DAMASK_EICMD/src/thermal_conduction.f90

230 lines
8.6 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec
use material
use config
use lattice
use results
use constitutive
use YAML_types
implicit none
private
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
public :: &
thermal_conduction_init, &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getMassDensity, &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init
integer :: Ninstances,Nmaterialpoints,h
class(tNode), pointer :: &
material_homogenization, &
homog, &
homogThermal
print'(/,a)', ' <<<+- thermal_conduction init -+>>>'; flush(6)
Ninstances = count(thermal_type == THERMAL_conduction_ID)
allocate(param(Ninstances))
material_homogenization => config_material%get('homogenization')
do h = 1, size(material_name_homogenization)
if (thermal_type(h) /= THERMAL_conduction_ID) cycle
homog => material_homogenization%get(h)
homogThermal => homog%get('thermal')
associate(prm => param(thermal_typeInstance(h)))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogThermal)
#else
prm%output = homogThermal%get_asStrings('output',defaultVal=emptyStringArray)
#endif
Nmaterialpoints=count(material_homogenizationAt==h)
allocate (temperature (h)%p(Nmaterialpoints), source=thermal_initialT(h))
allocate (temperatureRate(h)%p(Nmaterialpoints), source=0.0_pReal)
end associate
enddo
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief return heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
integer :: &
homog
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
homog = material_homogenizationAt(el)
call constitutive_thermal_getRateAndItsTangents(TDot, dTDot_dT, T, crystallite_S,crystallite_Lp ,ip, el)
Tdot = Tdot/real(homogenization_Nconstituents(homog),pReal)
dTdot_dT = dTdot_dT/real(homogenization_Nconstituents(homog),pReal)
end subroutine thermal_conduction_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity
integer :: &
grain
thermal_conduction_getConductivity = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getConductivity = thermal_conduction_getConductivity + &
crystallite_push33ToRef(grain,ip,el,lattice_K(:,:,material_phaseAt(grain,el)))
enddo
thermal_conduction_getConductivity = thermal_conduction_getConductivity &
/ real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getConductivity
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getSpecificHeat
integer :: &
grain
thermal_conduction_getSpecificHeat = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
+ lattice_c_p(material_phaseAt(grain,el))
enddo
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
/ real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getMassDensity
integer :: &
grain
thermal_conduction_getMassDensity = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
+ lattice_rho(material_phaseAt(grain,el))
enddo
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
/ real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T, &
Tdot
integer :: &
homog, &
offset
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
temperature (homog)%p(offset) = T
temperatureRate(homog)%p(offset) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('T')
call results_writeDataset(group,temperature(homog)%p,'T',&
'temperature','K')
end select
enddo outputsLoop
end associate
end subroutine thermal_conduction_results
end module thermal_conduction