pReal, & !< weighting for Voigt notation (forward)
invnrmVoigt = 1.0_pReal !< weighting for Voigt notation (backward)
integer(pInt), dimension (2,9), parameter, private :: &
mapPlain = reshape([&
1_pInt,1_pInt, &
1_pInt,2_pInt, &
1_pInt,3_pInt, &
2_pInt,1_pInt, &
2_pInt,2_pInt, &
2_pInt,3_pInt, &
3_pInt,1_pInt, &
3_pInt,2_pInt, &
3_pInt,3_pInt &
],[2,9]) !< arrangement in Plain notation
public :: &
math_init, &
math_qsort, &
math_range, &
math_identity2nd, &
math_identity4th, &
math_civita, &
math_delta, &
math_crossproduct, &
math_tensorproduct33, &
math_mul3x3, &
math_mul6x6, &
math_mul33xx33, &
math_mul3333xx33, &
math_mul3333xx3333, &
math_mul33x33, &
math_mul66x66, &
math_mul99x99, &
math_mul33x3, &
math_mul33x3_complex, &
math_mul66x6 , &
math_exp33 , &
math_transpose33, &
math_inv33, &
math_invert33, &
math_invSym3333, &
math_invert, &
math_symmetric33, &
math_symmetric66, &
math_skew33, &
math_spherical33, &
math_deviatoric33, &
math_equivStrain33, &
math_equivStress33, &
math_trace33, &
math_det33, &
math_Plain33to9, &
math_Plain9to33, &
math_Mandel33to6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_Plain99to3333, &
math_Mandel66toPlain66, &
math_Plain66toMandel66, &
math_Mandel3333to66, &
math_Mandel66to3333, &
math_Voigt66to3333, &
math_qRand, &
math_qMul, &
math_qDot, &
math_qConj, &
math_qInv, &
math_qRot, &
math_RtoEuler, &
math_RtoQ, &
math_EulerToR, &
math_EulerToQ, &
math_EulerAxisAngleToR, &
math_axisAngleToR, &
math_EulerAxisAngleToQ, &
math_axisAngleToQ, &
math_qToRodrig, &
math_qToEuler, &
math_qToEulerAxisAngle, &
math_qToAxisAngle, &
math_qToR, &
math_EulerMisorientation, &
math_sampleRandomOri, &
math_sampleGaussOri, &
math_sampleFiberOri, &
math_sampleGaussVar, &
math_symmetricEulers, &
math_eigenvectorBasisSym33, &
math_eigenvectorBasisSym, &
math_eigenValuesVectorsSym33, &
math_eigenValuesVectorsSym, &
math_rotationalPart33, &
math_invariantsSym33, &
math_eigenvaluesSym33, &
math_factorial, &
math_binomial, &
math_multinomial, &
math_volTetrahedron, &
math_areaTriangle, &
math_rotate_forward33, &
math_rotate_backward33, &
math_rotate_forward3333, &
math_limit
private :: &
math_partition, &
halton, &
halton_memory, &
halton_ndim_set, &
halton_seed_set, &
i_to_halton, &
prime
contains
!--------------------------------------------------------------------------------------------------
!> @brief initialization of random seed generator
!--------------------------------------------------------------------------------------------------
subroutine math_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: tol_math_check
use numerics, only: &
fixedSeed
use IO, only: IO_error, IO_timeStamp
implicit none
integer(pInt) :: i
real(pReal), dimension(3,3) :: R,R2
real(pReal), dimension(3) :: Eulers,v
real(pReal), dimension(4) :: q,q2,axisangle,randTest
! the following variables are system dependend and shound NOT be pInt
integer :: randSize ! gfortran requires a variable length to compile
integer, dimension(:), allocatable :: randInit ! if recalculations of former randomness (with given seed) is necessary
! comment the first random_seed call out, set randSize to 1, and use ifort
character(len=64) :: error_msg
write(6,'(/,a)') ' <<<+- math init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
call random_seed(size=randSize)
if (allocated(randInit)) deallocate(randInit)
allocate(randInit(randSize))
if (fixedSeed > 0_pInt) then
randInit(1:randSize) = int(fixedSeed) ! fixedSeed is of type pInt, randInit not
call random_seed(put=randInit)
else
call random_seed()
call random_seed(get = randInit)
randInit(2:randSize) = randInit(1)
call random_seed(put = randInit)
endif
do i = 1_pInt, 4_pInt
call random_number(randTest(i))
enddo
write(6,'(a,I2)') ' size of random seed: ', randSize
do i =1, randSize
write(6,'(a,I2,I14)') ' value of random seed: ', i, randInit(i)
enddo
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
call random_seed(put = randInit)
call halton_seed_set(int(randInit(1), pInt))
call halton_ndim_set(3_pInt)
! --- check rotation dictionary ---
q = math_qRand() ! random quaternion
! +++ q -> a -> q +++
axisangle = math_qToAxisAngle(q)
q2 = math_axisAngleToQ(axisangle(1:3),axisangle(4))
if ( any(abs( q-q2) > tol_math_check) .and. &
any(abs(-q-q2) > tol_math_check) ) then
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
call IO_error(401_pInt,ext_msg=error_msg)
endif
! +++ q -> R -> q +++
R = math_qToR(q)
q2 = math_RtoQ(R)
if ( any(abs( q-q2) > tol_math_check) .and. &
any(abs(-q-q2) > tol_math_check) ) then
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
call IO_error(402_pInt,ext_msg=error_msg)
endif
! +++ q -> euler -> q +++
Eulers = math_qToEuler(q)
q2 = math_EulerToQ(Eulers)
if ( any(abs( q-q2) > tol_math_check) .and. &
any(abs(-q-q2) > tol_math_check) ) then
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
call IO_error(403_pInt,ext_msg=error_msg)
endif
! +++ R -> euler -> R +++
Eulers = math_RtoEuler(R)
R2 = math_EulerToR(Eulers)
if ( any(abs( R-R2) > tol_math_check) ) then
write (error_msg, '(a,e14.6)' ) 'maximum deviation ',maxval(abs( R-R2))
call IO_error(404_pInt,ext_msg=error_msg)
endif
! +++ check rotation sense of q and R +++
q = math_qRand() ! random quaternion
call halton(3_pInt,v) ! random vector
R = math_qToR(q)
if (any(abs(math_mul33x3(R,v) - math_qRot(q,v)) > tol_math_check)) then
write(6,'(a,4(f8.3,1x))') 'q',q
call IO_error(409_pInt)
endif
end subroutine math_init
!--------------------------------------------------------------------------------------------------
!> @brief Quicksort algorithm for two-dimensional integer arrays
! Sorting is done with respect to array(1,:)
! and keeps array(2:N,:) linked to it.
!--------------------------------------------------------------------------------------------------
recursive subroutine math_qsort(a, istart, iend)
implicit none
integer(pInt), dimension(:,:), intent(inout) :: a
integer(pInt), intent(in) :: istart,iend
integer(pInt) :: ipivot
if (istart < iend) then
ipivot = math_partition(a,istart, iend)
call math_qsort(a, istart, ipivot-1_pInt)
call math_qsort(a, ipivot+1_pInt, iend)
endif
end subroutine math_qsort
!--------------------------------------------------------------------------------------------------
!> @brief Partitioning required for quicksort
!--------------------------------------------------------------------------------------------------
integer(pInt) function math_partition(a, istart, iend)
implicit none
integer(pInt), dimension(:,:), intent(inout) :: a
integer(pInt), intent(in) :: istart,iend
integer(pInt) :: d,i,j,k,x,tmp
d = int(size(a,1_pInt), pInt) ! number of linked data
! set the starting and ending points, and the pivot point
i = istart
j = iend
x = a(1,istart)
do
! find the first element on the right side less than or equal to the pivot point
do j = j, istart, -1_pInt
if (a(1,j) <= x) exit
enddo
! find the first element on the left side greater than the pivot point
do i = i, iend
if (a(1,i) > x) exit
enddo
if (i < j) then ! if the indexes do not cross, exchange values
do k = 1_pInt,d
tmp = a(k,i)
a(k,i) = a(k,j)
a(k,j) = tmp
enddo
else ! if they do cross, exchange left value with pivot and return with the partition index
do k = 1_pInt,d
tmp = a(k,istart)
a(k,istart) = a(k,j)
a(k,j) = tmp
enddo
math_partition = j
return
endif
enddo
end function math_partition
!--------------------------------------------------------------------------------------------------
!> @brief range of integers starting at one
!--------------------------------------------------------------------------------------------------
pure function math_range(N)
implicit none
integer(pInt), intent(in) :: N !< length of range
integer(pInt) :: i
integer(pInt), dimension(N) :: math_range
math_range = [(i,i=1_pInt,N)]
end function math_range
!--------------------------------------------------------------------------------------------------
!> @brief second rank identity tensor of specified dimension
!--------------------------------------------------------------------------------------------------
pure function math_identity2nd(dimen)
implicit none
integer(pInt), intent(in) :: dimen !< tensor dimension
integer(pInt) :: i
real(pReal), dimension(dimen,dimen) :: math_identity2nd
math_identity2nd = 0.0_pReal
forall (i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
end function math_identity2nd
!--------------------------------------------------------------------------------------------------
!> @brief symmetric fourth rank identity tensor of specified dimension
! from http://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics)#Derivative_of_a_second-order_tensor_with_respect_to_itself
!--------------------------------------------------------------------------------------------------
pure function math_identity4th(dimen)
implicit none
integer(pInt), intent(in) :: dimen !< tensor dimension
integer(pInt) :: i,j,k,l
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
forall (i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) math_identity4th(i,j,k,l) = &
0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
end function math_identity4th
!--------------------------------------------------------------------------------------------------
!> @brief permutation tensor e_ijk used for computing cross product of two tensors
! e_ijk = 1 if even permutation of ijk
! e_ijk = -1 if odd permutation of ijk
! e_ijk = 0 otherwise
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_civita(i,j,k)
implicit none
integer(pInt), intent(in) :: i,j,k
math_civita = 0.0_pReal
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
end function math_civita
!--------------------------------------------------------------------------------------------------
!> @brief kronecker delta function d_ij
! d_ij = 1 if i = j
! d_ij = 0 otherwise
! inspired by http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_delta(i,j)
implicit none
integer(pInt), intent (in) :: i,j
math_delta = merge(0.0_pReal, 1.0_pReal, i /= j)
end function math_delta
!--------------------------------------------------------------------------------------------------
!> @brief cross product a x b
!--------------------------------------------------------------------------------------------------
pure function math_crossproduct(A,B)
implicit none
real(pReal), dimension(3), intent(in) :: A,B
real(pReal), dimension(3) :: math_crossproduct
math_crossproduct = [ A(2)*B(3) -A(3)*B(2), &
A(3)*B(1) -A(1)*B(3), &
A(1)*B(2) -A(2)*B(1) ]
end function math_crossproduct
!--------------------------------------------------------------------------------------------------
!> @brief tensor product A \otimes B of arbitrary sized vectors A and B
!--------------------------------------------------------------------------------------------------
pure function math_tensorproduct(A,B)
implicit none
real(pReal), dimension(:), intent(in) :: A,B
real(pReal), dimension(size(A,1),size(B,1)) :: math_tensorproduct
integer(pInt) :: i,j
forall (i=1_pInt:size(A,1),j=1_pInt:size(B,1)) math_tensorproduct(i,j) = A(i)*B(j)
end function math_tensorproduct
!--------------------------------------------------------------------------------------------------
!> @brief tensor product A \otimes B of leght-3 vectors A and B
!--------------------------------------------------------------------------------------------------
pure function math_tensorproduct33(A,B)
implicit none
real(pReal), dimension(3,3) :: math_tensorproduct33
real(pReal), dimension(3), intent(in) :: A,B
integer(pInt) :: i,j
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct33(i,j) = A(i)*B(j)
end function math_tensorproduct33
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 3x3 = 1
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_mul3x3(A,B)
implicit none
real(pReal), dimension(3), intent(in) :: A,B
math_mul3x3 = sum(A*B)
end function math_mul3x3
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 6x6 = 1
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_mul6x6(A,B)
implicit none
real(pReal), dimension(6), intent(in) :: A,B
math_mul6x6 = sum(A*B)
end function math_mul6x6
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 33xx33 = 1 (double contraction --> ij * ij)
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_mul33xx33(A,B)
implicit none
real(pReal), dimension(3,3), intent(in) :: A,B
integer(pInt) :: i,j
real(pReal), dimension(3,3) :: C
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
math_mul33xx33 = sum(C)
end function math_mul33xx33
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
!--------------------------------------------------------------------------------------------------
pure function math_mul3333xx33(A,B)
implicit none
real(pReal), dimension(3,3) :: math_mul3333xx33
real(pReal), dimension(3,3,3,3), intent(in) :: A
real(pReal), dimension(3,3), intent(in) :: B
integer(pInt) :: i,j
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt) &
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
end function math_mul3333xx33
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 3333x3333 = 3333 (ijkl *klmn = ijmn)
!--------------------------------------------------------------------------------------------------
pure function math_mul3333xx3333(A,B)
implicit none
integer(pInt) :: i,j,k,l
real(pReal), dimension(3,3,3,3), intent(in) :: A
real(pReal), dimension(3,3,3,3), intent(in) :: B
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt, k = 1_pInt:3_pInt, l= 1_pInt:3_pInt) &
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
end function math_mul3333xx3333
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 33x33 = 33
!--------------------------------------------------------------------------------------------------
pure function math_mul33x33(A,B)
implicit none
real(pReal), dimension(3,3) :: math_mul33x33
real(pReal), dimension(3,3), intent(in) :: A,B
integer(pInt) :: i,j
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) &
math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
end function math_mul33x33
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 66x66 = 66
!--------------------------------------------------------------------------------------------------
pure function math_mul66x66(A,B)
implicit none
real(pReal), dimension(6,6) :: math_mul66x66
real(pReal), dimension(6,6), intent(in) :: A,B
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_mul66x66(i,j) = &
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
end function math_mul66x66
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 99x99 = 99
!--------------------------------------------------------------------------------------------------
pure function math_mul99x99(A,B)
implicit none
real(pReal), dimension(9,9) :: math_mul99x99
real(pReal), dimension(9,9), intent(in) :: A,B
integer(pInt) i,j
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_mul99x99(i,j) = &
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
end function math_mul99x99
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 33x3 = 3
!--------------------------------------------------------------------------------------------------
pure function math_mul33x3(A,B)
implicit none
real(pReal), dimension(3) :: math_mul33x3
real(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3), intent(in) :: B
integer(pInt) :: i
forall (i=1_pInt:3_pInt) math_mul33x3(i) = sum(A(i,1:3)*B)
end function math_mul33x3
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication complex(33) x real(3) = complex(3)
!--------------------------------------------------------------------------------------------------
pure function math_mul33x3_complex(A,B)
implicit none
complex(pReal), dimension(3) :: math_mul33x3_complex
complex(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3), intent(in) :: B
integer(pInt) :: i
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
end function math_mul33x3_complex
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 66x6 = 6
!--------------------------------------------------------------------------------------------------
pure function math_mul66x6(A,B)
implicit none
real(pReal), dimension(6) :: math_mul66x6
real(pReal), dimension(6,6), intent(in) :: A
real(pReal), dimension(6), intent(in) :: B
integer(pInt) :: i
forall (i=1_pInt:6_pInt) math_mul66x6(i) = &
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
end function math_mul66x6
!--------------------------------------------------------------------------------------------------
!> @brief 3x3 matrix exponential up to series approximation order n (default 5)
!--------------------------------------------------------------------------------------------------
pure function math_exp33(A,n)
implicit none
integer(pInt) :: i,order
integer(pInt), intent(in), optional :: n
real(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3,3) :: B,math_exp33
real(pReal) :: invfac
order = merge(n,5_pInt,present(n))
B = math_I3 ! init
invfac = 1.0_pReal ! 0!
math_exp33 = B ! A^0 = eye2
do i = 1_pInt,n
invfac = invfac/real(i,pReal) ! invfac = 1/i!
B = math_mul33x33(B,A)
math_exp33 = math_exp33 + invfac*B ! exp = SUM (A^i)/i!
enddo
end function math_exp33
!--------------------------------------------------------------------------------------------------
!> @brief transposition of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_transpose33(A)
implicit none
real(pReal),dimension(3,3) :: math_transpose33
real(pReal),dimension(3,3),intent(in) :: A
integer(pInt) :: i,j
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose33(i,j) = A(j,i)
end function math_transpose33
!--------------------------------------------------------------------------------------------------
!> @brief Cramer inversion of 33 matrix (function)
! direct Cramer inversion of matrix A.
! returns all zeroes if not possible, i.e. if det close to zero
!--------------------------------------------------------------------------------------------------
pure function math_inv33(A)
use prec, only: &
dNeq0
implicit none
real(pReal),dimension(3,3),intent(in) :: A
real(pReal) :: DetA
real(pReal),dimension(3,3) :: math_inv33
math_inv33(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
math_inv33(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
math_inv33(3,1) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
DetA = A(1,1) * math_inv33(1,1) + A(1,2) * math_inv33(2,1) + A(1,3) * math_inv33(3,1)
if (dNeq0(DetA)) then
math_inv33(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
math_inv33(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
math_inv33(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)
math_inv33(1,3) = A(1,2) * A(2,3) - A(1,3) * A(2,2)
math_inv33(2,3) = -A(1,1) * A(2,3) + A(1,3) * A(2,1)
math_inv33(3,3) = A(1,1) * A(2,2) - A(1,2) * A(2,1)
math_inv33 = math_inv33/DetA
else
math_inv33 = 0.0_pReal
endif
end function math_inv33
!--------------------------------------------------------------------------------------------------
!> @brief Cramer inversion of 33 matrix (subroutine)
! direct Cramer inversion of matrix A.
! also returns determinant
! returns error if not possible, i.e. if det close to zero
!--------------------------------------------------------------------------------------------------
pure subroutine math_invert33(A, InvA, DetA, error)
use prec, only: &
dEq0
implicit none
logical, intent(out) :: error
real(pReal),dimension(3,3),intent(in) :: A
real(pReal),dimension(3,3),intent(out) :: InvA
real(pReal), intent(out) :: DetA
InvA(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
InvA(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
InvA(3,1) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1)
if (dEq0(DetA)) then
InvA = 0.0_pReal
error = .true.
else
InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
InvA(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
InvA(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)
InvA(1,3) = A(1,2) * A(2,3) - A(1,3) * A(2,2)
InvA(2,3) = -A(1,1) * A(2,3) + A(1,3) * A(2,1)
InvA(3,3) = A(1,1) * A(2,2) - A(1,2) * A(2,1)
InvA = InvA/DetA
error = .false.
endif
end subroutine math_invert33
!--------------------------------------------------------------------------------------------------
!> @brief Inversion of symmetriced 3x3x3x3 tensor.
!--------------------------------------------------------------------------------------------------
function math_invSym3333(A)
use IO, only: &
IO_error
implicit none
real(pReal),dimension(3,3,3,3) :: math_invSym3333
real(pReal),dimension(3,3,3,3),intent(in) :: A
integer(pInt) :: ierr
integer(pInt), dimension(6) :: ipiv6
real(pReal), dimension(6,6) :: temp66_Real
real(pReal), dimension(6) :: work6
external :: &
dgetrf, &
dgetri
temp66_real = math_Mandel3333to66(A)
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
if (ierr == 0_pInt) then
math_invSym3333 = math_Mandel66to3333(temp66_real)
else
call IO_error(400_pInt, ext_msg = 'math_invSym3333')
endif
end function math_invSym3333
!--------------------------------------------------------------------------------------------------
!> @brief invert matrix of arbitrary dimension
!--------------------------------------------------------------------------------------------------
subroutine math_invert(myDim,A, InvA, error)
implicit none
integer(pInt), intent(in) :: myDim
real(pReal), dimension(myDim,myDim), intent(in) :: A
integer(pInt) :: ierr
integer(pInt), dimension(myDim) :: ipiv
real(pReal), dimension(myDim) :: work
real(pReal), dimension(myDim,myDim), intent(out) :: invA
logical, intent(out) :: error
external :: &
dgetrf, &
dgetri
invA = A
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
end subroutine math_invert
!--------------------------------------------------------------------------------------------------
!> @brief symmetrize a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_symmetric33(m)
implicit none
real(pReal), dimension(3,3) :: math_symmetric33
real(pReal), dimension(3,3), intent(in) :: m
math_symmetric33 = 0.5_pReal * (m + transpose(m))
end function math_symmetric33
!--------------------------------------------------------------------------------------------------
!> @brief symmetrize a 66 matrix
!--------------------------------------------------------------------------------------------------
pure function math_symmetric66(m)
implicit none
real(pReal), dimension(6,6) :: math_symmetric66
real(pReal), dimension(6,6), intent(in) :: m
math_symmetric66 = 0.5_pReal * (m + transpose(m))
end function math_symmetric66
!--------------------------------------------------------------------------------------------------
!> @brief skew part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_skew33(m)
implicit none
real(pReal), dimension(3,3) :: math_skew33
real(pReal), dimension(3,3), intent(in) :: m
math_skew33 = m - math_symmetric33(m)
end function math_skew33
!--------------------------------------------------------------------------------------------------
!> @brief hydrostatic part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_spherical33(m)
implicit none
real(pReal), dimension(3,3) :: math_spherical33
real(pReal), dimension(3,3), intent(in) :: m
math_spherical33 = math_I3 * math_trace33(m)/3.0_pReal
end function math_spherical33
!--------------------------------------------------------------------------------------------------
!> @brief deviatoric part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_deviatoric33(m)
implicit none
real(pReal), dimension(3,3) :: math_deviatoric33
real(pReal), dimension(3,3), intent(in) :: m
math_deviatoric33 = m - math_spherical33(m)
end function math_deviatoric33
!--------------------------------------------------------------------------------------------------
!> @brief equivalent scalar quantity of a full symmetric strain tensor
!--------------------------------------------------------------------------------------------------
pure function math_equivStrain33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3) :: e,s
real(pReal) :: math_equivStrain33
real(pReal), parameter :: TWOTHIRD = 2.0_pReal/3.0_pReal
e = [2.0_pReal*m(1,1)-m(2,2)-m(3,3), &
2.0_pReal*m(2,2)-m(3,3)-m(1,1), &
2.0_pReal*m(3,3)-m(1,1)-m(2,2)]/3.0_pReal
s = [m(1,2),m(2,3),m(1,3)]*2.0_pReal
math_equivStrain33 = TWOTHIRD*(1.50_pReal*(sum(e**2.0_pReal)) + &
0.75_pReal*(sum(s**2.0_pReal)))**(0.5_pReal)
end function math_equivStrain33
!--------------------------------------------------------------------------------------------------
!> @brief von Mises equivalent of a full symmetric stress tensor
!--------------------------------------------------------------------------------------------------
pure function math_equivStress33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
real(pReal) :: math_equivStress33
math_equivStress33 =( ( (m(1,1)-m(2,2))**2.0_pReal + &
(m(2,2)-m(3,3))**2.0_pReal + &
(m(3,3)-m(1,1))**2.0_pReal + &
6.0_pReal*( m(1,2)**2.0_pReal + &
m(2,3)**2.0_pReal + &
m(1,3)**2.0_pReal &
) &
)**0.5_pReal &
)/sqrt(2.0_pReal)
end function math_equivStress33
!--------------------------------------------------------------------------------------------------
!> @brief trace of a 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_trace33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
math_trace33 = m(1,1) + m(2,2) + m(3,3)
end function math_trace33
!--------------------------------------------------------------------------------------------------
!> @brief determinant of a 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_det33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
math_det33 = m(1,1)* (m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
- m(1,2)* (m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
+ m(1,3)* (m(2,1)*m(3,2)-m(2,2)*m(3,1))
end function math_det33
!--------------------------------------------------------------------------------------------------
!> @brief determinant of a symmetric 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_detSym33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
math_detSym33 = -(m(1,1)*m(2,3)**2_pInt + m(2,2)*m(1,3)**2_pInt + m(3,3)*m(1,2)**2_pInt) &
+ m(1,1)*m(2,2)*m(3,3) - 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
end function math_detSym33
!--------------------------------------------------------------------------------------------------
!> @brief convert 33 matrix into vector 9
!--------------------------------------------------------------------------------------------------
pure function math_Plain33to9(m33)
implicit none
real(pReal), dimension(9) :: math_Plain33to9
real(pReal), dimension(3,3), intent(in) :: m33
integer(pInt) :: i
forall (i=1_pInt:9_pInt) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
end function math_Plain33to9
!--------------------------------------------------------------------------------------------------
!> @brief convert Plain 9 back to 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_Plain9to33(v9)
implicit none
real(pReal), dimension(3,3) :: math_Plain9to33
real(pReal), dimension(9), intent(in) :: v9
integer(pInt) :: i
forall (i=1_pInt:9_pInt) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
end function math_Plain9to33
!--------------------------------------------------------------------------------------------------
!> @brief convert symmetric 33 matrix into Mandel vector 6
!--------------------------------------------------------------------------------------------------
pure function math_Mandel33to6(m33)
implicit none
real(pReal), dimension(6) :: math_Mandel33to6
real(pReal), dimension(3,3), intent(in) :: m33
integer(pInt) :: i
forall (i=1_pInt:6_pInt) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
end function math_Mandel33to6
!--------------------------------------------------------------------------------------------------
!> @brief convert Mandel 6 back to symmetric 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_Mandel6to33(v6)
implicit none
real(pReal), dimension(6), intent(in) :: v6
real(pReal), dimension(3,3) :: math_Mandel6to33
integer(pInt) :: i
forall (i=1_pInt:6_pInt)
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
end forall
end function math_Mandel6to33
!--------------------------------------------------------------------------------------------------
!> @brief convert 3333 tensor into plain matrix 99
!--------------------------------------------------------------------------------------------------
pure function math_Plain3333to99(m3333)
implicit none
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
real(pReal), dimension(9,9) :: math_Plain3333to99
integer(pInt) :: i,j
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain3333to99(i,j) = &
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
end function math_Plain3333to99
!--------------------------------------------------------------------------------------------------
!> @brief plain matrix 99 into 3333 tensor
!--------------------------------------------------------------------------------------------------
pure function math_Plain99to3333(m99)
implicit none
real(pReal), dimension(9,9), intent(in) :: m99
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
integer(pInt) :: i,j
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
end function math_Plain99to3333
!--------------------------------------------------------------------------------------------------
!> @brief convert Mandel matrix 66 into Plain matrix 66
!--------------------------------------------------------------------------------------------------
pure function math_Mandel66toPlain66(m66)
implicit none
real(pReal), dimension(6,6), intent(in) :: m66
real(pReal), dimension(6,6) :: math_Mandel66toPlain66
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
math_Mandel66toPlain66(i,j) = invnrmMandel(i) * invnrmMandel(j) * m66(i,j)
end function math_Mandel66toPlain66
!--------------------------------------------------------------------------------------------------
!> @brief convert Plain matrix 66 into Mandel matrix 66
!--------------------------------------------------------------------------------------------------
pure function math_Plain66toMandel66(m66)
implicit none
real(pReal), dimension(6,6), intent(in) :: m66
real(pReal), dimension(6,6) :: math_Plain66toMandel66
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
math_Plain66toMandel66(i,j) = nrmMandel(i) * nrmMandel(j) * m66(i,j)
end function math_Plain66toMandel66
!--------------------------------------------------------------------------------------------------
!> @brief convert symmetric 3333 tensor into Mandel matrix 66
!--------------------------------------------------------------------------------------------------
pure function math_Mandel3333to66(m3333)
implicit none
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
real(pReal), dimension(6,6) :: math_Mandel3333to66
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_Mandel3333to66(i,j) = &
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
end function math_Mandel3333to66
!--------------------------------------------------------------------------------------------------
!> @brief convert Mandel matrix 66 back to symmetric 3333 tensor
!--------------------------------------------------------------------------------------------------
pure function math_Mandel66to3333(m66)
implicit none
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
real(pReal), dimension(6,6), intent(in) :: m66
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = &
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = &
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = &
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = &
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
end forall
end function math_Mandel66to3333
!--------------------------------------------------------------------------------------------------
!> @brief convert Voigt matrix 66 back to symmetric 3333 tensor
!--------------------------------------------------------------------------------------------------
pure function math_Voigt66to3333(m66)
implicit none
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
real(pReal), dimension(6,6), intent(in) :: m66
integer(pInt) :: i,j
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = &
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = &
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = &
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = &
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
end forall
end function math_Voigt66to3333
!--------------------------------------------------------------------------------------------------
!> @brief random quaternion
! http://math.stackexchange.com/questions/131336/uniform-random-quaternion-in-a-restricted-angle-range
! K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III, pages 124-132.
! Academic, New York, 1992.
!--------------------------------------------------------------------------------------------------
function math_qRand()
implicit none
real(pReal), dimension(4) :: math_qRand
real(pReal), dimension(3) :: rnd
call halton(3_pInt,rnd)
math_qRand = [cos(2.0_pReal*PI*rnd(1))*sqrt(rnd(3)), &
sin(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
cos(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
sin(2.0_pReal*PI*rnd(1))*sqrt(rnd(3))]
end function math_qRand
!--------------------------------------------------------------------------------------------------
!> @brief quaternion multiplication q1xq2 = q12
!--------------------------------------------------------------------------------------------------
pure function math_qMul(A,B)
implicit none
real(pReal), dimension(4) :: math_qMul
real(pReal), dimension(4), intent(in) :: A, B
math_qMul = [ A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4), &
A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3), &
A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2), &
A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1) ]
end function math_qMul
!--------------------------------------------------------------------------------------------------
!> @brief quaternion dotproduct
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_qDot(A,B)
implicit none
real(pReal), dimension(4), intent(in) :: A, B
math_qDot = sum(A*B)
end function math_qDot
!--------------------------------------------------------------------------------------------------
!> @brief quaternion conjugation
!--------------------------------------------------------------------------------------------------
pure function math_qConj(Q)
implicit none
real(pReal), dimension(4) :: math_qConj
real(pReal), dimension(4), intent(in) :: Q
math_qConj = [Q(1), -Q(2:4)]
end function math_qConj
!--------------------------------------------------------------------------------------------------
!> @brief quaternion norm
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_qNorm(Q)
implicit none
real(pReal), dimension(4), intent(in) :: Q
math_qNorm = norm2(Q)
end function math_qNorm
!--------------------------------------------------------------------------------------------------
!> @brief quaternion inversion
!--------------------------------------------------------------------------------------------------
pure function math_qInv(Q)
use prec, only: &
dNeq0
implicit none
real(pReal), dimension(4), intent(in) :: Q
real(pReal), dimension(4) :: math_qInv
real(pReal) :: squareNorm
math_qInv = 0.0_pReal
squareNorm = math_qDot(Q,Q)
if (dNeq0(squareNorm)) math_qInv = math_qConj(Q) / squareNorm
end function math_qInv
!--------------------------------------------------------------------------------------------------
!> @brief action of a quaternion on a vector (rotate vector v with Q)
!--------------------------------------------------------------------------------------------------
pure function math_qRot(Q,v)
implicit none
real(pReal), dimension(4), intent(in) :: Q
real(pReal), dimension(3), intent(in) :: v
real(pReal), dimension(3) :: math_qRot
real(pReal), dimension(4,4) :: T
integer(pInt) :: i, j
do i = 1_pInt,4_pInt
do j = 1_pInt,i
T(i,j) = Q(i) * Q(j)
enddo
enddo
math_qRot = [-v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1)), &
v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1)), &
v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))]
math_qRot = 2.0_pReal * math_qRot + v
end function math_qRot
!--------------------------------------------------------------------------------------------------
!> @brief Euler angles (in radians) from rotation matrix
!> @details rotation matrix is meant to represent a PASSIVE rotation,
!> composed of INTRINSIC rotations around the axes of the
!> rotating reference frame
!> (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_RtoEuler(R)
implicit none
real(pReal), dimension (3,3), intent(in) :: R
real(pReal), dimension(3) :: math_RtoEuler
real(pReal) :: sqhkl, squvw, sqhk
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
! calculate PHI
math_RtoEuler(2) = acos(math_limit(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
math_RtoEuler(3) = 0.0_pReal
math_RtoEuler(1) = acos(math_limit(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
else
math_RtoEuler(3) = acos(math_limit(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
math_RtoEuler(1) = acos(math_limit(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
end if
end function math_RtoEuler
!--------------------------------------------------------------------------------------------------
!> @brief converts a rotation matrix into a quaternion (w+ix+jy+kz)
!> @details math adopted from http://arxiv.org/pdf/math/0701759v1.pdf
!--------------------------------------------------------------------------------------------------
pure function math_RtoQ(R)
implicit none
real(pReal), dimension(3,3), intent(in) :: R
real(pReal), dimension(4) :: absQ, math_RtoQ
real(pReal) :: max_absQ
integer, dimension(1) :: largest !no pInt, maxloc returns integer default
math_RtoQ = 0.0_pReal
absQ = [+ R(1,1) + R(2,2) + R(3,3), &
+ R(1,1) - R(2,2) - R(3,3), &
- R(1,1) + R(2,2) - R(3,3), &
- R(1,1) - R(2,2) + R(3,3)] + 1.0_pReal
largest = maxloc(absQ)
largestComponent: select case(largest(1))
case (1) largestComponent
!1----------------------------------
math_RtoQ(2) = R(3,2) - R(2,3)
math_RtoQ(3) = R(1,3) - R(3,1)
math_RtoQ(4) = R(2,1) - R(1,2)
case (2) largestComponent
math_RtoQ(1) = R(3,2) - R(2,3)
!2----------------------------------
math_RtoQ(3) = R(2,1) + R(1,2)
math_RtoQ(4) = R(1,3) + R(3,1)
case (3) largestComponent
math_RtoQ(1) = R(1,3) - R(3,1)
math_RtoQ(2) = R(2,1) + R(1,2)
!3----------------------------------
math_RtoQ(4) = R(3,2) + R(2,3)
case (4) largestComponent
math_RtoQ(1) = R(2,1) - R(1,2)
math_RtoQ(2) = R(1,3) + R(3,1)
math_RtoQ(3) = R(2,3) + R(3,2)
!4----------------------------------
end select largestComponent
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
math_RtoQ(largest(1)) = max_absQ
end function math_RtoQ
!--------------------------------------------------------------------------------------------------
!> @brief rotation matrix from Euler angles (in radians)
!> @details rotation matrix is meant to represent a PASSIVE rotation,
!> @details composed of INTRINSIC rotations around the axes of the
!> @details rotating reference frame
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_EulerToR(Euler)
implicit none
real(pReal), dimension(3), intent(in) :: Euler
real(pReal), dimension(3,3) :: math_EulerToR
real(pReal) c1, c, c2, s1, s, s2
C1 = cos(Euler(1))
C = cos(Euler(2))
C2 = cos(Euler(3))
S1 = sin(Euler(1))
S = sin(Euler(2))
S2 = sin(Euler(3))
math_EulerToR(1,1)=C1*C2-S1*S2*C
math_EulerToR(1,2)=-C1*S2-S1*C2*C
math_EulerToR(1,3)=S1*S
math_EulerToR(2,1)=S1*C2+C1*S2*C
math_EulerToR(2,2)=-S1*S2+C1*C2*C
math_EulerToR(2,3)=-C1*S
math_EulerToR(3,1)=S2*S
math_EulerToR(3,2)=C2*S
math_EulerToR(3,3)=C
math_EulerToR = transpose(math_EulerToR) ! convert to passive rotation
end function math_EulerToR
!--------------------------------------------------------------------------------------------------
!> @brief quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
!> @details quaternion is meant to represent a PASSIVE rotation,
!> @details composed of INTRINSIC rotations around the axes of the
!> @details rotating reference frame
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_EulerToQ(eulerangles)
implicit none
real(pReal), dimension(3), intent(in) :: eulerangles
real(pReal), dimension(4) :: math_EulerToQ
real(pReal), dimension(3) :: halfangles
real(pReal) :: c, s
halfangles = 0.5_pReal * eulerangles
c = cos(halfangles(2))
s = sin(halfangles(2))
math_EulerToQ= [cos(halfangles(1)+halfangles(3)) * c, &
cos(halfangles(1)-halfangles(3)) * s, &
sin(halfangles(1)-halfangles(3)) * s, &
sin(halfangles(1)+halfangles(3)) * c ]
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
end function math_EulerToQ
!--------------------------------------------------------------------------------------------------
!> @brief rotation matrix from axis and angle (in radians)
!> @details rotation matrix is meant to represent a ACTIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!> @details formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
!--------------------------------------------------------------------------------------------------
pure function math_axisAngleToR(axis,omega)
implicit none
real(pReal), dimension(3,3) :: math_axisAngleToR
real(pReal), dimension(3), intent(in) :: axis
real(pReal), intent(in) :: omega
real(pReal), dimension(3) :: axisNrm
real(pReal) :: norm,s,c,c1
norm = norm2(axis)
if (norm > 1.0e-8_pReal) then ! non-zero rotation
axisNrm = axis/norm ! normalize axis to be sure
s = sin(omega)
c = cos(omega)
c1 = 1.0_pReal - c
math_axisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
math_axisAngleToR(1,2) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
math_axisAngleToR(1,3) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
math_axisAngleToR(2,1) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
math_axisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
math_axisAngleToR(2,3) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
math_axisAngleToR(3,1) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
math_axisAngleToR(3,2) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
math_axisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
else
math_axisAngleToR = math_I3
endif
end function math_axisAngleToR
!--------------------------------------------------------------------------------------------------
!> @brief rotation matrix from axis and angle (in radians)
!> @details rotation matrix is meant to represent a PASSIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_EulerAxisAngleToR(axis,omega)
implicit none
real(pReal), dimension(3,3) :: math_EulerAxisAngleToR
real(pReal), dimension(3), intent(in) :: axis
real(pReal), intent(in) :: omega
math_EulerAxisAngleToR = transpose(math_axisAngleToR(axis,omega)) ! convert to passive rotation
end function math_EulerAxisAngleToR
!--------------------------------------------------------------------------------------------------
!> @brief quaternion (w+ix+jy+kz) from Euler axis and angle (in radians)
!> @details quaternion is meant to represent a PASSIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!> @details formula for active rotation taken from
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
!--------------------------------------------------------------------------------------------------
pure function math_EulerAxisAngleToQ(axis,omega)
implicit none
real(pReal), dimension(4) :: math_EulerAxisAngleToQ
real(pReal), dimension(3), intent(in) :: axis
real(pReal), intent(in) :: omega
math_EulerAxisAngleToQ = math_qConj(math_axisAngleToQ(axis,omega)) ! convert to passive rotation
end function math_EulerAxisAngleToQ
!--------------------------------------------------------------------------------------------------
!> @brief quaternion (w+ix+jy+kz) from axis and angle (in radians)
!> @details quaternion is meant to represent an ACTIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!> @details formula for active rotation taken from
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
!--------------------------------------------------------------------------------------------------
pure function math_axisAngleToQ(axis,omega)
implicit none
real(pReal), dimension(4) :: math_axisAngleToQ
real(pReal), dimension(3), intent(in) :: axis
real(pReal), intent(in) :: omega
real(pReal), dimension(3) :: axisNrm
real(pReal) :: norm
norm = sqrt(math_mul3x3(axis,axis))
rotation: if (norm > 1.0e-8_pReal) then
axisNrm = axis/norm ! normalize axis to be sure
math_axisAngleToQ = [cos(0.5_pReal*omega), sin(0.5_pReal*omega) * axisNrm(1:3)]
else rotation
math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal]
endif rotation
end function math_axisAngleToQ
!--------------------------------------------------------------------------------------------------
!> @brief orientation matrix from quaternion (w+ix+jy+kz)
!> @details taken from http://arxiv.org/pdf/math/0701759v1.pdf
!> @details see also http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
!--------------------------------------------------------------------------------------------------
pure function math_qToR(q)
implicit none
real(pReal), dimension(4), intent(in) :: q
real(pReal), dimension(3,3) :: math_qToR, T,S
integer(pInt) :: i, j
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
T(i,j) = q(i+1_pInt) * q(j+1_pInt)
S = reshape( [0.0_pReal, -q(4), q(3), &
q(4), 0.0_pReal, -q(2), &
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed
math_qToR = (2.0_pReal * q(1)*q(1) - 1.0_pReal) * math_I3 &
+ 2.0_pReal * T - 2.0_pReal * q(1) * S
end function math_qToR
!--------------------------------------------------------------------------------------------------
!> @brief 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
!> @details quaternion is meant to represent a PASSIVE rotation,
!> @details composed of INTRINSIC rotations around the axes of the
!> @details rotating reference frame
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_qToEuler(qPassive)
implicit none
real(pReal), dimension(4), intent(in) :: qPassive
real(pReal), dimension(4) :: q
real(pReal), dimension(3) :: math_qToEuler
q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2))
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
math_qToEuler(1) = sign(2.0_pReal*acos(math_limit(q(1),-1.0_pReal, 1.0_pReal)),q(4))
math_qToEuler(3) = 0.0_pReal
else
math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4))
endif
math_qToEuler = merge(math_qToEuler + [2.0_pReal*PI, PI, 2.0_pReal*PI], & ! ensure correct range
math_qToEuler, math_qToEuler<0.0_pReal)
end function math_qToEuler
!--------------------------------------------------------------------------------------------------
!> @brief axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
!> @details quaternion is meant to represent an ACTIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!> @details formula for active rotation taken from
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
!--------------------------------------------------------------------------------------------------
pure function math_qToAxisAngle(Q)
implicit none
real(pReal), dimension(4), intent(in) :: Q
real(pReal) :: halfAngle, sinHalfAngle
real(pReal), dimension(4) :: math_qToAxisAngle
halfAngle = acos(math_limit(Q(1),-1.0_pReal,1.0_pReal))
sinHalfAngle = sin(halfAngle)
smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then
math_qToAxisAngle = 0.0_pReal
else smallRotation
math_qToAxisAngle= [ Q(2:4)/sinHalfAngle, halfAngle*2.0_pReal]
endif smallRotation
end function math_qToAxisAngle
!--------------------------------------------------------------------------------------------------
!> @brief Euler axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
!> @details quaternion is meant to represent a PASSIVE rotation
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
!--------------------------------------------------------------------------------------------------
pure function math_qToEulerAxisAngle(qPassive)
implicit none
real(pReal), dimension(4), intent(in) :: qPassive
real(pReal), dimension(4) :: q
real(pReal), dimension(4) :: math_qToEulerAxisAngle
q = math_qConj(qPassive) ! convert to active rotation
math_qToEulerAxisAngle = math_qToAxisAngle(q)
end function math_qToEulerAxisAngle
!--------------------------------------------------------------------------------------------------
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
!--------------------------------------------------------------------------------------------------
pure function math_qToRodrig(Q)
use prec, only: &
DAMASK_NaN, &
tol_math_check
implicit none
real(pReal), dimension(4), intent(in) :: Q
real(pReal), dimension(3) :: math_qToRodrig
math_qToRodrig = merge(Q(2:4)/Q(1),DAMASK_NaN,abs(Q(1)) > tol_math_check) ! NaN for 180 deg since Rodrig is unbound
end function math_qToRodrig
!--------------------------------------------------------------------------------------------------
!> @brief misorientation angle between two sets of Euler angles
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
implicit none
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
real(pReal), dimension(3,3) :: r
real(pReal) :: tr
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
tr = (math_trace33(r)-1.0_pReal)*0.4999999_pReal
math_EulerMisorientation = abs(0.5_pReal*PI-asin(tr))
end function math_EulerMisorientation
!--------------------------------------------------------------------------------------------------
!> @brief draw a random sample from Euler space
!--------------------------------------------------------------------------------------------------
function math_sampleRandomOri()
implicit none
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
call halton(3_pInt,rnd)
math_sampleRandomOri = [rnd(1)*2.0_pReal*PI, &
acos(2.0_pReal*rnd(2)-1.0_pReal), &
rnd(3)*2.0_pReal*PI]
end function math_sampleRandomOri
!--------------------------------------------------------------------------------------------------
!> @brief draw a random sample from Gauss component with noise (in radians) half-width
!--------------------------------------------------------------------------------------------------
function math_sampleGaussOri(center,noise)
use prec, only: &
tol_math_check
implicit none
real(pReal), intent(in) :: noise
real(pReal), dimension(3), intent(in) :: center
real(pReal) :: cosScatter,scatter
real(pReal), dimension(3) :: math_sampleGaussOri, disturb
real(pReal), dimension(3), parameter :: ORIGIN = [0.0_pReal,0.0_pReal,0.0_pReal]
real(pReal), dimension(5) :: rnd
integer(pInt) :: i
if (abs(noise) < tol_math_check) then
math_sampleGaussOri = center
return
endif
! Helming uses different distribution with Bessel functions
! therefore the gauss scatter width has to be scaled differently
scatter = 0.95_pReal * noise
cosScatter = cos(scatter)
do
call halton(5_pInt,rnd)
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
disturb = [ scatter * rnd(1), & ! phi1
sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)), & ! Phi
scatter * rnd(2)] ! phi2
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(ORIGIN,disturb)/scatter)**2_pReal)) exit
enddo
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center)))
end function math_sampleGaussOri
!--------------------------------------------------------------------------------------------------
!> @brief draw a random sample from Fiber component with noise (in radians)
!--------------------------------------------------------------------------------------------------
function math_sampleFiberOri(alpha,beta,noise)
use prec, only: &
tol_math_check
implicit none
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis
real(pReal), dimension(2), intent(in) :: alpha,beta
real(pReal), dimension(6) :: rnd
real(pReal), dimension(3,3) :: oRot,fRot,pRot
real(pReal) :: noise, scatter, cos2Scatter, angle
integer(pInt), dimension(2,3), parameter :: ROTMAP = reshape([2_pInt,3_pInt,&
3_pInt,1_pInt,&
1_pInt,2_pInt],[2,3])
integer(pInt) :: i
! Helming uses different distribution with Bessel functions
! therefore the gauss scatter width has to be scaled differently
scatter = 0.95_pReal * noise
cos2Scatter = cos(2.0_pReal*scatter)
! fiber axis in crystal coordinate system
fiberInC = [ sin(alpha(1))*cos(alpha(2)) , &
sin(alpha(1))*sin(alpha(2)), &
cos(alpha(1))]
! fiber axis in sample coordinate system
fiberInS = [ sin(beta(1))*cos(beta(2)), &
sin(beta(1))*sin(beta(2)), &
cos(beta(1))]
! ---# rotation matrix from sample to crystal system #---
angle = -acos(dot_product(fiberInC,fiberInS))
if(abs(angle) > tol_math_check) then
! rotation axis between sample and crystal system (cross product)
forall(i=1_pInt:3_pInt) axis(i) = fiberInC(ROTMAP(1,i))*fiberInS(ROTMAP(2,i))-fiberInC(ROTMAP(2,i))*fiberInS(ROTMAP(1,i))
oRot = math_EulerAxisAngleToR(math_crossproduct(fiberInC,fiberInS),angle)
else
oRot = math_I3
end if
! ---# rotation matrix about fiber axis (random angle) #---
do
call halton(6_pInt,rnd)
fRot = math_EulerAxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
! ---# rotation about random axis perpend to fiber #---
! random axis pependicular to fiber axis
axis(1:2) = rnd(2:3)
if (abs(fiberInS(3)) > tol_math_check) then
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3)
else if(abs(fiberInS(2)) > tol_math_check) then
axis(3)=axis(2)
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2)
else if(abs(fiberInS(1)) > tol_math_check) then
axis(3)=axis(1)
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1)
end if
! scattered rotation angle
if (noise > 0.0_pReal) then
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(4))
if (rnd(5) <= exp(-1.0_pReal*(angle/scatter)**2.0_pReal)) exit
else
angle = 0.0_pReal
exit
end if
enddo
if (rnd(6) <= 0.5) angle = -angle
pRot = math_EulerAxisAngleToR(axis,angle)
! ---# apply the three rotations #---
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
end function math_sampleFiberOri
!--------------------------------------------------------------------------------------------------
!> @brief draw a random sample from Gauss variable
!--------------------------------------------------------------------------------------------------
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
use prec, only: &
tol_math_check
implicit none
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
stddev ! standard deviation of gauss distribution
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
real(pReal), dimension(2) :: rnd ! random numbers
real(pReal) :: scatter, & ! normalized scatter around meanvalue
myWidth
if (abs(stddev) < tol_math_check) then
math_sampleGaussVar = meanvalue
return
endif
myWidth = merge(width,3.0_pReal,present(width)) ! use +-3*sigma as default value for scatter if not given
do
call halton(2_pInt, rnd)
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
enddo
math_sampleGaussVar = scatter * stddev
end function math_sampleGaussVar
!--------------------------------------------------------------------------------------------------
!> @brief symmetrically equivalent Euler angles for given sample symmetry
!> @detail 1 (equivalent to != 2 and !=4):triclinic, 2:monoclinic, 4:orthotropic
!--------------------------------------------------------------------------------------------------
pure function math_symmetricEulers(sym,Euler)
implicit none
integer(pInt), intent(in) :: sym !< symmetry Class
real(pReal), dimension(3), intent(in) :: Euler
real(pReal), dimension(3,3) :: math_symmetricEulers
math_symmetricEulers = transpose(reshape([PI+Euler(1), PI-Euler(1), 2.0_pReal*PI-Euler(1), &
Euler(2), PI-Euler(2), PI -Euler(2), &
Euler(3), PI+Euler(3), PI +Euler(3)],[3,3])) ! transpose is needed to have symbolic notation instead of column-major
math_symmetricEulers = modulo(math_symmetricEulers,2.0_pReal*pi)
select case (sym)
case (4_pInt) ! orthotropic: all done
case (2_pInt) ! monoclinic: return only first
math_symmetricEulers(1:3,2:3) = 0.0_pReal
case default ! triclinic: return blank
math_symmetricEulers = 0.0_pReal
end select
end function math_symmetricEulers
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric matrix m
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
implicit none
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)), intent(out) :: values
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
logical, intent(out) :: error
integer(pInt) :: info
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
external :: &
dsyev
vectors = m ! copy matrix to input (doubles as output) array
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
error = (info == 0_pInt)
end subroutine math_eigenValuesVectorsSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
!> @author Joachim Kopp, MaxPlanckInstitut für Kernphysik, Heidelberg (Copyright (C) 2006)
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym33(m,values,vectors)
implicit none
real(pReal), dimension(3,3),intent(in) :: m
real(pReal), dimension(3), intent(out) :: values
real(pReal), dimension(3,3),intent(out) :: vectors
real(pReal) :: T, U, norm, threshold
logical :: error
values = math_eigenvaluesSym33(m)
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
m(1, 2)**2_pInt]
T = maxval(abs(values))
U = max(T, T**2_pInt)
threshold = sqrt(5.68e-14_pReal * U**2_pInt)
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
vectors(2,2) + m(2, 3) * values(1), &
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
norm = norm2(vectors(1:3, 1))
fallback1: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
endif fallback1
vectors(1:3,1) = vectors(1:3, 1) / norm
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
vectors(2,2) + m(2, 3) * values(2), &
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
norm = norm2(vectors(1:3, 2))
fallback2: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
endif fallback2
vectors(1:3,2) = vectors(1:3, 2) / norm
! Calculate third eigenvector according to v[2] = v[0] x v[1]
vectors(1:3,3) = math_crossproduct(vectors(1:3,1),vectors(1:3,2))
end subroutine math_eigenValuesVectorsSym33
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of symmetric matrix m
!--------------------------------------------------------------------------------------------------
function math_eigenvectorBasisSym(m)
implicit none
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: values
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
real(pReal), dimension(size(m,1),size(m,1)) :: math_eigenvectorBasisSym
logical :: error
integer(pInt) :: i
math_eigenvectorBasisSym = 0.0_pReal
call math_eigenValuesVectorsSym(m,values,vectors,error)
if(error) return
do i=1_pInt, size(m,1)
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
enddo
end function math_eigenvectorBasisSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of symmetric 33 matrix m
!--------------------------------------------------------------------------------------------------
function math_eigenvectorBasisSym33(m)
implicit none
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
real(pReal), dimension(3) :: invariants, values
real(pReal), dimension(3,3), intent(in) :: m
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
invariants = math_invariantsSym33(m)
EB = 0.0_pReal
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
N(1:3,1:3,1) = m-values(1)*math_I3
N(1:3,1:3,2) = m-values(2)*math_I3
N(1:3,1:3,3) = m-values(3)*math_I3
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
else twoSimilarEigenvalues
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
endif twoSimilarEigenvalues
endif threeSimilarEigenvalues
math_eigenvectorBasisSym33 = sqrt(values(1)) * EB(1:3,1:3,1) &
+ sqrt(values(2)) * EB(1:3,1:3,2) &
+ sqrt(values(3)) * EB(1:3,1:3,3)
end function math_eigenvectorBasisSym33
!--------------------------------------------------------------------------------------------------
!> @brief rotational part from polar decomposition of 33 tensor m
!--------------------------------------------------------------------------------------------------
function math_rotationalPart33(m)
use prec, only: &
dEq0
use IO, only: &
IO_warning
implicit none
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3,3) :: math_rotationalPart33
real(pReal), dimension(3,3) :: U , Uinv
U = math_eigenvectorBasisSym33(math_mul33x33(transpose(m),m))
Uinv = math_inv33(U)
inversionFailed: if (all(dEq0(Uinv))) then
math_rotationalPart33 = math_I3
call IO_warning(650_pInt)
else inversionFailed
math_rotationalPart33 = math_mul33x33(m,Uinv)
endif inversionFailed
end function math_rotationalPart33
!--------------------------------------------------------------------------------------------------
!> @brief Eigenvalues of symmetric matrix m
! will return NaN on error
!--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym(m)
use prec, only: &
DAMASK_NaN
implicit none
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
integer(pInt) :: info
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
external :: &
dsyev
vectors = m ! copy matrix to input (doubles as output) array
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
if (info /= 0_pInt) math_eigenvaluesSym = DAMASK_NaN
end function math_eigenvaluesSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues of symmetric 33 matrix m using an analytical expression
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details similar to http://arxiv.org/abs/physics/0610206 (DSYEVC3)
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
!> matrices as fallback
!--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym33(m)
implicit none
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
invariants = math_invariantsSym33(m) ! invariants are coefficients in characteristic polynomial apart for the sign of c0 and c2 in http://arxiv.org/abs/physics/0610206
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
if(all(abs([P,Q]) < TOL)) then
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
else
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_limit(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
endif
end function math_eigenvaluesSym33
!--------------------------------------------------------------------------------------------------
!> @brief invariants of symmetrix 33 matrix m
!--------------------------------------------------------------------------------------------------
pure function math_invariantsSym33(m)
implicit none
real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3) :: math_invariantsSym33
math_invariantsSym33(1) = math_trace33(m)
math_invariantsSym33(2) = m(1,1)*m(2,2) + m(1,1)*m(3,3) + m(2,2)*m(3,3) &
-(m(1,2)**2 + m(1,3)**2 + m(2,3)**2)
math_invariantsSym33(3) = math_detSym33(m)
end function math_invariantsSym33
!--------------------------------------------------------------------------------------------------
!> @brief computes the next element in the Halton sequence.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton(ndim, r)
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the element
real(pReal), intent(out), dimension(ndim) :: r !< next element of the current Halton sequence
integer(pInt), dimension(ndim) :: base
integer(pInt) :: seed
integer(pInt), dimension(1) :: value_halton
call halton_memory ('GET', 'SEED', 1_pInt, value_halton)
seed = value_halton(1)
call halton_memory ('GET', 'BASE', ndim, base)
call i_to_halton (seed, base, ndim, r)
value_halton(1) = 1_pInt
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
end subroutine halton
!--------------------------------------------------------------------------------------------------
!> @brief sets or returns quantities associated with the Halton sequence.
!> @details If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
!> @details is the number of entries in value_halton to be put into BASE.
!> @details If action_halton is 'SET', then on input, value_halton contains values to be assigned
!> @details to the internal variable.
!> @details If action_halton is 'GET', then on output, value_halton contains the values of
!> @details the specified internal variable.
!> @details If action_halton is 'INC', then on input, value_halton contains the increment to
!> @details be added to the specified internal variable.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
implicit none
character(len = *), intent(in) :: &
action_halton, & !< desired action: GET the value of a particular quantity, SET the value of a particular quantity, INC the value of a particular quantity (only for SEED)
name_halton !< name of the quantity: BASE: Halton base(s), NDIM: spatial dimension, SEED: current Halton seed
integer(pInt), dimension(*), intent(inout) :: value_halton
integer(pInt), allocatable, save, dimension(:) :: base
logical, save :: first_call = .true.
integer(pInt), intent(in) :: ndim !< dimension of the quantity
integer(pInt):: i
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
if (first_call) then
ndim_save = 1_pInt
allocate(base(ndim_save))
base(1) = 2_pInt
first_call = .false.
endif
!--------------------------------------------------------------------------------------------------
! Set
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
if(ndim_save /= ndim) then
deallocate(base)
ndim_save = ndim
allocate(base(ndim_save))
endif
base(1:ndim) = value_halton(1:ndim)
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
if(ndim_save /= value_halton(1)) then
deallocate(base)
ndim_save = value_halton(1)
allocate(base(ndim_save))
do i = 1_pInt, ndim_save
base(i) = prime (i)
enddo
else
ndim_save = value_halton(1)
endif
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
seed = value_halton(1)
endif
!--------------------------------------------------------------------------------------------------
! Get
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
if(ndim /= ndim_save) then
deallocate(base)
ndim_save = ndim
allocate(base(ndim_save))
do i = 1_pInt, ndim_save
base(i) = prime(i)
enddo
endif
value_halton(1:ndim_save) = base(1:ndim_save)
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
value_halton(1) = ndim_save
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
value_halton(1) = seed
endif
!--------------------------------------------------------------------------------------------------
! Increment
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
seed = seed + value_halton(1)
end if
endif
end subroutine halton_memory
!--------------------------------------------------------------------------------------------------
!> @brief sets the dimension for a Halton sequence
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_ndim_set (ndim)
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the Halton vectors
integer(pInt) :: value_halton(1)
value_halton(1) = ndim
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
end subroutine halton_ndim_set
!--------------------------------------------------------------------------------------------------
!> @brief sets the seed for the Halton sequence.
!> @details Calling HALTON repeatedly returns the elements of the Halton sequence in order,
!> @details starting with element number 1.
!> @details An internal counter, called SEED, keeps track of the next element to return. Each time
!> @details is computed, and then SEED is incremented by 1.
!> @details To restart the Halton sequence, it is only necessary to reset SEED to 1. It might also
!> @details be desirable to reset SEED to some other value. This routine allows the user to specify
!> @details any value of SEED.
!> @details The default value of SEED is 1, which restarts the Halton sequence.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine halton_seed_set(seed)
implicit none
integer(pInt), parameter :: NDIM = 1_pInt
integer(pInt), intent(in) :: seed !< seed for the Halton sequence.
integer(pInt) :: value_halton(ndim)
value_halton(1) = seed
call halton_memory ('SET', 'SEED', NDIM, value_halton)
end subroutine halton_seed_set
!--------------------------------------------------------------------------------------------------
!> @brief computes an element of a Halton sequence.
!> @details Only the absolute value of SEED is considered. SEED = 0 is allowed, and returns R = 0.
!> @details Halton Bases should be distinct prime numbers. This routine only checks that each base
!> @details is greater than 1.
!> @details Reference:
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
subroutine i_to_halton (seed, base, ndim, r)
use IO, only: &
IO_error
implicit none
integer(pInt), intent(in) :: ndim !< dimension of the sequence
integer(pInt), intent(in), dimension(ndim) :: base !< Halton bases
real(pReal), dimension(ndim) :: base_inv
integer(pInt), dimension(ndim) :: digit
real(pReal), dimension(ndim), intent(out) ::r !< the SEED-th element of the Halton sequence for the given bases
integer(pInt) , intent(in):: seed !< index of the desired element
integer(pInt), dimension(ndim) :: seed2
seed2(1:ndim) = abs(seed)
r(1:ndim) = 0.0_pReal
if (any (base(1:ndim) <= 1_pInt)) call IO_error(error_ID=405_pInt)
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
do while ( any ( seed2(1:ndim) /= 0_pInt) )
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
enddo
end subroutine i_to_halton
!--------------------------------------------------------------------------------------------------
!> @brief returns any of the first 1500 prime numbers.
!> @details n <= 0 returns 1500, the index of the largest prime (12553) available.
!> @details n = 0 is legal, returning PRIME = 1.
!> @details Reference:
!> @details Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
!> @details US Department of Commerce, 1964, pages 870-873.
!> @details Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
!> @details 30th Edition, CRC Press, 1996, pages 95-98.
!> @author John Burkardt
!--------------------------------------------------------------------------------------------------
integer(pInt) function prime(n)
use IO, only: &
IO_error
implicit none
integer(pInt), intent(in) :: n !< index of the desired prime number
integer(pInt), parameter :: PRIME_MAX = 1500_pInt
integer(pInt), save :: icall = 0_pInt
integer(pInt), save, dimension(PRIME_MAX) :: npvec
if (icall == 0_pInt) then
icall = 1_pInt
npvec = [&
2_pInt, 3_pInt, 5_pInt, 7_pInt, 11_pInt, 13_pInt, 17_pInt, 19_pInt, 23_pInt, 29_pInt, &
31_pInt, 37_pInt, 41_pInt, 43_pInt, 47_pInt, 53_pInt, 59_pInt, 61_pInt, 67_pInt, 71_pInt, &
73_pInt, 79_pInt, 83_pInt, 89_pInt, 97_pInt, 101_pInt, 103_pInt, 107_pInt, 109_pInt, 113_pInt, &
127_pInt, 131_pInt, 137_pInt, 139_pInt, 149_pInt, 151_pInt, 157_pInt, 163_pInt, 167_pInt, 173_pInt, &
179_pInt, 181_pInt, 191_pInt, 193_pInt, 197_pInt, 199_pInt, 211_pInt, 223_pInt, 227_pInt, 229_pInt, &
233_pInt, 239_pInt, 241_pInt, 251_pInt, 257_pInt, 263_pInt, 269_pInt, 271_pInt, 277_pInt, 281_pInt, &
283_pInt, 293_pInt, 307_pInt, 311_pInt, 313_pInt, 317_pInt, 331_pInt, 337_pInt, 347_pInt, 349_pInt, &
353_pInt, 359_pInt, 367_pInt, 373_pInt, 379_pInt, 383_pInt, 389_pInt, 397_pInt, 401_pInt, 409_pInt, &
419_pInt, 421_pInt, 431_pInt, 433_pInt, 439_pInt, 443_pInt, 449_pInt, 457_pInt, 461_pInt, 463_pInt, &
467_pInt, 479_pInt, 487_pInt, 491_pInt, 499_pInt, 503_pInt, 509_pInt, 521_pInt, 523_pInt, 541_pInt, &
! 101:200
547_pInt, 557_pInt, 563_pInt, 569_pInt, 571_pInt, 577_pInt, 587_pInt, 593_pInt, 599_pInt, 601_pInt, &
607_pInt, 613_pInt, 617_pInt, 619_pInt, 631_pInt, 641_pInt, 643_pInt, 647_pInt, 653_pInt, 659_pInt, &
661_pInt, 673_pInt, 677_pInt, 683_pInt, 691_pInt, 701_pInt, 709_pInt, 719_pInt, 727_pInt, 733_pInt, &
739_pInt, 743_pInt, 751_pInt, 757_pInt, 761_pInt, 769_pInt, 773_pInt, 787_pInt, 797_pInt, 809_pInt, &
811_pInt, 821_pInt, 823_pInt, 827_pInt, 829_pInt, 839_pInt, 853_pInt, 857_pInt, 859_pInt, 863_pInt, &
877_pInt, 881_pInt, 883_pInt, 887_pInt, 907_pInt, 911_pInt, 919_pInt, 929_pInt, 937_pInt, 941_pInt, &
947_pInt, 953_pInt, 967_pInt, 971_pInt, 977_pInt, 983_pInt, 991_pInt, 997_pInt, 1009_pInt, 1013_pInt, &
1019_pInt, 1021_pInt, 1031_pInt, 1033_pInt, 1039_pInt, 1049_pInt, 1051_pInt, 1061_pInt, 1063_pInt, 1069_pInt, &
1087_pInt, 1091_pInt, 1093_pInt, 1097_pInt, 1103_pInt, 1109_pInt, 1117_pInt, 1123_pInt, 1129_pInt, 1151_pInt, &
1153_pInt, 1163_pInt, 1171_pInt, 1181_pInt, 1187_pInt, 1193_pInt, 1201_pInt, 1213_pInt, 1217_pInt, 1223_pInt, &
! 201:300
1229_pInt, 1231_pInt, 1237_pInt, 1249_pInt, 1259_pInt, 1277_pInt, 1279_pInt, 1283_pInt, 1289_pInt, 1291_pInt, &
1297_pInt, 1301_pInt, 1303_pInt, 1307_pInt, 1319_pInt, 1321_pInt, 1327_pInt, 1361_pInt, 1367_pInt, 1373_pInt, &
1381_pInt, 1399_pInt, 1409_pInt, 1423_pInt, 1427_pInt, 1429_pInt, 1433_pInt, 1439_pInt, 1447_pInt, 1451_pInt, &
1453_pInt, 1459_pInt, 1471_pInt, 1481_pInt, 1483_pInt, 1487_pInt, 1489_pInt, 1493_pInt, 1499_pInt, 1511_pInt, &
1523_pInt, 1531_pInt, 1543_pInt, 1549_pInt, 1553_pInt, 1559_pInt, 1567_pInt, 1571_pInt, 1579_pInt, 1583_pInt, &
1597_pInt, 1601_pInt, 1607_pInt, 1609_pInt, 1613_pInt, 1619_pInt, 1621_pInt, 1627_pInt, 1637_pInt, 1657_pInt, &
1663_pInt, 1667_pInt, 1669_pInt, 1693_pInt, 1697_pInt, 1699_pInt, 1709_pInt, 1721_pInt, 1723_pInt, 1733_pInt, &
1741_pInt, 1747_pInt, 1753_pInt, 1759_pInt, 1777_pInt, 1783_pInt, 1787_pInt, 1789_pInt, 1801_pInt, 1811_pInt, &
1823_pInt, 1831_pInt, 1847_pInt, 1861_pInt, 1867_pInt, 1871_pInt, 1873_pInt, 1877_pInt, 1879_pInt, 1889_pInt, &
1901_pInt, 1907_pInt, 1913_pInt, 1931_pInt, 1933_pInt, 1949_pInt, 1951_pInt, 1973_pInt, 1979_pInt, 1987_pInt, &
! 301:400
1993_pInt, 1997_pInt, 1999_pInt, 2003_pInt, 2011_pInt, 2017_pInt, 2027_pInt, 2029_pInt, 2039_pInt, 2053_pInt, &
2063_pInt, 2069_pInt, 2081_pInt, 2083_pInt, 2087_pInt, 2089_pInt, 2099_pInt, 2111_pInt, 2113_pInt, 2129_pInt, &
2131_pInt, 2137_pInt, 2141_pInt, 2143_pInt, 2153_pInt, 2161_pInt, 2179_pInt, 2203_pInt, 2207_pInt, 2213_pInt, &
2221_pInt, 2237_pInt, 2239_pInt, 2243_pInt, 2251_pInt, 2267_pInt, 2269_pInt, 2273_pInt, 2281_pInt, 2287_pInt, &
2293_pInt, 2297_pInt, 2309_pInt, 2311_pInt, 2333_pInt, 2339_pInt, 2341_pInt, 2347_pInt, 2351_pInt, 2357_pInt, &
2371_pInt, 2377_pInt, 2381_pInt, 2383_pInt, 2389_pInt, 2393_pInt, 2399_pInt, 2411_pInt, 2417_pInt, 2423_pInt, &
2437_pInt, 2441_pInt, 2447_pInt, 2459_pInt, 2467_pInt, 2473_pInt, 2477_pInt, 2503_pInt, 2521_pInt, 2531_pInt, &
2539_pInt, 2543_pInt, 2549_pInt, 2551_pInt, 2557_pInt, 2579_pInt, 2591_pInt, 2593_pInt, 2609_pInt, 2617_pInt, &
2621_pInt, 2633_pInt, 2647_pInt, 2657_pInt, 2659_pInt, 2663_pInt, 2671_pInt, 2677_pInt, 2683_pInt, 2687_pInt, &
2689_pInt, 2693_pInt, 2699_pInt, 2707_pInt, 2711_pInt, 2713_pInt, 2719_pInt, 2729_pInt, 2731_pInt, 2741_pInt, &
! 401:500
2749_pInt, 2753_pInt, 2767_pInt, 2777_pInt, 2789_pInt, 2791_pInt, 2797_pInt, 2801_pInt, 2803_pInt, 2819_pInt, &
2833_pInt, 2837_pInt, 2843_pInt, 2851_pInt, 2857_pInt, 2861_pInt, 2879_pInt, 2887_pInt, 2897_pInt, 2903_pInt, &
2909_pInt, 2917_pInt, 2927_pInt, 2939_pInt, 2953_pInt, 2957_pInt, 2963_pInt, 2969_pInt, 2971_pInt, 2999_pInt, &
3001_pInt, 3011_pInt, 3019_pInt, 3023_pInt, 3037_pInt, 3041_pInt, 3049_pInt, 3061_pInt, 3067_pInt, 3079_pInt, &
3083_pInt, 3089_pInt, 3109_pInt, 3119_pInt, 3121_pInt, 3137_pInt, 3163_pInt, 3167_pInt, 3169_pInt, 3181_pInt, &
3187_pInt, 3191_pInt, 3203_pInt, 3209_pInt, 3217_pInt, 3221_pInt, 3229_pInt, 3251_pInt, 3253_pInt, 3257_pInt, &
3259_pInt, 3271_pInt, 3299_pInt, 3301_pInt, 3307_pInt, 3313_pInt, 3319_pInt, 3323_pInt, 3329_pInt, 3331_pInt, &
3343_pInt, 3347_pInt, 3359_pInt, 3361_pInt, 3371_pInt, 3373_pInt, 3389_pInt, 3391_pInt, 3407_pInt, 3413_pInt, &
3433_pInt, 3449_pInt, 3457_pInt, 3461_pInt, 3463_pInt, 3467_pInt, 3469_pInt, 3491_pInt, 3499_pInt, 3511_pInt, &
3517_pInt, 3527_pInt, 3529_pInt, 3533_pInt, 3539_pInt, 3541_pInt, 3547_pInt, 3557_pInt, 3559_pInt, 3571_pInt, &
! 501:600
3581_pInt, 3583_pInt, 3593_pInt, 3607_pInt, 3613_pInt, 3617_pInt, 3623_pInt, 3631_pInt, 3637_pInt, 3643_pInt, &
3659_pInt, 3671_pInt, 3673_pInt, 3677_pInt, 3691_pInt, 3697_pInt, 3701_pInt, 3709_pInt, 3719_pInt, 3727_pInt, &
3733_pInt, 3739_pInt, 3761_pInt, 3767_pInt, 3769_pInt, 3779_pInt, 3793_pInt, 3797_pInt, 3803_pInt, 3821_pInt, &
3823_pInt, 3833_pInt, 3847_pInt, 3851_pInt, 3853_pInt, 3863_pInt, 3877_pInt, 3881_pInt, 3889_pInt, 3907_pInt, &
3911_pInt, 3917_pInt, 3919_pInt, 3923_pInt, 3929_pInt, 3931_pInt, 3943_pInt, 3947_pInt, 3967_pInt, 3989_pInt, &
4001_pInt, 4003_pInt, 4007_pInt, 4013_pInt, 4019_pInt, 4021_pInt, 4027_pInt, 4049_pInt, 4051_pInt, 4057_pInt, &
4073_pInt, 4079_pInt, 4091_pInt, 4093_pInt, 4099_pInt, 4111_pInt, 4127_pInt, 4129_pInt, 4133_pInt, 4139_pInt, &
4153_pInt, 4157_pInt, 4159_pInt, 4177_pInt, 4201_pInt, 4211_pInt, 4217_pInt, 4219_pInt, 4229_pInt, 4231_pInt, &
4241_pInt, 4243_pInt, 4253_pInt, 4259_pInt, 4261_pInt, 4271_pInt, 4273_pInt, 4283_pInt, 4289_pInt, 4297_pInt, &
4327_pInt, 4337_pInt, 4339_pInt, 4349_pInt, 4357_pInt, 4363_pInt, 4373_pInt, 4391_pInt, 4397_pInt, 4409_pInt, &
! 601:700
4421_pInt, 4423_pInt, 4441_pInt, 4447_pInt, 4451_pInt, 4457_pInt, 4463_pInt, 4481_pInt, 4483_pInt, 4493_pInt, &
4507_pInt, 4513_pInt, 4517_pInt, 4519_pInt, 4523_pInt, 4547_pInt, 4549_pInt, 4561_pInt, 4567_pInt, 4583_pInt, &
4591_pInt, 4597_pInt, 4603_pInt, 4621_pInt, 4637_pInt, 4639_pInt, 4643_pInt, 4649_pInt, 4651_pInt, 4657_pInt, &
4663_pInt, 4673_pInt, 4679_pInt, 4691_pInt, 4703_pInt, 4721_pInt, 4723_pInt, 4729_pInt, 4733_pInt, 4751_pInt, &
4759_pInt, 4783_pInt, 4787_pInt, 4789_pInt, 4793_pInt, 4799_pInt, 4801_pInt, 4813_pInt, 4817_pInt, 4831_pInt, &
4861_pInt, 4871_pInt, 4877_pInt, 4889_pInt, 4903_pInt, 4909_pInt, 4919_pInt, 4931_pInt, 4933_pInt, 4937_pInt, &
4943_pInt, 4951_pInt, 4957_pInt, 4967_pInt, 4969_pInt, 4973_pInt, 4987_pInt, 4993_pInt, 4999_pInt, 5003_pInt, &
5009_pInt, 5011_pInt, 5021_pInt, 5023_pInt, 5039_pInt, 5051_pInt, 5059_pInt, 5077_pInt, 5081_pInt, 5087_pInt, &
5099_pInt, 5101_pInt, 5107_pInt, 5113_pInt, 5119_pInt, 5147_pInt, 5153_pInt, 5167_pInt, 5171_pInt, 5179_pInt, &
5189_pInt, 5197_pInt, 5209_pInt, 5227_pInt, 5231_pInt, 5233_pInt, 5237_pInt, 5261_pInt, 5273_pInt, 5279_pInt, &
! 701:800
5281_pInt, 5297_pInt, 5303_pInt, 5309_pInt, 5323_pInt, 5333_pInt, 5347_pInt, 5351_pInt, 5381_pInt, 5387_pInt, &
5393_pInt, 5399_pInt, 5407_pInt, 5413_pInt, 5417_pInt, 5419_pInt, 5431_pInt, 5437_pInt, 5441_pInt, 5443_pInt, &
5449_pInt, 5471_pInt, 5477_pInt, 5479_pInt, 5483_pInt, 5501_pInt, 5503_pInt, 5507_pInt, 5519_pInt, 5521_pInt, &
5527_pInt, 5531_pInt, 5557_pInt, 5563_pInt, 5569_pInt, 5573_pInt, 5581_pInt, 5591_pInt, 5623_pInt, 5639_pInt, &
5641_pInt, 5647_pInt, 5651_pInt, 5653_pInt, 5657_pInt, 5659_pInt, 5669_pInt, 5683_pInt, 5689_pInt, 5693_pInt, &
5701_pInt, 5711_pInt, 5717_pInt, 5737_pInt, 5741_pInt, 5743_pInt, 5749_pInt, 5779_pInt, 5783_pInt, 5791_pInt, &
5801_pInt, 5807_pInt, 5813_pInt, 5821_pInt, 5827_pInt, 5839_pInt, 5843_pInt, 5849_pInt, 5851_pInt, 5857_pInt, &
5861_pInt, 5867_pInt, 5869_pInt, 5879_pInt, 5881_pInt, 5897_pInt, 5903_pInt, 5923_pInt, 5927_pInt, 5939_pInt, &
5953_pInt, 5981_pInt, 5987_pInt, 6007_pInt, 6011_pInt, 6029_pInt, 6037_pInt, 6043_pInt, 6047_pInt, 6053_pInt, &
6067_pInt, 6073_pInt, 6079_pInt, 6089_pInt, 6091_pInt, 6101_pInt, 6113_pInt, 6121_pInt, 6131_pInt, 6133_pInt, &
! 801:900
6143_pInt, 6151_pInt, 6163_pInt, 6173_pInt, 6197_pInt, 6199_pInt, 6203_pInt, 6211_pInt, 6217_pInt, 6221_pInt, &
6229_pInt, 6247_pInt, 6257_pInt, 6263_pInt, 6269_pInt, 6271_pInt, 6277_pInt, 6287_pInt, 6299_pInt, 6301_pInt, &
6311_pInt, 6317_pInt, 6323_pInt, 6329_pInt, 6337_pInt, 6343_pInt, 6353_pInt, 6359_pInt, 6361_pInt, 6367_pInt, &
6373_pInt, 6379_pInt, 6389_pInt, 6397_pInt, 6421_pInt, 6427_pInt, 6449_pInt, 6451_pInt, 6469_pInt, 6473_pInt, &
6481_pInt, 6491_pInt, 6521_pInt, 6529_pInt, 6547_pInt, 6551_pInt, 6553_pInt, 6563_pInt, 6569_pInt, 6571_pInt, &
6577_pInt, 6581_pInt, 6599_pInt, 6607_pInt, 6619_pInt, 6637_pInt, 6653_pInt, 6659_pInt, 6661_pInt, 6673_pInt, &
6679_pInt, 6689_pInt, 6691_pInt, 6701_pInt, 6703_pInt, 6709_pInt, 6719_pInt, 6733_pInt, 6737_pInt, 6761_pInt, &
6763_pInt, 6779_pInt, 6781_pInt, 6791_pInt, 6793_pInt, 6803_pInt, 6823_pInt, 6827_pInt, 6829_pInt, 6833_pInt, &
6841_pInt, 6857_pInt, 6863_pInt, 6869_pInt, 6871_pInt, 6883_pInt, 6899_pInt, 6907_pInt, 6911_pInt, 6917_pInt, &
6947_pInt, 6949_pInt, 6959_pInt, 6961_pInt, 6967_pInt, 6971_pInt, 6977_pInt, 6983_pInt, 6991_pInt, 6997_pInt, &
! 901:1000
7001_pInt, 7013_pInt, 7019_pInt, 7027_pInt, 7039_pInt, 7043_pInt, 7057_pInt, 7069_pInt, 7079_pInt, 7103_pInt, &
7109_pInt, 7121_pInt, 7127_pInt, 7129_pInt, 7151_pInt, 7159_pInt, 7177_pInt, 7187_pInt, 7193_pInt, 7207_pInt, &
7211_pInt, 7213_pInt, 7219_pInt, 7229_pInt, 7237_pInt, 7243_pInt, 7247_pInt, 7253_pInt, 7283_pInt, 7297_pInt, &
7307_pInt, 7309_pInt, 7321_pInt, 7331_pInt, 7333_pInt, 7349_pInt, 7351_pInt, 7369_pInt, 7393_pInt, 7411_pInt, &
7417_pInt, 7433_pInt, 7451_pInt, 7457_pInt, 7459_pInt, 7477_pInt, 7481_pInt, 7487_pInt, 7489_pInt, 7499_pInt, &
7507_pInt, 7517_pInt, 7523_pInt, 7529_pInt, 7537_pInt, 7541_pInt, 7547_pInt, 7549_pInt, 7559_pInt, 7561_pInt, &
7573_pInt, 7577_pInt, 7583_pInt, 7589_pInt, 7591_pInt, 7603_pInt, 7607_pInt, 7621_pInt, 7639_pInt, 7643_pInt, &
7649_pInt, 7669_pInt, 7673_pInt, 7681_pInt, 7687_pInt, 7691_pInt, 7699_pInt, 7703_pInt, 7717_pInt, 7723_pInt, &
7727_pInt, 7741_pInt, 7753_pInt, 7757_pInt, 7759_pInt, 7789_pInt, 7793_pInt, 7817_pInt, 7823_pInt, 7829_pInt, &
7841_pInt, 7853_pInt, 7867_pInt, 7873_pInt, 7877_pInt, 7879_pInt, 7883_pInt, 7901_pInt, 7907_pInt, 7919_pInt, &
! 1001:1100
7927_pInt, 7933_pInt, 7937_pInt, 7949_pInt, 7951_pInt, 7963_pInt, 7993_pInt, 8009_pInt, 8011_pInt, 8017_pInt, &
8039_pInt, 8053_pInt, 8059_pInt, 8069_pInt, 8081_pInt, 8087_pInt, 8089_pInt, 8093_pInt, 8101_pInt, 8111_pInt, &
8117_pInt, 8123_pInt, 8147_pInt, 8161_pInt, 8167_pInt, 8171_pInt, 8179_pInt, 8191_pInt, 8209_pInt, 8219_pInt, &
8221_pInt, 8231_pInt, 8233_pInt, 8237_pInt, 8243_pInt, 8263_pInt, 8269_pInt, 8273_pInt, 8287_pInt, 8291_pInt, &
8293_pInt, 8297_pInt, 8311_pInt, 8317_pInt, 8329_pInt, 8353_pInt, 8363_pInt, 8369_pInt, 8377_pInt, 8387_pInt, &
8389_pInt, 8419_pInt, 8423_pInt, 8429_pInt, 8431_pInt, 8443_pInt, 8447_pInt, 8461_pInt, 8467_pInt, 8501_pInt, &
8513_pInt, 8521_pInt, 8527_pInt, 8537_pInt, 8539_pInt, 8543_pInt, 8563_pInt, 8573_pInt, 8581_pInt, 8597_pInt, &
8599_pInt, 8609_pInt, 8623_pInt, 8627_pInt, 8629_pInt, 8641_pInt, 8647_pInt, 8663_pInt, 8669_pInt, 8677_pInt, &
8681_pInt, 8689_pInt, 8693_pInt, 8699_pInt, 8707_pInt, 8713_pInt, 8719_pInt, 8731_pInt, 8737_pInt, 8741_pInt, &
8747_pInt, 8753_pInt, 8761_pInt, 8779_pInt, 8783_pInt, 8803_pInt, 8807_pInt, 8819_pInt, 8821_pInt, 8831_pInt, &
! 1101:1200
8837_pInt, 8839_pInt, 8849_pInt, 8861_pInt, 8863_pInt, 8867_pInt, 8887_pInt, 8893_pInt, 8923_pInt, 8929_pInt, &
8933_pInt, 8941_pInt, 8951_pInt, 8963_pInt, 8969_pInt, 8971_pInt, 8999_pInt, 9001_pInt, 9007_pInt, 9011_pInt, &
9013_pInt, 9029_pInt, 9041_pInt, 9043_pInt, 9049_pInt, 9059_pInt, 9067_pInt, 9091_pInt, 9103_pInt, 9109_pInt, &
9127_pInt, 9133_pInt, 9137_pInt, 9151_pInt, 9157_pInt, 9161_pInt, 9173_pInt, 9181_pInt, 9187_pInt, 9199_pInt, &
9203_pInt, 9209_pInt, 9221_pInt, 9227_pInt, 9239_pInt, 9241_pInt, 9257_pInt, 9277_pInt, 9281_pInt, 9283_pInt, &
9293_pInt, 9311_pInt, 9319_pInt, 9323_pInt, 9337_pInt, 9341_pInt, 9343_pInt, 9349_pInt, 9371_pInt, 9377_pInt, &
9391_pInt, 9397_pInt, 9403_pInt, 9413_pInt, 9419_pInt, 9421_pInt, 9431_pInt, 9433_pInt, 9437_pInt, 9439_pInt, &
9461_pInt, 9463_pInt, 9467_pInt, 9473_pInt, 9479_pInt, 9491_pInt, 9497_pInt, 9511_pInt, 9521_pInt, 9533_pInt, &
9539_pInt, 9547_pInt, 9551_pInt, 9587_pInt, 9601_pInt, 9613_pInt, 9619_pInt, 9623_pInt, 9629_pInt, 9631_pInt, &
9643_pInt, 9649_pInt, 9661_pInt, 9677_pInt, 9679_pInt, 9689_pInt, 9697_pInt, 9719_pInt, 9721_pInt, 9733_pInt, &
! 1201:1300
9739_pInt, 9743_pInt, 9749_pInt, 9767_pInt, 9769_pInt, 9781_pInt, 9787_pInt, 9791_pInt, 9803_pInt, 9811_pInt, &
9817_pInt, 9829_pInt, 9833_pInt, 9839_pInt, 9851_pInt, 9857_pInt, 9859_pInt, 9871_pInt, 9883_pInt, 9887_pInt, &
9901_pInt, 9907_pInt, 9923_pInt, 9929_pInt, 9931_pInt, 9941_pInt, 9949_pInt, 9967_pInt, 9973_pInt,10007_pInt, &
10009_pInt,10037_pInt,10039_pInt,10061_pInt,10067_pInt,10069_pInt,10079_pInt,10091_pInt,10093_pInt,10099_pInt, &
10103_pInt,10111_pInt,10133_pInt,10139_pInt,10141_pInt,10151_pInt,10159_pInt,10163_pInt,10169_pInt,10177_pInt, &
10181_pInt,10193_pInt,10211_pInt,10223_pInt,10243_pInt,10247_pInt,10253_pInt,10259_pInt,10267_pInt,10271_pInt, &
10273_pInt,10289_pInt,10301_pInt,10303_pInt,10313_pInt,10321_pInt,10331_pInt,10333_pInt,10337_pInt,10343_pInt, &
10357_pInt,10369_pInt,10391_pInt,10399_pInt,10427_pInt,10429_pInt,10433_pInt,10453_pInt,10457_pInt,10459_pInt, &
10463_pInt,10477_pInt,10487_pInt,10499_pInt,10501_pInt,10513_pInt,10529_pInt,10531_pInt,10559_pInt,10567_pInt, &
10589_pInt,10597_pInt,10601_pInt,10607_pInt,10613_pInt,10627_pInt,10631_pInt,10639_pInt,10651_pInt,10657_pInt, &
! 1301:1400
10663_pInt,10667_pInt,10687_pInt,10691_pInt,10709_pInt,10711_pInt,10723_pInt,10729_pInt,10733_pInt,10739_pInt, &
10753_pInt,10771_pInt,10781_pInt,10789_pInt,10799_pInt,10831_pInt,10837_pInt,10847_pInt,10853_pInt,10859_pInt, &
10861_pInt,10867_pInt,10883_pInt,10889_pInt,10891_pInt,10903_pInt,10909_pInt,19037_pInt,10939_pInt,10949_pInt, &
10957_pInt,10973_pInt,10979_pInt,10987_pInt,10993_pInt,11003_pInt,11027_pInt,11047_pInt,11057_pInt,11059_pInt, &
11069_pInt,11071_pInt,11083_pInt,11087_pInt,11093_pInt,11113_pInt,11117_pInt,11119_pInt,11131_pInt,11149_pInt, &
11159_pInt,11161_pInt,11171_pInt,11173_pInt,11177_pInt,11197_pInt,11213_pInt,11239_pInt,11243_pInt,11251_pInt, &
11257_pInt,11261_pInt,11273_pInt,11279_pInt,11287_pInt,11299_pInt,11311_pInt,11317_pInt,11321_pInt,11329_pInt, &
11351_pInt,11353_pInt,11369_pInt,11383_pInt,11393_pInt,11399_pInt,11411_pInt,11423_pInt,11437_pInt,11443_pInt, &
11447_pInt,11467_pInt,11471_pInt,11483_pInt,11489_pInt,11491_pInt,11497_pInt,11503_pInt,11519_pInt,11527_pInt, &
11549_pInt,11551_pInt,11579_pInt,11587_pInt,11593_pInt,11597_pInt,11617_pInt,11621_pInt,11633_pInt,11657_pInt, &
! 1401:1500
11677_pInt,11681_pInt,11689_pInt,11699_pInt,11701_pInt,11717_pInt,11719_pInt,11731_pInt,11743_pInt,11777_pInt, &
11779_pInt,11783_pInt,11789_pInt,11801_pInt,11807_pInt,11813_pInt,11821_pInt,11827_pInt,11831_pInt,11833_pInt, &
11839_pInt,11863_pInt,11867_pInt,11887_pInt,11897_pInt,11903_pInt,11909_pInt,11923_pInt,11927_pInt,11933_pInt, &
11939_pInt,11941_pInt,11953_pInt,11959_pInt,11969_pInt,11971_pInt,11981_pInt,11987_pInt,12007_pInt,12011_pInt, &
12037_pInt,12041_pInt,12043_pInt,12049_pInt,12071_pInt,12073_pInt,12097_pInt,12101_pInt,12107_pInt,12109_pInt, &
12113_pInt,12119_pInt,12143_pInt,12149_pInt,12157_pInt,12161_pInt,12163_pInt,12197_pInt,12203_pInt,12211_pInt, &
12227_pInt,12239_pInt,12241_pInt,12251_pInt,12253_pInt,12263_pInt,12269_pInt,12277_pInt,12281_pInt,12289_pInt, &
12301_pInt,12323_pInt,12329_pInt,12343_pInt,12347_pInt,12373_pInt,12377_pInt,12379_pInt,12391_pInt,12401_pInt, &
12409_pInt,12413_pInt,12421_pInt,12433_pInt,12437_pInt,12451_pInt,12457_pInt,12473_pInt,12479_pInt,12487_pInt, &
12491_pInt,12497_pInt,12503_pInt,12511_pInt,12517_pInt,12527_pInt,12539_pInt,12541_pInt,12547_pInt,12553_pInt]
endif
if(n < 0_pInt) then
prime = PRIME_MAX
else if (n == 0_pInt) then
prime = 1_pInt
else if (n <= PRIME_MAX) then
prime = npvec(n)
else
prime = -1_pInt
call IO_error(error_ID=406_pInt)
end if
end function prime
!--------------------------------------------------------------------------------------------------
!> @brief factorial
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function math_factorial(n)
implicit none
integer(pInt), intent(in) :: n
integer(pInt) :: i
math_factorial = product([(i, i=1,n)])
end function math_factorial
!--------------------------------------------------------------------------------------------------
!> @brief binomial coefficient
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function math_binomial(n,k)
implicit none
integer(pInt), intent(in) :: n, k
integer(pInt) :: i, j
j = min(k,n-k)
math_binomial = product([(i, i=n, n-j+1, -1)])/math_factorial(j)
end function math_binomial
!--------------------------------------------------------------------------------------------------
!> @brief multinomial coefficient
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function math_multinomial(alpha)
implicit none
integer(pInt), intent(in), dimension(:) :: alpha
integer(pInt) :: i
math_multinomial = 1_pInt
do i = 1, size(alpha)
math_multinomial = math_multinomial*math_binomial(sum(alpha(1:i)),alpha(i))
enddo
end function math_multinomial
!--------------------------------------------------------------------------------------------------
!> @brief volume of tetrahedron given by four vertices
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_volTetrahedron(v1,v2,v3,v4)
implicit none
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
real(pReal), dimension (3,3) :: m
m(1:3,1) = v1-v2
m(1:3,2) = v2-v3
m(1:3,3) = v3-v4
math_volTetrahedron = math_det33(m)/6.0_pReal
end function math_volTetrahedron
!--------------------------------------------------------------------------------------------------
!> @brief area of triangle given by three vertices
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_areaTriangle(v1,v2,v3)
implicit none
real(pReal), dimension (3), intent(in) :: v1,v2,v3
math_areaTriangle = 0.5_pReal * norm2(math_crossproduct(v1-v2,v1-v3))
end function math_areaTriangle
!--------------------------------------------------------------------------------------------------
!> @brief rotate 33 tensor forward
!--------------------------------------------------------------------------------------------------
pure function math_rotate_forward33(tensor,rot_tensor)
implicit none
real(pReal), dimension(3,3) :: math_rotate_forward33
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
math_rotate_forward33 = math_mul33x33(rot_tensor,&
math_mul33x33(tensor,math_transpose33(rot_tensor)))
end function math_rotate_forward33
!--------------------------------------------------------------------------------------------------
!> @brief rotate 33 tensor backward
!--------------------------------------------------------------------------------------------------
pure function math_rotate_backward33(tensor,rot_tensor)
implicit none
real(pReal), dimension(3,3) :: math_rotate_backward33
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
math_rotate_backward33 = math_mul33x33(math_transpose33(rot_tensor),&
math_mul33x33(tensor,rot_tensor))
end function math_rotate_backward33
!--------------------------------------------------------------------------------------------------
!> @brief rotate 3333 tensor C'_ijkl=g_im*g_jn*g_ko*g_lp*C_mnop
!--------------------------------------------------------------------------------------------------
pure function math_rotate_forward3333(tensor,rot_tensor)
implicit none
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3333
real(pReal), dimension(3,3), intent(in) :: rot_tensor
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
integer(pInt) :: i,j,k,l,m,n,o,p
math_rotate_forward3333= 0.0_pReal
do i = 1_pInt,3_pInt; do j = 1_pInt,3_pInt; do k = 1_pInt,3_pInt; do l = 1_pInt,3_pInt
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt; do p = 1_pInt,3_pInt
math_rotate_forward3333(i,j,k,l) = math_rotate_forward3333(i,j,k,l) &
+ rot_tensor(m,i) * rot_tensor(n,j) &
* rot_tensor(o,k) * rot_tensor(p,l) * tensor(m,n,o,p)
enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo
end function math_rotate_forward3333
!--------------------------------------------------------------------------------------------------
!> @brief calculate average of tensor field
!--------------------------------------------------------------------------------------------------
function math_tensorAvg(field)
implicit none
real(pReal), dimension(3,3) :: math_tensorAvg
real(pReal), intent(in), dimension(:,:,:,:,:) :: field
real(pReal) :: wgt
wgt = 1.0_pReal/real(size(field,3)*size(field,4)*size(field,5), pReal)
math_tensorAvg = sum(sum(sum(field,dim=5),dim=4),dim=3)*wgt
end function math_tensorAvg
!--------------------------------------------------------------------------------------------------
!> @brief limits a scalar value to a certain range (either one or two sided)
! Will return NaN if left > right
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_limit(a, left, right)
use prec, only: &
DAMASK_NaN
implicit none
real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: left, right
math_limit = min ( &
max (merge(left, -huge(a), present(left)), a), &
merge(right, huge(a), present(right)) &
)
if (present(left) .and. present(right)) math_limit = merge (DAMASK_NaN,math_limit, left>right)
end function math_limit
end module math