366 lines
14 KiB
Python
Executable File
366 lines
14 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
from optparse import OptionParser
|
|
import damask
|
|
import os,sys,math,re,random,string
|
|
import numpy as np
|
|
|
|
scriptID = string.replace('$Id$','\n','\\n')
|
|
scriptName = scriptID.split()[1]
|
|
|
|
random.seed(1)
|
|
|
|
# --- helper functions ---
|
|
|
|
def binAsBins(bin,intervals):
|
|
""" explode compound bin into 3D bins list """
|
|
bins = [0]*3
|
|
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
|
|
bins[1] = (bin//intervals[2]) % intervals[1]
|
|
bins[2] = bin % intervals[2]
|
|
return bins
|
|
|
|
def binsAsBin(bins,intervals):
|
|
""" implode 3D bins into compound bin """
|
|
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
|
|
|
|
def EulersAsBins(Eulers,intervals,deltas,center):
|
|
""" return list of Eulers translated into 3D bins list """
|
|
return [int((euler+(0.5-center)*delta)//delta)%interval \
|
|
for euler,delta,interval in zip(Eulers,deltas,intervals) \
|
|
]
|
|
|
|
def binAsEulers(bin,intervals,deltas,center):
|
|
""" compound bin number translated into list of Eulers """
|
|
Eulers = [0.0]*3
|
|
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
|
|
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
|
|
Eulers[0] = (bin//(intervals[2]*intervals[1]) + center)*deltas[0]
|
|
return Eulers
|
|
|
|
def directInvRepetitions(probability,scale):
|
|
""" calculate number of samples drawn by direct inversion """
|
|
nDirectInv = 0
|
|
for bin in range(len(probability)): # loop over bins
|
|
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
|
|
return nDirectInv
|
|
|
|
|
|
# ---------------------- sampling methods -----------------------------------------------------------------------
|
|
|
|
# ----- efficient algorithm ---------
|
|
|
|
def directInversion (ODF,nSamples):
|
|
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
|
|
|
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
|
|
|
|
nInvSamples = 0
|
|
repetition = [None]*ODF['nBins']
|
|
probabilityScale = nOptSamples # guess
|
|
|
|
scaleLower = 0.0
|
|
nInvSamplesLower = 0
|
|
scaleUpper = float(nOptSamples)
|
|
incFactor = 1.0
|
|
nIter = 0
|
|
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
|
|
while (\
|
|
(scaleUpper-scaleLower > scaleUpper*1e-15 or nInvSamplesUpper < nOptSamples) and \
|
|
nInvSamplesUpper != nOptSamples \
|
|
): # closer match required?
|
|
if nInvSamplesUpper < nOptSamples:
|
|
scaleLower,scaleUpper = scaleUpper,scaleUpper+incFactor*(scaleUpper-scaleLower)/2.0
|
|
incFactor *= 2.0
|
|
nInvSamplesLower,nInvSamplesUpper = nInvSamplesUpper,directInvRepetitions(ODF['dV_V'],scaleUpper)
|
|
else:
|
|
scaleUpper = (scaleLower+scaleUpper)/2.0
|
|
incFactor = 1.0
|
|
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
|
|
nIter += 1
|
|
print '%i:(%12.11f,%12.11f) %i <= %i <= %i'%(nIter,scaleLower,scaleUpper,nInvSamplesLower,nOptSamples,nInvSamplesUpper)
|
|
nInvSamples = nInvSamplesUpper
|
|
scale = scaleUpper
|
|
print 'created set of',nInvSamples,'samples (',float(nInvSamples)/nOptSamples-1.0,') with scaling',scale,'delivering',nSamples
|
|
repetition = [None]*ODF['nBins'] # preallocate and clear
|
|
|
|
for bin in range(ODF['nBins']): # loop over bins
|
|
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
|
|
|
|
# build set
|
|
set = [None]*nInvSamples
|
|
i = 0
|
|
for bin in range(ODF['nBins']):
|
|
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
|
|
i += repetition[bin] # advance set counter
|
|
|
|
orientations = [None]*nSamples
|
|
reconstructedODF = [0.0]*ODF['nBins']
|
|
unitInc = 1.0/nSamples
|
|
for j in range(nSamples):
|
|
if (j == nInvSamples-1): ex = j
|
|
else: ex = int(round(random.uniform(j+0.5,nInvSamples-0.5)))
|
|
bin = set[ex]
|
|
bins = binAsBins(bin,ODF['interval'])
|
|
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
|
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
|
reconstructedODF[bin] += unitInc
|
|
set[ex] = set[j] # exchange orientations
|
|
|
|
return orientations, reconstructedODF
|
|
|
|
|
|
# ----- trial and error algorithms ---------
|
|
|
|
def MonteCarloEulers (ODF,nSamples):
|
|
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
|
|
|
countMC = 0
|
|
maxdV_V = max(ODF['dV_V'])
|
|
orientations = [None]*nSamples
|
|
reconstructedODF = [0.0]*ODF['nBins']
|
|
unitInc = 1.0/nSamples
|
|
|
|
for j in range(nSamples):
|
|
MC = maxdV_V*2.0
|
|
bin = 0
|
|
while MC > ODF['dV_V'][bin]:
|
|
countMC += 1
|
|
MC = maxdV_V*random.random()
|
|
Eulers = [limit*random.random() for limit in ODF['limit']]
|
|
bins = EulersAsBins(Eulers,ODF['interval'],ODF['delta'],ODF['center'])
|
|
bin = binsAsBin(bins,ODF['interval'])
|
|
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
|
reconstructedODF[bin] += unitInc
|
|
|
|
return orientations, reconstructedODF, countMC
|
|
|
|
|
|
def MonteCarloBins (ODF,nSamples):
|
|
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
|
|
|
countMC = 0
|
|
maxdV_V = max(ODF['dV_V'])
|
|
orientations = [None]*nSamples
|
|
reconstructedODF = [0.0]*ODF['nBins']
|
|
unitInc = 1.0/nSamples
|
|
|
|
for j in range(nSamples):
|
|
MC = maxdV_V*2.0
|
|
bin = 0
|
|
while MC > ODF['dV_V'][bin]:
|
|
countMC += 1
|
|
MC = maxdV_V*random.random()
|
|
bin = int(ODF['nBins'] * random.random())
|
|
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
|
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
|
reconstructedODF[bin] += unitInc
|
|
|
|
return orientations, reconstructedODF
|
|
|
|
|
|
def TothVanHoutteSTAT (ODF,nSamples):
|
|
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
|
|
|
orientations = [None]*nSamples
|
|
reconstructedODF = [0.0]*ODF['nBins']
|
|
unitInc = 1.0/nSamples
|
|
|
|
selectors = [random.random() for i in range(nSamples)]
|
|
selectors.sort()
|
|
indexSelector = 0
|
|
|
|
cumdV_V = 0.0
|
|
countSamples = 0
|
|
|
|
for bin in range(ODF['nBins']) :
|
|
cumdV_V += ODF['dV_V'][bin]
|
|
while indexSelector < nSamples and selectors[indexSelector] < cumdV_V:
|
|
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
|
orientations[countSamples] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
|
reconstructedODF[bin] += unitInc
|
|
countSamples += 1
|
|
indexSelector += 1
|
|
|
|
print 'created set of',countSamples,'when asked to deliver',nSamples
|
|
|
|
return orientations, reconstructedODF
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
identifiers = {
|
|
'limit': ['phi1','phi','phi2'],
|
|
'delta': ['phi1','phi','phi2'],
|
|
}
|
|
mappings = {
|
|
'limit': lambda x: math.radians(float(x)),
|
|
'delta': lambda x: math.radians(float(x)),
|
|
'origin': lambda x: str(x),
|
|
}
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Transform linear binned data into Euler angles.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-n', '--number', dest='number', type='int', metavar = 'int',
|
|
help='the number of orientations needed to be generated, the default is [%default]')
|
|
parser.add_option('-a','--algorithm', dest='algorithm', type='string', metavar = 'string',
|
|
help='''The algorithm adopted, three algorithms are provided,
|
|
that is:
|
|
[IA]: direct inversion,
|
|
[STAT]: Van Houtte,
|
|
[MC]: Monte Carlo.
|
|
the default is [%default].''') #make (multiple) choice
|
|
parser.add_option('-p','--phase', dest='phase', type='int', metavar = 'int',
|
|
help='phase index to be used [%default]')
|
|
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
|
|
help='crystallite index to be used [%default]')
|
|
|
|
parser.set_defaults(number = 500)
|
|
parser.set_defaults(algorithm = 'IA')
|
|
parser.set_defaults(phase = 1)
|
|
parser.set_defaults(crystallite = 1)
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
nSamples = options.number
|
|
methods = [options.algorithm]
|
|
|
|
#--- setup file handles ---------------------------------------------------------------------------
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN',
|
|
'input':sys.stdin,
|
|
'output':sys.stdout,
|
|
'croak':sys.stderr,
|
|
})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name,
|
|
'input':open(name),
|
|
'output':open(name+'_tmp','w'),
|
|
'croak':sys.stdout,
|
|
})
|
|
|
|
#--- loop over input files ------------------------------------------------------------------------
|
|
for file in files:
|
|
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
|
|
|
|
ODF = {
|
|
'limit': np.empty(3,'d'),
|
|
'delta': np.empty(3,'d'),
|
|
'interval':np.empty(3,'i'),
|
|
'origin': ''
|
|
}
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
|
|
table.head_read()
|
|
|
|
for header in table.info:
|
|
headitems = map(str.lower,header.split())
|
|
if len(headitems) == 0: continue
|
|
if headitems[0] in mappings.keys():
|
|
if headitems[0] in identifiers.keys():
|
|
for i in xrange(len(identifiers[headitems[0]])):
|
|
ODF[headitems[0]][i] = \
|
|
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
|
else:
|
|
ODF[headitems[0]] = mappings[headitems[0]](headitems[1])
|
|
|
|
ODF['interval'] = np.array([int(round(limit/delta)) for limit,delta in zip(ODF['limit'],ODF['delta'])])
|
|
ODF['nBins'] = ODF['interval'].prod()
|
|
|
|
if re.search('boundary',ODF['origin'].lower()):
|
|
ODF['center'] = 0.5
|
|
else:
|
|
ODF['center'] = 0.0
|
|
|
|
binnedODF=table.data_readArray([table.labels.index('intensity')])
|
|
|
|
if binnedODF[0] != ODF['nBins']:
|
|
print 'expecting', ODF['nBins'], 'values but got', len(linesBinnedODF)
|
|
sys.exit(1)
|
|
|
|
# build binnedODF array
|
|
sumdV_V = 0.0
|
|
ODF['dV_V'] = [None]*ODF['nBins']
|
|
ODF['nNonZero'] = 0
|
|
dg = ODF['delta'][0]*2*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
|
|
for bin in range(ODF['nBins']):
|
|
ODF['dV_V'][bin] = \
|
|
max(0.0,table.data[bin,0]) * dg * \
|
|
math.sin(((bin//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
|
|
if ODF['dV_V'][bin] > 0.0:
|
|
sumdV_V += ODF['dV_V'][bin]
|
|
ODF['nNonZero'] += 1
|
|
|
|
for bin in range(ODF['nBins']): ODF['dV_V'][bin] /= sumdV_V # normalize dV/V
|
|
|
|
print 'non-zero fraction:', float(ODF['nNonZero'])/ODF['nBins'],'(%i/%i)'%(ODF['nNonZero'],ODF['nBins'])
|
|
print 'Volume integral of ODF:', sumdV_V
|
|
print 'Reference Integral:', ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))
|
|
|
|
# call methods
|
|
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
|
|
method = Functions[options.algorithm]
|
|
|
|
Orientations, ReconstructedODF = (globals()[method])(ODF,nSamples)
|
|
|
|
# calculate accuracy of sample
|
|
squaredDiff = {'orig':0.0,method:0.0}
|
|
squaredRelDiff = {'orig':0.0,method:0.0}
|
|
mutualProd = {'orig':0.0,method:0.0}
|
|
indivSum = {'orig':0.0,method:0.0}
|
|
indivSquaredSum = {'orig':0.0,method:0.0}
|
|
|
|
for bin in range(ODF['nBins']):
|
|
squaredDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2
|
|
if ODF['dV_V'][bin] > 0.0:
|
|
squaredRelDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2/ODF['dV_V'][bin]**2
|
|
mutualProd[method] += ODF['dV_V'][bin]*ReconstructedODF[bin]
|
|
indivSum[method] += ReconstructedODF[bin]
|
|
indivSquaredSum[method] += ReconstructedODF[bin]**2
|
|
indivSum['orig'] += ODF['dV_V'][bin]
|
|
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
|
|
|
|
print 'sqrt(N*)RMSD of ODFs:\t', math.sqrt(nSamples*squaredDiff[method])
|
|
print 'RMSrD of ODFs:\t', math.sqrt(squaredRelDiff[method])
|
|
print 'rMSD of ODFs:\t', squaredDiff[method]/indivSquaredSum['orig']
|
|
print 'nNonZero correlation slope:\t', (ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
|
|
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)
|
|
print 'nNonZero correlation confidence:\t',\
|
|
(mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
|
|
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
|
|
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))
|
|
|
|
if method == 'IA' and nSamples < ODF['nNonZero']:
|
|
strOpt = '(%i)'%ODF['nNonZero']
|
|
|
|
formatwidth = 1
|
|
file['output'].write('#-------------------#')
|
|
file['output'].write('\n<microstructure>\n')
|
|
file['output'].write('#-------------------#\n')
|
|
|
|
for i,ID in enumerate(xrange(nSamples)):
|
|
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
|
'crystallite %i\n'%options.crystallite + \
|
|
'(constituent) phase %i texture %s fraction 1.0\n'%(options.phase,str(ID+1).rjust(formatwidth)))
|
|
|
|
file['output'].write('\n#-------------------#')
|
|
file['output'].write('\n<texture>\n')
|
|
file['output'].write('#-------------------#\n')
|
|
for ID in xrange(nSamples):
|
|
eulers = re.split(r'[\t]', Orientations[ID].strip())
|
|
|
|
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
|
'(gauss) phi1 %10.5f Phi %10.5f phi2 %10.6f scatter 0.0 fraction 1.0\n'\
|
|
%(float(eulers[0]),float(eulers[1]),float(eulers[2])))
|
|
#--- output finalization --------------------------------------------------------------------------
|
|
if file['name'] != 'STDIN':
|
|
file['output'].close()
|
|
os.rename(file['name']+'_tmp',
|
|
os.path.splitext(file['name'])[0] +'_'+method+'%s'%('_material.config'))
|