DAMASK_EICMD/code/homogenization.f90

576 lines
28 KiB
Fortran

!***************************************
!* Module: HOMOGENIZATION *
!***************************************
!* contains: *
!* - _init *
!* - materialpoint_stressAndItsTangent *
!* - _partitionDeformation *
!* - _updateState *
!* - _averageStressAndItsTangent *
!* - _postResults *
!***************************************
MODULE homogenization
!*** Include other modules ***
use prec, only: pInt,pReal,p_vec
implicit none
! ****************************************************************
! *** General variables for the homogenization at a ***
! *** material point ***
! ****************************************************************
type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment
homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment
homogenization_state ! pointer array to current homogenization state (end of converged time step)
integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain
homogenization_sizePostResults ! size of postResults array per material point
real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP
real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment
materialpoint_F, & ! def grad of IP to be reached at end of FE increment
materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment
materialpoint_subF, & ! def grad of IP to be reached at end of homog inc
materialpoint_P ! first P--K stress of IP
real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP
materialpoint_subFrac, &
materialpoint_subStep, &
materialpoint_subdt
real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point
logical, dimension(:,:), allocatable :: materialpoint_requested, &
materialpoint_converged
logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy
integer(pInt) homogenization_maxSizeState, &
homogenization_maxSizePostResults
CONTAINS
!**************************************
!* Module initialization *
!**************************************
subroutine homogenization_init(Temperature)
use prec, only: pReal,pInt
use math, only: math_I3
use IO, only: IO_error, IO_open_file
use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips
use material
use constitutive, only: constitutive_maxSizePostResults
use crystallite, only: crystallite_Nresults
use homogenization_isostrain
! use homogenization_RGC
real(pReal) Temperature
integer(pInt), parameter :: fileunit = 200
integer(pInt) e,i,g,myInstance
if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file
call homogenization_isostrain_init(fileunit) ! parse all homogenizations of this type
close(fileunit)
allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_state(mesh_maxNips,mesh_NcpElems))
allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt
allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems));
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false.
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true.
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true.
forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems)
materialpoint_F0(:,:,i,e) = math_I3
materialpoint_F(:,:,i,e) = math_I3
end forall
do e = 1,mesh_NcpElems ! loop over elements
myInstance = homogenization_typeInstance(mesh_element(3,e))
do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs
select case(homogenization_type(mesh_element(3,e)))
case (homogenization_isostrain_label)
if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then
allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance)
homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance)
endif
homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance)
case default
call IO_error(201,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown type 201 is homogenization!
end select
enddo
enddo
homogenization_maxSizeState = maxval(homogenization_sizeState)
homogenization_maxSizePostResults = maxval(homogenization_sizePostResults)
allocate(materialpoint_results( 1+ 1+homogenization_maxSizePostResults + & ! grain count, homogSize, homogResult
homogenization_maxNgrains*(1+crystallite_Nresults+constitutive_maxSizePostResults), mesh_maxNips,mesh_NcpElems))
! *** Output to MARC output file ***
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- homogenization init -+>>>'
write(6,*)
write(6,'(a32,x,7(i5,x))') 'homogenization_state0: ', shape(homogenization_state0)
write(6,'(a32,x,7(i5,x))') 'homogenization_subState0: ', shape(homogenization_subState0)
write(6,'(a32,x,7(i5,x))') 'homogenization_state: ', shape(homogenization_state)
write(6,'(a32,x,7(i5,x))') 'homogenization_sizeState: ', shape(homogenization_sizeState)
write(6,'(a32,x,7(i5,x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults)
write(6,*)
write(6,'(a32,x,7(i5,x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
write(6,'(a32,x,7(i5,x))') 'materialpoint_F0: ', shape(materialpoint_F0)
write(6,'(a32,x,7(i5,x))') 'materialpoint_F: ', shape(materialpoint_F)
write(6,'(a32,x,7(i5,x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
write(6,'(a32,x,7(i5,x))') 'materialpoint_subF: ', shape(materialpoint_subF)
write(6,'(a32,x,7(i5,x))') 'materialpoint_P: ', shape(materialpoint_P)
write(6,'(a32,x,7(i5,x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature)
write(6,'(a32,x,7(i5,x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
write(6,'(a32,x,7(i5,x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
write(6,'(a32,x,7(i5,x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
write(6,'(a32,x,7(i5,x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,x,7(i5,x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,x,7(i5,x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
write(6,*)
write(6,'(a32,x,7(i5,x))') 'materialpoint_results: ', shape(materialpoint_results)
write(6,*)
write(6,'(a32,x,7(i5,x))') 'maxSizeState: ', homogenization_maxSizeState
write(6,'(a32,x,7(i5,x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
call flush(6)
!$OMP END CRITICAL (write2out)
return
endsubroutine
!********************************************************************
!* parallelized calculation of
!* stress and corresponding tangent
!* at material points
!********************************************************************
subroutine materialpoint_stressAndItsTangent(&
updateJaco,& ! flag to initiate Jacobian updating
dt & ! time increment
)
use prec, only: pInt, &
pReal
use numerics, only: subStepMin, &
nHomog
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_state0, &
constitutive_partionedState0, &
constitutive_state
use crystallite, only: crystallite_Temperature, &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Tstar0_v, &
crystallite_Tstar_v, &
crystallite_partionedTemperature0, &
crystallite_partionedF0, &
crystallite_partionedF, &
crystallite_partionedFp0, &
crystallite_partionedLp0, &
crystallite_partionedTstar0_v, &
crystallite_dt, &
crystallite_requested, &
crystallite_stressAndItsTangent
implicit none
real(pReal), intent(in) :: dt
logical, intent(in) :: updateJaco
integer(pInt) homogenization_Niteration
integer(pInt) g,i,e,myNgrains
! ------ initialize to starting condition ------
write (6,*)
write (6,*) 'Material Point start'
write (6,'(a,/,(f12.7,x))') 'Temp0 of 8 1' ,materialpoint_Temperature(8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'F0 of 8 1',materialpoint_F0(1:3,:,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'F of 8 1',materialpoint_F(1:3,:,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'Fp0 of 1 8 1',crystallite_Fp0(1:3,:,1,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'Lp0 of 1 8 1',crystallite_Lp0(1:3,:,1,8,1)
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
! initialize restoration points of grain...
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures
crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures
crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp0(:,:,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_F0(:,:,1:myNgrains,i,e) ! ...def grads
crystallite_partionedTstar0_v(:,1:myNgrains,i,e)= crystallite_Tstar0_v(:,1:myNgrains,i,e) ! ...2nd PK stress
! initialize restoration points of ...
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state
materialpoint_subF0(:,:,i,e) = materialpoint_F0(:,:,i,e) ! ...def grad
materialpoint_subFrac(i,e) = 0.0_pReal
materialpoint_subStep(i,e) = 2.0_pReal
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
enddo
enddo
!$OMP END PARALLEL DO
! ------ cutback loop ------
do while (any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMin)) ! cutback loop for material points
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
! if our materialpoint converged then we are either finished or have to wind forward
if (materialpoint_converged(i,e)) then
! calculate new subStep and new subFrac
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), 2.0_pReal * materialpoint_subStep(i,e))
! still stepping needed
if (materialpoint_subStep(i,e) > subStepMin) then
! wind forward grain starting point of...
crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures
crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_partionedF(:,:,1:myNgrains,i,e) ! ...def grads
crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp(:,:,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partionedTstar0_v(:,1:myNgrains,i,e) = crystallite_Tstar_v(:,1:myNgrains,i,e) ! ...2nd PK stress
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme
materialpoint_subF0(:,:,i,e) = materialpoint_subF(:,:,i,e) ! ...def grad
endif
! materialpoint didn't converge, so we need a cutback here
else
materialpoint_subStep(i,e) = 0.5_pReal * materialpoint_subStep(i,e)
! restore...
crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures
crystallite_Fp(:,:,1:myNgrains,i,e) = crystallite_partionedFp0(:,:,1:myNgrains,i,e) ! ...plastic def grads
crystallite_Lp(:,:,1:myNgrains,i,e) = crystallite_partionedLp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_Tstar_v(:,1:myNgrains,i,e) = crystallite_partionedTstar0_v(:,1:myNgrains,i,e) ! ...2nd PK stress
forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures
if (homogenization_sizeState(i,e) > 0_pInt) &
homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme
endif
materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMin
if (materialpoint_requested(i,e)) then
materialpoint_subF(:,:,i,e) = materialpoint_subF0(:,:,i,e) + &
materialpoint_subStep(i,e) * (materialpoint_F(:,:,i,e) - materialpoint_F0(:,:,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(:,i,e) = (/.false.,.true./)
endif
enddo
enddo
!$OMP END PARALLEL DO
! ------ convergence loop material point homogenization ------
homogenization_Niteration = 0_pInt
do while (any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. homogenization_Niteration < nHomog) ! convergence loop for materialpoint
homogenization_Niteration = homogenization_Niteration + 1
! --+>> deformation partitioning <<+--
!
! based on materialpoint_subF0,.._subF,
! crystallite_partionedF0,
! homogenization_state
! results in crystallite_partionedF
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
if ( materialpoint_requested(i,e) .and. & ! process requested but...
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
endif
enddo
enddo
!$OMP END PARALLEL DO
! --+>> crystallite integration <<+--
!
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
! --+>> state update <<+--
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
if ( materialpoint_requested(i,e) .and. &
.not. materialpoint_doneAndHappy(1,i,e)) then
materialpoint_doneAndHappy(:,i,e) = homogenization_updateState(i,e)
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(:,i,e)) ! converged if done and happy
endif
enddo
enddo
!$OMP END PARALLEL DO
enddo ! homogenization convergence loop
enddo ! cutback loop
! check for non-performer: any(.not. converged)
! replace with elastic response ?
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
call homogenization_averageStressAndItsTangent(i,e)
call homogenization_averageTemperature(i,e)
enddo
enddo
!$OMP END PARALLEL DO
write (6,*) 'Material Point finished'
write (6,'(a,/,3(3(f12.7,x)/))') 'Lp of 1 1 1',crystallite_Lp(1:3,:,1,1,1)
! how to deal with stiffness?
return
endsubroutine
!********************************************************************
!* parallelized calculation of
!* result array at material points
!********************************************************************
subroutine materialpoint_postResults(dt)
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
use mesh, only: mesh_element
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_sizePostResults, constitutive_postResults
use crystallite
implicit none
real(pReal), intent(in) :: dt
integer(pInt) g,i,e,c,d,myNgrains
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
c = 0_pInt
materialpoint_results(c+1,i,e) = myNgrains; c = c+1_pInt ! tell number of grains at materialpoint
d = homogenization_sizePostResults(i,e)
materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of homogenization results
if (d > 0_pInt) then ! any homogenization results to mention?
materialpoint_results(c+1:c+d,i,e) = & ! tell homogenization results
homogenization_postResults(i,e); c = c+d
endif
do g = 1,myNgrains !
d = crystallite_Nresults+constitutive_sizePostResults(g,i,e)
materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of crystallite results
materialpoint_results(c+1:c+d,i,e) = & ! tell crystallite results
crystallite_postResults(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),dt,g,i,e); c = c+d
enddo
enddo
enddo
!$OMP END PARALLEL DO
endsubroutine
!********************************************************************
! partition material point def grad onto constituents
!********************************************************************
subroutine homogenization_partitionDeformation(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_partionedF0,crystallite_partionedF
use homogenization_isostrain
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
call homogenization_isostrain_partitionDeformation(crystallite_partionedF(:,:,:,ip,el), &
crystallite_partionedF0(:,:,:,ip,el),&
materialpoint_subF(:,:,ip,el),&
homogenization_state(ip,el), &
ip, &
el)
end select
endsubroutine
!********************************************************************
! update the internal state of the homogenization scheme
! and tell whether "done" and "happy" with result
!********************************************************************
function homogenization_updateState(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_P,crystallite_dPdF
use homogenization_isostrain
implicit none
integer(pInt), intent(in) :: ip,el
logical, dimension(2) :: homogenization_updateState
select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
homogenization_updateState = homogenization_isostrain_updateState( homogenization_state(ip,el), &
crystallite_P(:,:,:,ip,el), &
crystallite_dPdF(:,:,:,:,:,ip,el), &
ip, &
el)
end select
return
endfunction
!********************************************************************
! derive average stress and stiffness from constituent quantities
!********************************************************************
subroutine homogenization_averageStressAndItsTangent(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_P,crystallite_dPdF
use homogenization_isostrain
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
call homogenization_isostrain_averageStressAndItsTangent( materialpoint_P(:,:,ip,el), &
materialpoint_dPdF(:,:,:,:,ip,el),&
crystallite_P(:,:,:,ip,el), &
crystallite_dPdF(:,:,:,:,:,ip,el), &
ip, &
el)
end select
return
endsubroutine
!********************************************************************
! derive average stress and stiffness from constituent quantities
!********************************************************************
subroutine homogenization_averageTemperature(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type, homogenization_maxNgrains
use crystallite, only: crystallite_Temperature
use homogenization_isostrain
implicit none
integer(pInt), intent(in) :: ip,el
select case(homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
materialpoint_Temperature(ip,el) = homogenization_isostrain_averageTemperature(crystallite_Temperature(:,ip,el), ip, el)
end select
return
endsubroutine
!********************************************************************
! return array of homogenization results for post file inclusion
! call only, if homogenization_sizePostResults(ip,el) > 0 !!
!********************************************************************
function homogenization_postResults(&
ip, & ! integration point
el & ! element
)
use prec, only: pReal,pInt
use mesh, only: mesh_element
use material, only: homogenization_type
use homogenization_isostrain
implicit none
!* Definition of variables
integer(pInt), intent(in) :: ip,el
real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults
homogenization_postResults = 0.0_pReal
select case (homogenization_type(mesh_element(3,el)))
case (homogenization_isostrain_label)
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el)
end select
return
endfunction
END MODULE