3575 lines
142 KiB
Fortran
3575 lines
142 KiB
Fortran
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!##############################################################
|
|
!* $Id$
|
|
!##############################################################
|
|
MODULE math
|
|
!##############################################################
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
implicit none
|
|
|
|
real(pReal), parameter :: pi = 3.14159265358979323846264338327950288419716939937510_pReal
|
|
real(pReal), parameter :: inDeg = 180.0_pReal/pi
|
|
real(pReal), parameter :: inRad = pi/180.0_pReal
|
|
|
|
! *** 3x3 Identity ***
|
|
real(pReal), dimension(3,3), parameter :: math_I3 = &
|
|
reshape( (/ &
|
|
1.0_pReal,0.0_pReal,0.0_pReal, &
|
|
0.0_pReal,1.0_pReal,0.0_pReal, &
|
|
0.0_pReal,0.0_pReal,1.0_pReal /),(/3,3/))
|
|
|
|
! *** Mandel notation ***
|
|
integer(pInt), dimension (2,6), parameter :: mapMandel = &
|
|
reshape((/&
|
|
1_pInt,1_pInt, &
|
|
2_pInt,2_pInt, &
|
|
3_pInt,3_pInt, &
|
|
1_pInt,2_pInt, &
|
|
2_pInt,3_pInt, &
|
|
1_pInt,3_pInt &
|
|
/),(/2,6/))
|
|
|
|
real(pReal), dimension(6), parameter :: nrmMandel = &
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal/)
|
|
real(pReal), dimension(6), parameter :: invnrmMandel = &
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal/)
|
|
|
|
! *** Voigt notation ***
|
|
integer(pInt), dimension (2,6), parameter :: mapVoigt = &
|
|
reshape((/&
|
|
1_pInt,1_pInt, &
|
|
2_pInt,2_pInt, &
|
|
3_pInt,3_pInt, &
|
|
2_pInt,3_pInt, &
|
|
1_pInt,3_pInt, &
|
|
1_pInt,2_pInt &
|
|
/),(/2,6/))
|
|
|
|
real(pReal), dimension(6), parameter :: nrmVoigt = &
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
real(pReal), dimension(6), parameter :: invnrmVoigt = &
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
! *** Plain notation ***
|
|
integer(pInt), dimension (2,9), parameter :: mapPlain = &
|
|
reshape((/&
|
|
1_pInt,1_pInt, &
|
|
1_pInt,2_pInt, &
|
|
1_pInt,3_pInt, &
|
|
2_pInt,1_pInt, &
|
|
2_pInt,2_pInt, &
|
|
2_pInt,3_pInt, &
|
|
3_pInt,1_pInt, &
|
|
3_pInt,2_pInt, &
|
|
3_pInt,3_pInt &
|
|
/),(/2,9/))
|
|
|
|
! Symmetry operations as quaternions
|
|
! 24 for cubic, 12 for hexagonal = 36
|
|
integer(pInt), dimension(2), parameter :: math_NsymOperations = (/24_pInt,12_pInt/)
|
|
real(pReal), dimension(4,36), parameter :: math_symOperations = &
|
|
reshape((/&
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
|
|
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
|
|
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
|
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
|
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
|
|
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
|
|
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
|
|
/),(/4,36/))
|
|
|
|
CONTAINS
|
|
|
|
!**************************************************************************
|
|
! initialization of module
|
|
!**************************************************************************
|
|
SUBROUTINE math_init ()
|
|
|
|
use prec, only: tol_math_check
|
|
use numerics, only: fixedSeed
|
|
use IO, only: IO_error
|
|
use debug, only: debug_verbosity
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(3,3) :: R,R2
|
|
real(pReal), dimension(3) :: Eulers
|
|
real(pReal), dimension(4) :: q,q2,axisangle,randTest
|
|
! the following variables are system dependend and shound NOT be pInt
|
|
integer :: randSize ! gfortran requires a variable length to compile
|
|
integer, dimension(:), allocatable :: randInit ! if recalculations of former randomness (with given seed) is necessary
|
|
! comment the first random_seed call out, set randSize to 1, and use ifort
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,*) '<<<+- math init -+>>>'
|
|
write(6,*) '$Id$'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
call random_seed(size=randSize)
|
|
allocate(randInit(randSize))
|
|
if (fixedSeed > 0_pInt) then
|
|
randInit(1:randSize) = int(fixedSeed) ! fixedSeed is of type pInt, randInit not
|
|
call random_seed(put=randInit)
|
|
else
|
|
call random_seed()
|
|
endif
|
|
|
|
call random_seed(get=randInit)
|
|
|
|
do i = 1_pInt, 4_pInt
|
|
call random_number(randTest(i))
|
|
enddo
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
! this critical block did cause trouble at IWM
|
|
write(6,*) 'value of random seed: ', randInit(1)
|
|
write(6,*) 'size of random seed: ', randSize
|
|
write(6,'(a,4(/,26x,f16.14))') ' start of random sequence: ', randTest
|
|
write(6,*) ''
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
call random_seed(put=randInit)
|
|
call random_seed(get=randInit)
|
|
|
|
call halton_seed_set(randInit(1))
|
|
call halton_ndim_set(3_pInt)
|
|
|
|
! --- check rotation dictionary ---
|
|
|
|
! +++ q -> a -> q +++
|
|
q = math_qRnd();
|
|
axisangle = math_QuaternionToAxisAngle(q);
|
|
q2 = math_AxisAngleToQuaternion(axisangle(1:3),axisangle(4))
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
call IO_error(670_pInt)
|
|
|
|
! +++ q -> R -> q +++
|
|
R = math_QuaternionToR(q);
|
|
q2 = math_RToQuaternion(R)
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
call IO_error(671_pInt)
|
|
|
|
! +++ q -> euler -> q +++
|
|
Eulers = math_QuaternionToEuler(q);
|
|
q2 = math_EulerToQuaternion(Eulers)
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
call IO_error(672_pInt)
|
|
|
|
! +++ R -> euler -> R +++
|
|
Eulers = math_RToEuler(R);
|
|
R2 = math_EulerToR(Eulers)
|
|
if ( any(abs( R-R2) > tol_math_check) ) &
|
|
call IO_error(673_pInt)
|
|
|
|
ENDSUBROUTINE math_init
|
|
|
|
|
|
!**************************************************************************
|
|
! Quicksort algorithm for two-dimensional integer arrays
|
|
!
|
|
! Sorting is done with respect to array(1,:)
|
|
! and keeps array(2:N,:) linked to it.
|
|
!**************************************************************************
|
|
RECURSIVE SUBROUTINE qsort(a, istart, iend)
|
|
|
|
implicit none
|
|
integer(pInt), dimension(:,:) :: a
|
|
integer(pInt) :: istart,iend,ipivot
|
|
|
|
if (istart < iend) then
|
|
ipivot = math_partition(a,istart, iend)
|
|
call qsort(a, istart, ipivot-1_pInt)
|
|
call qsort(a, ipivot+1_pInt, iend)
|
|
endif
|
|
|
|
ENDSUBROUTINE qsort
|
|
|
|
|
|
!**************************************************************************
|
|
! Partitioning required for quicksort
|
|
!**************************************************************************
|
|
integer(pInt) function math_partition(a, istart, iend)
|
|
|
|
implicit none
|
|
integer(pInt), dimension(:,:) :: a
|
|
integer(pInt) :: istart,iend,d,i,j,k,x,tmp
|
|
|
|
d = size(a,1_pInt) ! number of linked data
|
|
! set the starting and ending points, and the pivot point
|
|
|
|
i = istart
|
|
|
|
j = iend
|
|
x = a(1,istart)
|
|
do
|
|
! find the first element on the right side less than or equal to the pivot point
|
|
do j = j, istart, -1_pInt
|
|
if (a(1,j) <= x) exit
|
|
enddo
|
|
! find the first element on the left side greater than the pivot point
|
|
do i = i, iend
|
|
if (a(1,i) > x) exit
|
|
enddo
|
|
if (i < j) then ! if the indexes do not cross, exchange values
|
|
do k = 1_pInt,d
|
|
tmp = a(k,i)
|
|
a(k,i) = a(k,j)
|
|
a(k,j) = tmp
|
|
enddo
|
|
else ! if they do cross, exchange left value with pivot and return with the partition index
|
|
do k = 1_pInt,d
|
|
tmp = a(k,istart)
|
|
a(k,istart) = a(k,j)
|
|
a(k,j) = tmp
|
|
enddo
|
|
math_partition = j
|
|
return
|
|
endif
|
|
enddo
|
|
|
|
endfunction math_partition
|
|
|
|
|
|
!**************************************************************************
|
|
! range of integers starting at one
|
|
!**************************************************************************
|
|
pure function math_range(N)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: N
|
|
integer(pInt) :: i
|
|
integer(pInt), dimension(N) :: math_range
|
|
|
|
forall (i=1_pInt:N) math_range(i) = i
|
|
|
|
endfunction math_range
|
|
|
|
|
|
!**************************************************************************
|
|
! second rank identity tensor of specified dimension
|
|
!**************************************************************************
|
|
pure function math_identity2nd(dimen)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
|
|
|
math_identity2nd = 0.0_pReal
|
|
forall (i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
|
|
|
|
endfunction math_identity2nd
|
|
|
|
|
|
!**************************************************************************
|
|
! permutation tensor e_ijk used for computing cross product of two tensors
|
|
! e_ijk = 1 if even permutation of ijk
|
|
! e_ijk = -1 if odd permutation of ijk
|
|
! e_ijk = 0 otherwise
|
|
!**************************************************************************
|
|
pure function math_civita(i,j,k)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: i,j,k
|
|
real(pReal) math_civita
|
|
|
|
math_civita = 0.0_pReal
|
|
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
|
|
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
|
|
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
|
|
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
|
|
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
|
|
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
|
|
|
|
endfunction math_civita
|
|
|
|
|
|
!**************************************************************************
|
|
! kronecker delta function d_ij
|
|
! d_ij = 1 if i = j
|
|
! d_ij = 0 otherwise
|
|
!**************************************************************************
|
|
pure function math_delta(i,j)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent (in) :: i,j
|
|
real(pReal) :: math_delta
|
|
|
|
math_delta = 0.0_pReal
|
|
if (i == j) math_delta = 1.0_pReal
|
|
|
|
endfunction math_delta
|
|
|
|
|
|
!**************************************************************************
|
|
! fourth rank identity tensor of specified dimension
|
|
!**************************************************************************
|
|
pure function math_identity4th(dimen)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
integer(pInt) :: i,j,k,l
|
|
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
|
|
|
forall (i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) math_identity4th(i,j,k,l) = &
|
|
0.5_pReal*(math_I3(i,k)*math_I3(j,k)+math_I3(i,l)*math_I3(j,k))
|
|
|
|
endfunction math_identity4th
|
|
|
|
|
|
!**************************************************************************
|
|
! vector product a x b
|
|
!**************************************************************************
|
|
pure function math_vectorproduct(A,B)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
real(pReal), dimension(3) :: math_vectorproduct
|
|
|
|
math_vectorproduct(1) = A(2)*B(3)-A(3)*B(2)
|
|
math_vectorproduct(2) = A(3)*B(1)-A(1)*B(3)
|
|
math_vectorproduct(3) = A(1)*B(2)-A(2)*B(1)
|
|
|
|
endfunction math_vectorproduct
|
|
|
|
|
|
!**************************************************************************
|
|
! tensor product a \otimes b
|
|
!**************************************************************************
|
|
pure function math_tensorproduct(A,B)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
real(pReal), dimension(3,3) :: math_tensorproduct
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct(i,j) = A(i)*B(j)
|
|
|
|
endfunction math_tensorproduct
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 3x3 = 1
|
|
!**************************************************************************
|
|
pure function math_mul3x3(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
real(pReal), dimension(3) :: C
|
|
real(pReal) :: math_mul3x3
|
|
|
|
forall (i=1_pInt:3_pInt) C(i) = A(i)*B(i)
|
|
math_mul3x3 = sum(C)
|
|
|
|
endfunction math_mul3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 6x6 = 1
|
|
!**************************************************************************
|
|
pure function math_mul6x6(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(6), intent(in) :: A,B
|
|
real(pReal), dimension(6) :: C
|
|
real(pReal) :: math_mul6x6
|
|
|
|
forall (i=1_pInt:6_pInt) C(i) = A(i)*B(i)
|
|
math_mul6x6 = sum(C)
|
|
|
|
endfunction math_mul6x6
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 33x33 = 1 (double contraction --> ij * ij)
|
|
!**************************************************************************
|
|
pure function math_mul33xx33(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i,j
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
real(pReal), dimension(3,3) :: C
|
|
real(pReal) :: math_mul33xx33
|
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
|
|
math_mul33xx33 = sum(C)
|
|
|
|
endfunction math_mul33xx33
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
|
!**************************************************************************
|
|
pure function math_mul3333xx33(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i,j
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
|
real(pReal), dimension(3,3), intent(in) :: B
|
|
real(pReal), dimension(3,3) :: math_mul3333xx33
|
|
|
|
do i = 1_pInt,3_pInt
|
|
do j = 1_pInt,3_pInt
|
|
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
|
enddo; enddo
|
|
|
|
endfunction math_mul3333xx33
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 33x33 = 3x3
|
|
!**************************************************************************
|
|
pure function math_mul33x33(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i,j
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
real(pReal), dimension(3,3) :: math_mul33x33
|
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_mul33x33(i,j) = &
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
|
|
|
endfunction math_mul33x33
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 66x66 = 6x6
|
|
!**************************************************************************
|
|
pure function math_mul66x66(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i,j
|
|
real(pReal), dimension(6,6), intent(in) :: A,B
|
|
real(pReal), dimension(6,6) :: math_mul66x66
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_mul66x66(i,j) = &
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
|
|
|
endfunction math_mul66x66
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 99x99 = 9x9
|
|
!**************************************************************************
|
|
pure function math_mul99x99(A,B)
|
|
|
|
use prec, only: pReal, pInt
|
|
implicit none
|
|
|
|
integer(pInt) i,j
|
|
real(pReal), dimension(9,9), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(9,9) :: math_mul99x99
|
|
|
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_mul99x99(i,j) = &
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
|
|
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
|
|
|
endfunction math_mul99x99
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 33x3 = 3
|
|
!**************************************************************************
|
|
pure function math_mul33x3(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(3,3), intent(in) :: A
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
real(pReal), dimension(3) :: math_mul33x3
|
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
|
|
|
endfunction math_mul33x3
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication complex(33) x real(3) = complex(3)
|
|
!**************************************************************************
|
|
pure function math_mul33x3_complex(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
complex(pReal), dimension(3,3), intent(in) :: A
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
complex(pReal), dimension(3) :: math_mul33x3_complex
|
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
|
|
|
endfunction math_mul33x3_complex
|
|
|
|
|
|
!**************************************************************************
|
|
! matrix multiplication 66x6 = 6
|
|
!**************************************************************************
|
|
pure function math_mul66x6(A,B)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(6,6), intent(in) :: A
|
|
real(pReal), dimension(6), intent(in) :: B
|
|
real(pReal), dimension(6) :: math_mul66x6
|
|
|
|
forall (i=1_pInt:6_pInt) math_mul66x6(i) = &
|
|
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
|
|
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
|
|
|
endfunction math_mul66x6
|
|
|
|
|
|
!**************************************************************************
|
|
! random quaternion
|
|
!**************************************************************************
|
|
function math_qRnd()
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4) :: math_qRnd
|
|
real(pReal), dimension(3) :: rnd
|
|
|
|
call halton(3,rnd)
|
|
math_qRnd(1) = cos(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
|
math_qRnd(2) = sin(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
math_qRnd(3) = cos(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
math_qRnd(4) = sin(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
|
|
|
endfunction math_qRnd
|
|
|
|
|
|
!**************************************************************************
|
|
! quaternion multiplication q1xq2 = q12
|
|
!**************************************************************************
|
|
pure function math_qMul(A,B)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
real(pReal), dimension(4) :: math_qMul
|
|
|
|
math_qMul(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4)
|
|
math_qMul(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3)
|
|
math_qMul(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2)
|
|
math_qMul(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1)
|
|
|
|
endfunction math_qMul
|
|
|
|
|
|
!**************************************************************************
|
|
! quaternion dotproduct
|
|
!**************************************************************************
|
|
pure function math_qDot(A,B)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
real(pReal) :: math_qDot
|
|
|
|
math_qDot = A(1)*B(1) + A(2)*B(2) + A(3)*B(3) + A(4)*B(4)
|
|
|
|
endfunction math_qDot
|
|
|
|
|
|
!**************************************************************************
|
|
! quaternion conjugation
|
|
!**************************************************************************
|
|
pure function math_qConj(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(4) :: math_qConj
|
|
|
|
math_qConj(1) = Q(1)
|
|
math_qConj(2:4) = -Q(2:4)
|
|
|
|
endfunction math_qConj
|
|
|
|
|
|
!**************************************************************************
|
|
! quaternion norm
|
|
!**************************************************************************
|
|
pure function math_qNorm(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal) :: math_qNorm
|
|
|
|
math_qNorm = sqrt(max(0.0_pReal, Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3) + Q(4)*Q(4)))
|
|
|
|
endfunction math_qNorm
|
|
|
|
|
|
!**************************************************************************
|
|
! quaternion inversion
|
|
!**************************************************************************
|
|
pure function math_qInv(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(4) :: math_qInv
|
|
real(pReal) :: squareNorm
|
|
|
|
math_qInv = 0.0_pReal
|
|
|
|
squareNorm = math_qDot(Q,Q)
|
|
if (squareNorm > tiny(squareNorm)) &
|
|
math_qInv = math_qConj(Q) / squareNorm
|
|
|
|
endfunction math_qInv
|
|
|
|
|
|
!**************************************************************************
|
|
! action of a quaternion on a vector (rotate vector v with Q)
|
|
!**************************************************************************
|
|
pure function math_qRot(Q,v)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(3), intent(in) :: v
|
|
real(pReal), dimension(3) :: math_qRot
|
|
real(pReal), dimension(4,4) :: T
|
|
integer(pInt) :: i, j
|
|
|
|
do i = 1_pInt,4_pInt
|
|
do j = 1_pInt,i
|
|
T(i,j) = Q(i) * Q(j)
|
|
enddo
|
|
enddo
|
|
|
|
math_qRot(1) = -v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1))
|
|
math_qRot(2) = v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1))
|
|
math_qRot(3) = v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))
|
|
|
|
math_qRot = 2.0_pReal * math_qRot + v
|
|
|
|
endfunction math_qRot
|
|
|
|
|
|
!**************************************************************************
|
|
! transposition of a 3x3 matrix
|
|
!**************************************************************************
|
|
pure function math_transpose3x3(A)
|
|
|
|
implicit none
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
real(pReal),dimension(3,3) :: math_transpose3x3
|
|
integer(pInt) :: i,j
|
|
|
|
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose3x3(i,j) = A(j,i)
|
|
|
|
endfunction math_transpose3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! Cramer inversion of 3x3 matrix (function)
|
|
!**************************************************************************
|
|
pure function math_inv3x3(A)
|
|
|
|
! direct Cramer inversion of matrix A.
|
|
! returns all zeroes if not possible, i.e. if det close to zero
|
|
|
|
implicit none
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
real(pReal) :: DetA
|
|
real(pReal),dimension(3,3) :: math_inv3x3
|
|
|
|
math_inv3x3 = 0.0_pReal
|
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
|
|
|
if (DetA > tiny(DetA)) then
|
|
math_inv3x3(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
math_inv3x3(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
math_inv3x3(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
|
|
|
math_inv3x3(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
math_inv3x3(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
math_inv3x3(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
|
|
|
math_inv3x3(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
math_inv3x3(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
math_inv3x3(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
|
endif
|
|
|
|
endfunction math_inv3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! Cramer inversion of 3x3 matrix (subroutine)
|
|
!**************************************************************************
|
|
PURE SUBROUTINE math_invert3x3(A, InvA, DetA, error)
|
|
|
|
! Bestimmung der Determinanten und Inversen einer 3x3-Matrix
|
|
! A = Matrix A
|
|
! InvA = Inverse of A
|
|
! DetA = Determinant of A
|
|
! error = logical
|
|
|
|
implicit none
|
|
|
|
logical, intent(out) :: error
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
real(pReal),dimension(3,3),intent(out) :: InvA
|
|
real(pReal), intent(out) :: DetA
|
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
|
|
|
if (DetA <= tiny(DetA)) then
|
|
error = .true.
|
|
else
|
|
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
InvA(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
|
|
|
InvA(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
InvA(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
|
|
|
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
InvA(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
|
|
|
error = .false.
|
|
endif
|
|
|
|
ENDSUBROUTINE math_invert3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! Gauss elimination to invert matrix of arbitrary dimension
|
|
!**************************************************************************
|
|
PURE SUBROUTINE math_invert(dimen,A, InvA, AnzNegEW, error)
|
|
|
|
! Invertieren einer dimen x dimen - Matrix
|
|
! A = Matrix A
|
|
! InvA = Inverse von A
|
|
! AnzNegEW = Anzahl der negativen Eigenwerte von A
|
|
! error = logical
|
|
! = false: Inversion wurde durchgefuehrt.
|
|
! = true: Die Inversion in SymGauss wurde wegen eines verschwindenen
|
|
! Pivotelement abgebrochen.
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
real(pReal), dimension(dimen,dimen), intent(in) :: A
|
|
real(pReal), dimension(dimen,dimen), intent(out) :: InvA
|
|
integer(pInt), intent(out) :: AnzNegEW
|
|
logical, intent(out) :: error
|
|
real(pReal) :: LogAbsDetA
|
|
real(pReal), dimension(dimen,dimen) :: B
|
|
|
|
InvA = math_identity2nd(dimen)
|
|
B = A
|
|
CALL Gauss(dimen,B,InvA,LogAbsDetA,AnzNegEW,error)
|
|
|
|
ENDSUBROUTINE math_invert
|
|
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
PURE SUBROUTINE Gauss (dimen,A,B,LogAbsDetA,NegHDK,error)
|
|
|
|
! Loesung eines linearen Gleichungsssystem A * X = B mit Hilfe des
|
|
! GAUSS-Algorithmus
|
|
! Zur numerischen Stabilisierung wird eine Zeilen- und Spaltenpivotsuche
|
|
! durchgefuehrt.
|
|
!
|
|
! Eingabeparameter:
|
|
! A(dimen,dimen) = Koeffizientenmatrix A
|
|
! B(dimen,dimen) = rechte Seiten B
|
|
!
|
|
! Ausgabeparameter:
|
|
! B(dimen,dimen) = Matrix der Unbekanntenvektoren X
|
|
! LogAbsDetA = 10-Logarithmus des Betrages der Determinanten von A
|
|
! NegHDK = Anzahl der negativen Hauptdiagonalkoeffizienten nach der
|
|
! Vorwaertszerlegung
|
|
! error = logical
|
|
! = false: Das Gleichungssystem wurde geloest.
|
|
! = true : Matrix A ist singulaer.
|
|
!
|
|
! A und B werden veraendert!
|
|
|
|
implicit none
|
|
|
|
logical, intent(out) :: error
|
|
integer(pInt), intent(in) :: dimen
|
|
integer(pInt), intent(out) :: NegHDK
|
|
real(pReal), intent(out) :: LogAbsDetA
|
|
real(pReal), intent(inout), dimension(dimen,dimen) :: A, B
|
|
logical :: SortX
|
|
integer(pInt) :: PivotZeile, PivotSpalte, StoreI, I, IP1, J, K, L
|
|
integer(pInt), dimension(dimen) :: XNr
|
|
real(pReal) :: AbsA, PivotWert, EpsAbs, Quote
|
|
real(pReal), dimension(dimen) :: StoreA, StoreB
|
|
|
|
error = .true.; NegHDK = 1_pInt; SortX = .false.
|
|
|
|
! Unbekanntennumerierung
|
|
|
|
DO I = 1_pInt, dimen
|
|
XNr(I) = I
|
|
ENDDO
|
|
|
|
! Genauigkeitsschranke und Bestimmung des groessten Pivotelementes
|
|
|
|
PivotWert = ABS(A(1,1))
|
|
PivotZeile = 1_pInt
|
|
PivotSpalte = 1_pInt
|
|
|
|
do I = 1_pInt, dimen; do J = 1_pInt, dimen
|
|
AbsA = ABS(A(I,J))
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
PivotWert = AbsA
|
|
PivotZeile = I
|
|
PivotSpalte = J
|
|
ENDIF
|
|
enddo; enddo
|
|
|
|
IF (PivotWert .LT. 0.0000001_pReal) RETURN ! Pivotelement = 0?
|
|
|
|
EpsAbs = PivotWert * 0.1_pReal ** PRECISION(1.0_pReal)
|
|
|
|
! V O R W A E R T S T R I A N G U L A T I O N
|
|
|
|
DO I = 1_pInt, dimen - 1_pInt
|
|
! Zeilentausch?
|
|
IF (PivotZeile .NE. I) THEN
|
|
StoreA(I:dimen) = A(I,I:dimen)
|
|
A(I,I:dimen) = A(PivotZeile,I:dimen)
|
|
A(PivotZeile,I:dimen) = StoreA(I:dimen)
|
|
StoreB(1:dimen) = B(I,1:dimen)
|
|
B(I,1:dimen) = B(PivotZeile,1:dimen)
|
|
B(PivotZeile,1:dimen) = StoreB(1:dimen)
|
|
SortX = .TRUE.
|
|
ENDIF
|
|
! Spaltentausch?
|
|
IF (PivotSpalte .NE. I) THEN
|
|
StoreA(1:dimen) = A(1:dimen,I)
|
|
A(1:dimen,I) = A(1:dimen,PivotSpalte)
|
|
A(1:dimen,PivotSpalte) = StoreA(1:dimen)
|
|
StoreI = XNr(I)
|
|
XNr(I) = XNr(PivotSpalte)
|
|
XNr(PivotSpalte) = StoreI
|
|
SortX = .TRUE.
|
|
ENDIF
|
|
! Triangulation
|
|
DO J = I + 1_pInt, dimen
|
|
Quote = A(J,I) / A(I,I)
|
|
DO K = I + 1_pInt, dimen
|
|
A(J,K) = A(J,K) - Quote * A(I,K)
|
|
ENDDO
|
|
DO K = 1_pInt, dimen
|
|
B(J,K) = B(J,K) - Quote * B(I,K)
|
|
ENDDO
|
|
ENDDO
|
|
! Bestimmung des groessten Pivotelementes
|
|
IP1 = I + 1_pInt
|
|
PivotWert = ABS(A(IP1,IP1))
|
|
PivotZeile = IP1
|
|
PivotSpalte = IP1
|
|
DO J = IP1, dimen
|
|
DO K = IP1, dimen
|
|
AbsA = ABS(A(J,K))
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
PivotWert = AbsA
|
|
PivotZeile = J
|
|
PivotSpalte = K
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
|
|
IF (PivotWert .LT. EpsAbs) RETURN ! Pivotelement = 0?
|
|
|
|
ENDDO
|
|
|
|
! R U E C K W A E R T S A U F L O E S U N G
|
|
|
|
DO I = dimen, 1_pInt, -1_pInt
|
|
DO L = 1_pInt, dimen
|
|
DO J = I + 1_pInt, dimen
|
|
B(I,L) = B(I,L) - A(I,J) * B(J,L)
|
|
ENDDO
|
|
B(I,L) = B(I,L) / A(I,I)
|
|
ENDDO
|
|
ENDDO
|
|
|
|
! Sortieren der Unbekanntenvektoren?
|
|
|
|
IF (SortX) THEN
|
|
DO L = 1_pInt, dimen
|
|
StoreA(1:dimen) = B(1:dimen,L)
|
|
DO I = 1_pInt, dimen
|
|
J = XNr(I)
|
|
B(J,L) = StoreA(I)
|
|
ENDDO
|
|
ENDDO
|
|
ENDIF
|
|
|
|
! Determinante
|
|
|
|
LogAbsDetA = 0.0_pReal
|
|
NegHDK = 0_pInt
|
|
|
|
DO I = 1_pInt, dimen
|
|
IF (A(I,I) .LT. 0.0_pReal) NegHDK = NegHDK + 1_pInt
|
|
AbsA = ABS(A(I,I))
|
|
LogAbsDetA = LogAbsDetA + LOG10(AbsA)
|
|
ENDDO
|
|
|
|
error = .false.
|
|
|
|
ENDSUBROUTINE Gauss
|
|
|
|
|
|
!********************************************************************
|
|
! symmetrize a 3x3 matrix
|
|
!********************************************************************
|
|
function math_symmetric3x3(m)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3) :: math_symmetric3x3
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetric3x3(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
|
|
|
endfunction math_symmetric3x3
|
|
|
|
|
|
!********************************************************************
|
|
! symmetrize a 6x6 matrix
|
|
!********************************************************************
|
|
pure function math_symmetric6x6(m)
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: i,j
|
|
real(pReal), dimension(6,6), intent(in) :: m
|
|
real(pReal), dimension(6,6) :: math_symmetric6x6
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_symmetric6x6(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
|
|
|
endfunction math_symmetric6x6
|
|
|
|
|
|
!********************************************************************
|
|
! equivalent scalar quantity of a full strain tensor
|
|
!********************************************************************
|
|
pure function math_equivStrain33(m)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
real(pReal) :: math_equivStrain33,e11,e22,e33,s12,s23,s31
|
|
|
|
e11 = (2.0_pReal*m(1,1)-m(2,2)-m(3,3))/3.0_pReal
|
|
e22 = (2.0_pReal*m(2,2)-m(3,3)-m(1,1))/3.0_pReal
|
|
e33 = (2.0_pReal*m(3,3)-m(1,1)-m(2,2))/3.0_pReal
|
|
s12 = 2.0_pReal*m(1,2)
|
|
s23 = 2.0_pReal*m(2,3)
|
|
s31 = 2.0_pReal*m(3,1)
|
|
|
|
math_equivStrain33 = 2.0_pReal*(1.50_pReal*(e11**2.0_pReal+e22**2.0_pReal+e33**2.0_pReal) + &
|
|
0.75_pReal*(s12**2.0_pReal+s23**2.0_pReal+s31**2.0_pReal))**(0.5_pReal)/3.0_pReal
|
|
|
|
endfunction math_equivStrain33
|
|
|
|
!********************************************************************
|
|
subroutine math_equivStrain33_field(res,tensor,vm)
|
|
!********************************************************************
|
|
!calculate von Mises equivalent of tensor field
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: tensor
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3)) :: vm
|
|
! other variables
|
|
integer(pInt) :: i, j, k
|
|
real(pReal), dimension(3,3) :: deviator, delta = 0.0_pReal
|
|
real(pReal) :: J_2
|
|
|
|
delta(1,1) = 1.0_pReal
|
|
delta(2,2) = 1.0_pReal
|
|
delta(3,3) = 1.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
deviator = tensor(i,j,k,1:3,1:3) - 1.0_pReal/3.0_pReal*tensor(i,j,k,1,1)*tensor(i,j,k,2,2)*tensor(i,j,k,3,3)*delta
|
|
J_2 = deviator(1,1)*deviator(2,2)&
|
|
+ deviator(2,2)*deviator(3,3)&
|
|
+ deviator(1,1)*deviator(3,3)&
|
|
- (deviator(1,2))**2.0_pReal&
|
|
- (deviator(2,3))**2.0_pReal&
|
|
- (deviator(1,3))**2.0_pReal
|
|
vm(i,j,k) = sqrt(3.0_pReal*J_2)
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine math_equivStrain33_field
|
|
|
|
|
|
!********************************************************************
|
|
! determinant of a 3x3 matrix
|
|
!********************************************************************
|
|
pure function math_det3x3(m)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
real(pReal) :: math_det3x3
|
|
|
|
math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
|
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
|
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
|
|
|
endfunction math_det3x3
|
|
|
|
|
|
!********************************************************************
|
|
! norm of a 3x3 matrix
|
|
!********************************************************************
|
|
pure function math_norm33(m)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
real(pReal) :: math_norm33
|
|
|
|
math_norm33 = sqrt(sum(m**2.0_pReal))
|
|
|
|
endfunction
|
|
|
|
|
|
!********************************************************************
|
|
! euclidic norm of a 3x1 vector
|
|
!********************************************************************
|
|
pure function math_norm3(v)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
|
real(pReal) :: math_norm3
|
|
|
|
math_norm3 = sqrt(v(1)*v(1) + v(2)*v(2) + v(3)*v(3))
|
|
|
|
endfunction math_norm3
|
|
|
|
|
|
!********************************************************************
|
|
! convert 3x3 matrix into vector 9x1
|
|
!********************************************************************
|
|
pure function math_Plain33to9(m33)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
|
real(pReal), dimension(9) :: math_Plain33to9
|
|
integer(pInt) :: i
|
|
|
|
forall (i=1_pInt:9_pInt) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
|
|
|
endfunction math_Plain33to9
|
|
|
|
|
|
!********************************************************************
|
|
! convert Plain 9x1 back to 3x3 matrix
|
|
!********************************************************************
|
|
pure function math_Plain9to33(v9)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(9), intent(in) :: v9
|
|
real(pReal), dimension(3,3) :: math_Plain9to33
|
|
integer(pInt) :: i
|
|
|
|
forall (i=1_pInt:9_pInt) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
|
|
|
endfunction math_Plain9to33
|
|
|
|
|
|
!********************************************************************
|
|
! convert symmetric 3x3 matrix into Mandel vector 6x1
|
|
!********************************************************************
|
|
pure function math_Mandel33to6(m33)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
|
real(pReal), dimension(6) :: math_Mandel33to6
|
|
integer(pInt) :: i
|
|
|
|
forall (i=1_pInt:6_pInt) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
|
|
|
|
endfunction math_Mandel33to6
|
|
|
|
|
|
!********************************************************************
|
|
! convert Mandel 6x1 back to symmetric 3x3 matrix
|
|
!********************************************************************
|
|
pure function math_Mandel6to33(v6)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(6), intent(in) :: v6
|
|
real(pReal), dimension(3,3) :: math_Mandel6to33
|
|
integer(pInt) :: i
|
|
|
|
forall (i=1_pInt:6_pInt)
|
|
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
|
|
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
|
|
end forall
|
|
|
|
endfunction math_Mandel6to33
|
|
|
|
|
|
!********************************************************************
|
|
! convert 3x3x3x3 tensor into plain matrix 9x9
|
|
!********************************************************************
|
|
pure function math_Plain3333to99(m3333)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
|
real(pReal), dimension(9,9) :: math_Plain3333to99
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain3333to99(i,j) = &
|
|
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
|
|
|
endfunction math_Plain3333to99
|
|
|
|
!********************************************************************
|
|
! plain matrix 9x9 into 3x3x3x3 tensor
|
|
!********************************************************************
|
|
pure function math_Plain99to3333(m99)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(9,9), intent(in) :: m99
|
|
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
|
|
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
|
|
|
endfunction math_Plain99to3333
|
|
|
|
|
|
!********************************************************************
|
|
! convert Mandel matrix 6x6 into Plain matrix 6x6
|
|
!********************************************************************
|
|
pure function math_Mandel66toPlain66(m66)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
real(pReal), dimension(6,6) :: math_Mandel66toPlain66
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
|
math_Mandel66toPlain66(i,j) = invnrmMandel(i) * invnrmMandel(j) * m66(i,j)
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
!********************************************************************
|
|
! convert Plain matrix 6x6 into Mandel matrix 6x6
|
|
!********************************************************************
|
|
pure function math_Plain66toMandel66(m66)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
real(pReal), dimension(6,6) :: math_Plain66toMandel66
|
|
integer(pInt) i,j
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
|
math_Plain66toMandel66(i,j) = nrmMandel(i) * nrmMandel(j) * m66(i,j)
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
!********************************************************************
|
|
! convert symmetric 3x3x3x3 tensor into Mandel matrix 6x6
|
|
!********************************************************************
|
|
pure function math_Mandel3333to66(m3333)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
|
real(pReal), dimension(6,6) :: math_Mandel3333to66
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_Mandel3333to66(i,j) = &
|
|
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
|
|
|
|
endfunction math_Mandel3333to66
|
|
|
|
|
|
!********************************************************************
|
|
! convert Mandel matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
!********************************************************************
|
|
pure function math_Mandel66to3333(m66)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
end forall
|
|
|
|
endfunction math_Mandel66to3333
|
|
|
|
|
|
!********************************************************************
|
|
! convert Voigt matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
!********************************************************************
|
|
pure function math_Voigt66to3333(m66)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
|
integer(pInt) :: i,j
|
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
end forall
|
|
|
|
endfunction math_Voigt66to3333
|
|
|
|
|
|
!********************************************************************
|
|
! Euler angles (in radians) from rotation matrix
|
|
!********************************************************************
|
|
pure function math_RtoEuler(R)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
|
real(pReal), dimension(3) :: math_RtoEuler
|
|
real(pReal) :: sqhkl, squvw, sqhk, val
|
|
|
|
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
|
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
|
sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
|
! calculate PHI
|
|
val=R(3,3)/sqhkl
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
math_RtoEuler(2) = acos(val)
|
|
|
|
if(math_RtoEuler(2) < 1.0e-8_pReal) then
|
|
! calculate phi2
|
|
math_RtoEuler(3) = 0.0_pReal
|
|
! calculate phi1
|
|
val=R(1,1)/squvw
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
math_RtoEuler(1) = acos(val)
|
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
else
|
|
! calculate phi2
|
|
val=R(2,3)/sqhk
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
math_RtoEuler(3) = acos(val)
|
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
|
! calculate phi1
|
|
val=-R(3,2)/sin(math_RtoEuler(2))
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
math_RtoEuler(1) = acos(val)
|
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
end if
|
|
|
|
endfunction math_RtoEuler
|
|
|
|
|
|
!********************************************************************
|
|
! quaternion (w+ix+jy+kz) from orientation matrix
|
|
!********************************************************************
|
|
! math adopted from http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
|
pure function math_RtoQuaternion(R)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
|
real(pReal), dimension(4) :: absQ, math_RtoQuaternion
|
|
real(pReal) :: max_absQ
|
|
integer(pInt), dimension(1) :: largest
|
|
|
|
absQ(1) = 1.0_pReal+R(1,1)+R(2,2)+R(3,3)
|
|
absQ(2) = 1.0_pReal+R(1,1)-R(2,2)-R(3,3)
|
|
absQ(3) = 1.0_pReal-R(1,1)+R(2,2)-R(3,3)
|
|
absQ(4) = 1.0_pReal-R(1,1)-R(2,2)+R(3,3)
|
|
math_RtoQuaternion = 0.0_pReal
|
|
|
|
largest = maxloc(absQ)
|
|
|
|
max_absQ=0.5_pReal * sqrt(absQ(largest(1)))
|
|
|
|
select case(largest(1))
|
|
case (1_pInt)
|
|
!1----------------------------------
|
|
math_RtoQuaternion(2) = R(2,3)-R(3,2)
|
|
math_RtoQuaternion(3) = R(3,1)-R(1,3)
|
|
math_RtoQuaternion(4) = R(1,2)-R(2,1)
|
|
|
|
case (2_pInt)
|
|
math_RtoQuaternion(1) = R(2,3)-R(3,2)
|
|
!2----------------------------------
|
|
math_RtoQuaternion(3) = R(1,2)+R(2,1)
|
|
math_RtoQuaternion(4) = R(3,1)+R(1,3)
|
|
|
|
case (3_pInt)
|
|
math_RtoQuaternion(1) = R(3,1)-R(1,3)
|
|
math_RtoQuaternion(2) = R(1,2)+R(2,1)
|
|
!3----------------------------------
|
|
math_RtoQuaternion(4) = R(2,3)+R(3,2)
|
|
|
|
case (4_pInt)
|
|
math_RtoQuaternion (1) = R(1,2)-R(2,1)
|
|
math_RtoQuaternion (2) = R(3,1)+R(1,3)
|
|
math_RtoQuaternion (3) = R(3,2)+R(2,3)
|
|
!4----------------------------------
|
|
end select
|
|
|
|
math_RtoQuaternion = math_RtoQuaternion*0.25_pReal/max_absQ
|
|
math_RtoQuaternion(largest(1)) = max_absQ
|
|
|
|
endfunction math_RtoQuaternion
|
|
|
|
|
|
!****************************************************************
|
|
! rotation matrix from Euler angles (in radians)
|
|
!****************************************************************
|
|
pure function math_EulerToR(Euler)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
real(pReal), dimension(3,3) :: math_EulerToR
|
|
real(pReal) c1, c, c2, s1, s, s2
|
|
|
|
C1 = cos(Euler(1))
|
|
C = cos(Euler(2))
|
|
C2 = cos(Euler(3))
|
|
S1 = sin(Euler(1))
|
|
S = sin(Euler(2))
|
|
S2 = sin(Euler(3))
|
|
|
|
math_EulerToR(1,1)=C1*C2-S1*S2*C
|
|
math_EulerToR(1,2)=S1*C2+C1*S2*C
|
|
math_EulerToR(1,3)=S2*S
|
|
math_EulerToR(2,1)=-C1*S2-S1*C2*C
|
|
math_EulerToR(2,2)=-S1*S2+C1*C2*C
|
|
math_EulerToR(2,3)=C2*S
|
|
math_EulerToR(3,1)=S1*S
|
|
math_EulerToR(3,2)=-C1*S
|
|
math_EulerToR(3,3)=C
|
|
|
|
endfunction math_EulerToR
|
|
|
|
|
|
!********************************************************************
|
|
! quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
|
|
!********************************************************************
|
|
pure function math_EulerToQuaternion(eulerangles)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: eulerangles
|
|
real(pReal), dimension(4) :: math_EulerToQuaternion
|
|
real(pReal), dimension(3) :: halfangles
|
|
real(pReal) :: c, s
|
|
|
|
halfangles = 0.5_pReal * eulerangles
|
|
|
|
c = cos(halfangles(2))
|
|
s = sin(halfangles(2))
|
|
|
|
math_EulerToQuaternion(1) = cos(halfangles(1)+halfangles(3)) * c
|
|
math_EulerToQuaternion(2) = cos(halfangles(1)-halfangles(3)) * s
|
|
math_EulerToQuaternion(3) = sin(halfangles(1)-halfangles(3)) * s
|
|
math_EulerToQuaternion(4) = sin(halfangles(1)+halfangles(3)) * c
|
|
|
|
endfunction math_EulerToQuaternion
|
|
|
|
|
|
!****************************************************************
|
|
! rotation matrix from axis and angle (in radians)
|
|
!****************************************************************
|
|
pure function math_AxisAngleToR(axis,omega)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
real(pReal), intent(in) :: omega
|
|
real(pReal), dimension(3) :: axisNrm
|
|
real(pReal), dimension(3,3) :: math_AxisAngleToR
|
|
real(pReal) :: norm,s,c,c1
|
|
integer(pInt) :: i
|
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
|
|
|
s = sin(omega)
|
|
c = cos(omega)
|
|
c1 = 1.0_pReal - c
|
|
|
|
! formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
|
! below is transposed form to get passive rotation
|
|
|
|
math_AxisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
|
|
math_AxisAngleToR(2,1) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
|
math_AxisAngleToR(3,1) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
|
|
|
math_AxisAngleToR(1,2) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
|
math_AxisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
|
|
math_AxisAngleToR(3,2) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
|
|
|
math_AxisAngleToR(1,3) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
|
math_AxisAngleToR(2,3) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
|
math_AxisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
|
|
else
|
|
math_AxisAngleToR = math_I3
|
|
endif
|
|
|
|
|
|
endfunction math_AxisAngleToR
|
|
|
|
|
|
!****************************************************************
|
|
! quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
|
!****************************************************************
|
|
pure function math_AxisAngleToQuaternion(axis,omega)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
real(pReal), intent(in) :: omega
|
|
real(pReal), dimension(3) :: axisNrm
|
|
real(pReal), dimension(4) :: math_AxisAngleToQuaternion
|
|
real(pReal) :: s,c,norm
|
|
integer(pInt) :: i
|
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
|
! formula taken from http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
|
s = sin(omega/2.0_pReal)
|
|
c = cos(omega/2.0_pReal)
|
|
math_AxisAngleToQuaternion(1) = c
|
|
math_AxisAngleToQuaternion(2:4) = s * axisNrm(1:3)
|
|
else
|
|
math_AxisAngleToQuaternion = (/1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal/) ! no rotation
|
|
endif
|
|
|
|
endfunction math_AxisAngleToQuaternion
|
|
|
|
|
|
!********************************************************************
|
|
! orientation matrix from quaternion (w+ix+jy+kz)
|
|
!********************************************************************
|
|
pure function math_QuaternionToR(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(3,3) :: math_QuaternionToR, T,S
|
|
integer(pInt) :: i, j
|
|
|
|
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
|
T(i,j) = Q(i+1_pInt) * Q(j+1_pInt)
|
|
S = reshape( (/0.0_pReal, Q(4), -Q(3), &
|
|
-Q(4),0.0_pReal, +Q(2), &
|
|
Q(3), -Q(2),0.0_pReal/),(/3,3/)) ! notation is transposed!
|
|
|
|
math_QuaternionToR = (2.0_pReal * Q(1)*Q(1) - 1.0_pReal) * math_I3 + &
|
|
2.0_pReal * T - &
|
|
2.0_pReal * Q(1) * S
|
|
|
|
endfunction math_QuaternionToR
|
|
|
|
|
|
!********************************************************************
|
|
! 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
|
!********************************************************************
|
|
pure function math_QuaternionToEuler(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(3) :: math_QuaternionToEuler
|
|
real(pReal) :: acos_arg
|
|
|
|
math_QuaternionToEuler(2) = acos(1.0_pReal-2.0_pReal*(Q(2)*Q(2)+Q(3)*Q(3)))
|
|
|
|
if (abs(math_QuaternionToEuler(2)) < 1.0e-3_pReal) then
|
|
acos_arg=Q(1)
|
|
if(acos_arg > 1.0_pReal)acos_arg = 1.0_pReal
|
|
if(acos_arg < -1.0_pReal)acos_arg = -1.0_pReal
|
|
math_QuaternionToEuler(1) = 2.0_pReal*acos(acos_arg)
|
|
math_QuaternionToEuler(3) = 0.0_pReal
|
|
else
|
|
math_QuaternionToEuler(1) = atan2(Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)-Q(3)*Q(4))
|
|
if (math_QuaternionToEuler(1) < 0.0_pReal) &
|
|
math_QuaternionToEuler(1) = math_QuaternionToEuler(1) + 2.0_pReal * pi
|
|
|
|
math_QuaternionToEuler(3) = atan2(-Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)+Q(3)*Q(4))
|
|
if (math_QuaternionToEuler(3) < 0.0_pReal) &
|
|
math_QuaternionToEuler(3) = math_QuaternionToEuler(3) + 2.0_pReal * pi
|
|
endif
|
|
|
|
if (math_QuaternionToEuler(2) < 0.0_pReal) &
|
|
math_QuaternionToEuler(2) = math_QuaternionToEuler(2) + pi
|
|
|
|
endfunction math_QuaternionToEuler
|
|
|
|
|
|
!********************************************************************
|
|
! axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
|
!********************************************************************
|
|
pure function math_QuaternionToAxisAngle(Q)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal) :: halfAngle, sinHalfAngle
|
|
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
|
|
|
halfAngle = acos(max(-1.0_pReal, min(1.0_pReal, Q(1)))) ! limit to [-1,1] --> 0 to 180 deg
|
|
sinHalfAngle = sin(halfAngle)
|
|
|
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
|
math_QuaternionToAxisAngle = 0.0_pReal
|
|
else
|
|
math_QuaternionToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
|
math_QuaternionToAxisAngle(4) = halfAngle*2.0_pReal
|
|
endif
|
|
|
|
endfunction math_QuaternionToAxisAngle
|
|
|
|
|
|
!********************************************************************
|
|
! Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
|
!********************************************************************
|
|
pure function math_QuaternionToRodrig(Q)
|
|
|
|
use prec, only: DAMASK_NaN
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
real(pReal), dimension(3) :: math_QuaternionToRodrig
|
|
|
|
if (Q(1) /= 0.0_pReal) then ! unless rotation by 180 deg
|
|
math_QuaternionToRodrig = Q(2:4)/Q(1)
|
|
else
|
|
math_QuaternionToRodrig = DAMASK_NaN ! NaN since Rodrig is unbound for 180 deg...
|
|
endif
|
|
|
|
endfunction math_QuaternionToRodrig
|
|
|
|
|
|
!**************************************************************************
|
|
! misorientation angle between two sets of Euler angles
|
|
!**************************************************************************
|
|
pure function math_EulerMisorientation(EulerA,EulerB)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
|
|
real(pReal), dimension(3,3) :: r
|
|
real(pReal) :: math_EulerMisorientation, tr
|
|
|
|
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
|
|
|
tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal
|
|
math_EulerMisorientation = abs(0.5_pReal*pi-asin(tr))
|
|
|
|
endfunction math_EulerMisorientation
|
|
|
|
|
|
!**************************************************************************
|
|
! figures whether unit quat falls into stereographic standard triangle
|
|
!**************************************************************************
|
|
pure function math_QuaternionInSST(Q, symmetryType)
|
|
|
|
implicit none
|
|
|
|
!*** input variables
|
|
real(pReal), dimension(4), intent(in) :: Q ! orientation
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
!*** output variables
|
|
logical :: math_QuaternionInSST
|
|
|
|
!*** local variables
|
|
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
|
|
|
|
Rodrig = math_QuaternionToRodrig(Q)
|
|
select case (symmetryType)
|
|
case (1_pInt)
|
|
math_QuaternionInSST = Rodrig(1) > Rodrig(2) .and. &
|
|
Rodrig(2) > Rodrig(3) .and. &
|
|
Rodrig(3) > 0.0_pReal
|
|
case (2_pInt)
|
|
math_QuaternionInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
|
|
Rodrig(2) > 0.0_pReal .and. &
|
|
Rodrig(3) > 0.0_pReal
|
|
case default
|
|
math_QuaternionInSST = .true.
|
|
end select
|
|
|
|
endfunction math_QuaternionInSST
|
|
|
|
|
|
!**************************************************************************
|
|
! calculates the disorientation for 2 unit quaternions
|
|
!**************************************************************************
|
|
function math_QuaternionDisorientation(Q1, Q2, symmetryType)
|
|
|
|
use IO, only: IO_error
|
|
implicit none
|
|
|
|
!*** input variables
|
|
real(pReal), dimension(4), intent(in) :: Q1, & ! 1st orientation
|
|
Q2 ! 2nd orientation
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
!*** output variables
|
|
real(pReal), dimension(4) :: math_QuaternionDisorientation ! disorientation
|
|
|
|
!*** local variables
|
|
real(pReal), dimension(4) :: dQ,dQsymA,mis
|
|
integer(pInt) :: i,j,k,s
|
|
|
|
dQ = math_qMul(math_qConj(Q1),Q2)
|
|
math_QuaternionDisorientation = dQ
|
|
|
|
select case (symmetryType)
|
|
case (0_pInt)
|
|
if (math_QuaternionDisorientation(1) < 0.0_pReal) &
|
|
math_QuaternionDisorientation = -math_QuaternionDisorientation ! keep omega within 0 to 180 deg
|
|
|
|
case (1_pInt,2_pInt)
|
|
s = sum(math_NsymOperations(1:symmetryType-1_pInt))
|
|
do i = 1_pInt,2_pInt
|
|
dQ = math_qConj(dQ) ! switch order of "from -- to"
|
|
do j = 1_pInt,math_NsymOperations(symmetryType) ! run through first crystal's symmetries
|
|
dQsymA = math_qMul(math_symOperations(1:4,s+j),dQ) ! apply sym
|
|
do k = 1_pInt,math_NsymOperations(symmetryType) ! run through 2nd crystal's symmetries
|
|
mis = math_qMul(dQsymA,math_symOperations(1:4,s+k)) ! apply sym
|
|
if (mis(1) < 0.0_pReal) & ! want positive angle
|
|
mis = -mis
|
|
if (mis(1)-math_QuaternionDisorientation(1) > -1e-8_pReal .and. &
|
|
math_QuaternionInSST(mis,symmetryType)) &
|
|
math_QuaternionDisorientation = mis ! found better one
|
|
enddo; enddo; enddo
|
|
|
|
case default
|
|
call IO_error(550_pInt,symmetryType) ! complain about unknown symmetry
|
|
end select
|
|
|
|
endfunction math_QuaternionDisorientation
|
|
|
|
|
|
!********************************************************************
|
|
! draw a random sample from Euler space
|
|
!********************************************************************
|
|
function math_sampleRandomOri()
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
|
|
|
call halton(3_pInt,rnd)
|
|
math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi
|
|
math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal)
|
|
math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi
|
|
|
|
endfunction math_sampleRandomOri
|
|
|
|
|
|
!********************************************************************
|
|
! draw a random sample from Gauss component
|
|
! with noise (in radians) half-width
|
|
!********************************************************************
|
|
function math_sampleGaussOri(center,noise)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3) :: math_sampleGaussOri, center, disturb
|
|
real(pReal), dimension(3), parameter :: origin = (/0.0_pReal,0.0_pReal,0.0_pReal/)
|
|
real(pReal), dimension(5) :: rnd
|
|
real(pReal) :: noise,scatter,cosScatter
|
|
integer(pInt) i
|
|
|
|
if (noise==0.0_pReal) then
|
|
math_sampleGaussOri = center
|
|
return
|
|
endif
|
|
|
|
! Helming uses different distribution with Bessel functions
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
scatter = 0.95_pReal * noise
|
|
cosScatter = cos(scatter)
|
|
|
|
do
|
|
call halton(5_pInt,rnd)
|
|
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
|
disturb(1) = scatter * rnd(1) ! phi1
|
|
disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi
|
|
disturb(3) = scatter * rnd(2) ! phi2
|
|
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(origin,disturb)/scatter)**2_pReal)) exit
|
|
enddo
|
|
|
|
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center)))
|
|
|
|
endfunction math_sampleGaussOri
|
|
|
|
|
|
!********************************************************************
|
|
! draw a random sample from Fiber component
|
|
! with noise (in radians)
|
|
!********************************************************************
|
|
function math_sampleFiberOri(alpha,beta,noise)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis
|
|
real(pReal), dimension(2) :: alpha,beta, rnd
|
|
real(pReal), dimension(3,3) :: oRot,fRot,pRot
|
|
real(pReal) :: noise, scatter, cos2Scatter, angle
|
|
integer(pInt), dimension(2,3), parameter :: rotMap = reshape((/2_pInt,3_pInt,&
|
|
3_pInt,1_pInt,&
|
|
1_pInt,2_pInt/),(/2,3/))
|
|
integer(pInt) :: i
|
|
|
|
! Helming uses different distribution with Bessel functions
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
scatter = 0.95_pReal * noise
|
|
cos2Scatter = cos(2.0_pReal*scatter)
|
|
|
|
! fiber axis in crystal coordinate system
|
|
fiberInC(1)=sin(alpha(1))*cos(alpha(2))
|
|
fiberInC(2)=sin(alpha(1))*sin(alpha(2))
|
|
fiberInC(3)=cos(alpha(1))
|
|
! fiber axis in sample coordinate system
|
|
fiberInS(1)=sin(beta(1))*cos(beta(2))
|
|
fiberInS(2)=sin(beta(1))*sin(beta(2))
|
|
fiberInS(3)=cos(beta(1))
|
|
|
|
! ---# rotation matrix from sample to crystal system #---
|
|
angle = -acos(dot_product(fiberInC,fiberInS))
|
|
if(angle /= 0.0_pReal) then
|
|
! rotation axis between sample and crystal system (cross product)
|
|
forall(i=1:3) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i))
|
|
oRot = math_AxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
|
else
|
|
oRot = math_I3
|
|
end if
|
|
|
|
! ---# rotation matrix about fiber axis (random angle) #---
|
|
call halton(1_pInt,rnd)
|
|
fRot = math_AxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
|
|
|
! ---# rotation about random axis perpend to fiber #---
|
|
! random axis pependicular to fiber axis
|
|
call halton(2_pInt,axis)
|
|
if (fiberInS(3) /= 0.0_pReal) then
|
|
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3)
|
|
else if(fiberInS(2) /= 0.0_pReal) then
|
|
axis(3)=axis(2)
|
|
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2)
|
|
else if(fiberInS(1) /= 0.0_pReal) then
|
|
axis(3)=axis(1)
|
|
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1)
|
|
end if
|
|
|
|
! scattered rotation angle
|
|
do
|
|
call halton(2_pInt,rnd)
|
|
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(1))
|
|
if (rnd(2) <= exp(-1.0_pReal*(angle/scatter)**2.0_pReal)) exit
|
|
enddo
|
|
call halton(1_pInt,rnd)
|
|
if (rnd(1) <= 0.5) angle = -angle
|
|
pRot = math_AxisAngleToR(axis,angle)
|
|
|
|
! ---# apply the three rotations #---
|
|
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
|
|
|
|
endfunction math_sampleFiberOri
|
|
|
|
|
|
!********************************************************************
|
|
! symmetric Euler angles for given symmetry string
|
|
! 'triclinic' or '', 'monoclinic', 'orthotropic'
|
|
!********************************************************************
|
|
pure function math_symmetricEulers(sym,Euler)
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: sym
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
real(pReal), dimension(3,3) :: math_symmetricEulers
|
|
integer(pInt) :: i,j
|
|
|
|
math_symmetricEulers(1,1) = pi+Euler(1)
|
|
math_symmetricEulers(2,1) = Euler(2)
|
|
math_symmetricEulers(3,1) = Euler(3)
|
|
|
|
math_symmetricEulers(1,2) = pi-Euler(1)
|
|
math_symmetricEulers(2,2) = pi-Euler(2)
|
|
math_symmetricEulers(3,2) = pi+Euler(3)
|
|
|
|
math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1)
|
|
math_symmetricEulers(2,3) = pi-Euler(2)
|
|
math_symmetricEulers(3,3) = pi+Euler(3)
|
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
|
|
|
select case (sym)
|
|
case (4_pInt) ! all done
|
|
|
|
case (2_pInt) ! return only first
|
|
math_symmetricEulers(1:3,2:3) = 0.0_pReal
|
|
|
|
case default ! return blank
|
|
math_symmetricEulers = 0.0_pReal
|
|
end select
|
|
|
|
endfunction math_symmetricEulers
|
|
|
|
|
|
!********************************************************************
|
|
! draw a random sample from Gauss variable
|
|
!********************************************************************
|
|
function math_sampleGaussVar(meanvalue, stddev, width)
|
|
|
|
implicit none
|
|
|
|
!*** input variables
|
|
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
|
stddev ! standard deviation of gauss distribution
|
|
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
|
|
|
|
!*** output variables
|
|
real(pReal) :: math_sampleGaussVar
|
|
|
|
!*** local variables
|
|
real(pReal), dimension(2) :: rnd ! random numbers
|
|
real(pReal) :: scatter, & ! normalized scatter around meanvalue
|
|
myWidth
|
|
|
|
if (stddev == 0.0_pReal) then
|
|
math_sampleGaussVar = meanvalue
|
|
return
|
|
endif
|
|
|
|
if (present(width)) then
|
|
myWidth = width
|
|
else
|
|
myWidth = 3.0_pReal ! use +-3*sigma as default value for scatter
|
|
endif
|
|
|
|
do
|
|
call halton(2_pInt, rnd)
|
|
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
|
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) & ! test if scattered value is drawn
|
|
exit
|
|
enddo
|
|
|
|
math_sampleGaussVar = scatter * stddev
|
|
|
|
endfunction math_sampleGaussVar
|
|
|
|
|
|
!****************************************************************
|
|
subroutine math_spectralDecompositionSym3x3(M,values,vectors,error)
|
|
!****************************************************************
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
real(pReal), dimension(3), intent(out) :: values
|
|
real(pReal), dimension(3,3), intent(out) :: vectors
|
|
logical, intent(out) :: error
|
|
|
|
integer(pInt) :: info
|
|
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
|
|
|
vectors = M ! copy matrix to input (doubles as output) array
|
|
call DSYEV('V','U',3,vectors,3,values,work,(64+2)*3,info)
|
|
error = (info == 0_pInt)
|
|
|
|
return
|
|
end subroutine
|
|
|
|
|
|
!****************************************************************
|
|
pure subroutine math_pDecomposition(FE,U,R,error)
|
|
!-----FE = R.U
|
|
!****************************************************************
|
|
implicit none
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: FE
|
|
real(pReal), intent(out), dimension(3,3) :: R, U
|
|
logical, intent(out) :: error
|
|
real(pReal), dimension(3,3) :: CE, EB1, EB2, EB3, UI
|
|
real(pReal) :: EW1, EW2, EW3, det
|
|
|
|
error = .false.
|
|
ce = math_mul33x33(math_transpose3x3(FE),FE)
|
|
|
|
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
|
U=sqrt(EW1)*EB1+sqrt(EW2)*EB2+sqrt(EW3)*EB3
|
|
call math_invert3x3(U,UI,det,error)
|
|
if (.not. error) R = math_mul33x33(FE,UI)
|
|
|
|
ENDSUBROUTINE math_pDecomposition
|
|
|
|
|
|
!**********************************************************************
|
|
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
|
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
real(pReal), dimension(3,3), intent(out) :: EB1, EB2, EB3
|
|
real(pReal), intent(out) :: EW1,EW2,EW3
|
|
real(pReal) HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, D1, D2, D3
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
real(pReal), dimension(3,3) :: M1, M2, M3
|
|
real(pReal) C1,C2,C3,arg
|
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
R=-HI1M
|
|
S= HI2M
|
|
T=-HI3M
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
EB1=0.0_pReal
|
|
EB2=0.0_pReal
|
|
EB3=0.0_pReal
|
|
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
|
! DREI GLEICHE EIGENWERTE
|
|
EW1=HI1M/3.0_pReal
|
|
EW2=EW1
|
|
EW3=EW1
|
|
! this is not really correct, but this way U is calculated
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
EB1(1,1)=1.0_pReal
|
|
EB2(2,2)=1.0_pReal
|
|
EB3(3,3)=1.0_pReal
|
|
ELSE
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
arg=-Q/RHO/2.0_pReal
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
|
PHI=acos(arg)
|
|
Y1=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
Y2=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
Y3=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
|
EW1=Y1-R/3.0_pReal
|
|
EW2=Y2-R/3.0_pReal
|
|
EW3=Y3-R/3.0_pReal
|
|
C1=ABS(EW1-EW2)
|
|
C2=ABS(EW2-EW3)
|
|
C3=ABS(EW3-EW1)
|
|
|
|
IF(C1.LT.TOL) THEN
|
|
! EW1 is equal to EW2
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
|
M1=M-EW1*math_I3
|
|
M2=M-EW2*math_I3
|
|
EB3=math_mul33x33(M1,M2)*D3
|
|
|
|
EB1=math_I3-EB3
|
|
! both EB2 and EW2 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW2=0.0_pReal
|
|
ELSE IF(C2.LT.TOL) THEN
|
|
! EW2 is equal to EW3
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
M2=M-math_I3*EW2
|
|
M3=M-math_I3*EW3
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
EB2=math_I3-EB1
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW3=0.0_pReal
|
|
ELSE IF(C3.LT.TOL) THEN
|
|
! EW1 is equal to EW3
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
M1=M-math_I3*EW1
|
|
M3=M-math_I3*EW3
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
EB1=math_I3-EB2
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW3=0.0_pReal
|
|
ELSE
|
|
! all three eigenvectors are different
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
|
M1=M-EW1*math_I3
|
|
M2=M-EW2*math_I3
|
|
M3=M-EW3*math_I3
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
EB3=math_mul33x33(M1,M2)*D3
|
|
|
|
END IF
|
|
END IF
|
|
|
|
ENDSUBROUTINE math_spectral1
|
|
|
|
|
|
!**********************************************************************
|
|
function math_eigenvalues3x3(M)
|
|
!**** Eigenvalues of symmetric 3X3 matrix M
|
|
|
|
implicit none
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: M
|
|
real(pReal), dimension(3,3) :: EB1 = 0.0_pReal, EB2 = 0.0_pReal, EB3 = 0.0_pReal
|
|
real(pReal), dimension(3) :: math_eigenvalues3x3
|
|
real(pReal) :: HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, arg
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
R=-HI1M
|
|
S= HI2M
|
|
T=-HI3M
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
|
|
if((abs(P) < TOL) .and. (abs(Q) < TOL)) THEN
|
|
! three equivalent eigenvalues
|
|
math_eigenvalues3x3(1) = HI1M/3.0_pReal
|
|
math_eigenvalues3x3(2)=math_eigenvalues3x3(1)
|
|
math_eigenvalues3x3(3)=math_eigenvalues3x3(1)
|
|
! this is not really correct, but this way U is calculated
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
EB1(1,1)=1.0_pReal
|
|
EB2(2,2)=1.0_pReal
|
|
EB3(3,3)=1.0_pReal
|
|
else
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
arg=-Q/RHO/2.0_pReal
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
|
PHI=acos(arg)
|
|
Y1=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
Y2=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
Y3=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
|
math_eigenvalues3x3(1) = Y1-R/3.0_pReal
|
|
math_eigenvalues3x3(2) = Y2-R/3.0_pReal
|
|
math_eigenvalues3x3(3) = Y3-R/3.0_pReal
|
|
endif
|
|
endfunction math_eigenvalues3x3
|
|
|
|
|
|
!**********************************************************************
|
|
!**** HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
|
|
|
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
implicit none
|
|
|
|
real(pReal), intent(in) :: M(3,3)
|
|
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
|
|
|
HI1M=M(1,1)+M(2,2)+M(3,3)
|
|
HI2M=HI1M**2.0_pReal/2.0_pReal- (M(1,1)**2.0_pReal+M(2,2)**2.0_pReal+M(3,3)**2.0_pReal)&
|
|
/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
|
HI3M=math_det3x3(M)
|
|
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
|
|
|
ENDSUBROUTINE math_hi
|
|
|
|
|
|
!*******************************************************************************
|
|
! GET_SEED returns a seed for the random number generator.
|
|
!
|
|
! The seed depends on the current time, and ought to be (slightly)
|
|
! different every millisecond. Once the seed is obtained, a random
|
|
! number generator should be called a few times to further process
|
|
! the seed.
|
|
!
|
|
! Parameters:
|
|
! Output, integer SEED, a pseudorandom seed value.
|
|
!
|
|
! Modified: 27 June 2000
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
!
|
|
SUBROUTINE get_seed(seed)
|
|
implicit none
|
|
|
|
integer(pInt) :: seed
|
|
real(pReal) :: temp = 0.0_pReal
|
|
character(len = 10) :: time
|
|
character(len = 8) :: today
|
|
integer(pInt) :: values(8)
|
|
character(len = 5) :: zone
|
|
|
|
call date_and_time (today, time, zone, values)
|
|
|
|
temp = temp + real(values(2)- 1_pInt, pReal) / 11.0_pReal
|
|
temp = temp + real(values(3)- 1_pInt, pReal) / 30.0_pReal
|
|
temp = temp + real(values(5), pReal) / 23.0_pReal
|
|
temp = temp + real(values(6), pReal) / 59.0_pReal
|
|
temp = temp + real(values(7), pReal) / 59.0_pReal
|
|
temp = temp + real(values(8), pReal) / 999.0_pReal
|
|
temp = temp / 6.0_pReal
|
|
|
|
if (temp <= 0.0_pReal) then
|
|
temp = 1.0_pReal / 3.0_pReal
|
|
else if (1.0_pReal <= temp) then
|
|
temp = 2.0_pReal / 3.0_pReal
|
|
end if
|
|
|
|
seed = int(real(huge(1_pInt),pReal)*temp, pInt)
|
|
!
|
|
! Never use a seed of 0 or maximum integer.
|
|
!
|
|
if (seed == 0_pInt) then
|
|
seed = 1_pInt
|
|
end if
|
|
|
|
if (seed == huge(1_pInt)) then
|
|
seed = seed -1_pInt
|
|
end if
|
|
|
|
ENDSUBROUTINE get_seed
|
|
|
|
|
|
!*******************************************************************************
|
|
! HALTON computes the next element in the Halton sequence.
|
|
!
|
|
! Parameters:
|
|
! Input, integer NDIM, the dimension of the element.
|
|
! Output, real R(NDIM), the next element of the current Halton sequence.
|
|
!
|
|
! Modified: 09 March 2003
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
!
|
|
subroutine halton(ndim, r)
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ndim
|
|
real(pReal), intent(out), dimension(ndim) :: r
|
|
integer(pInt), dimension(ndim) :: base
|
|
integer(pInt) :: seed
|
|
integer(pInt), dimension(1) :: value_halton
|
|
|
|
call halton_memory ('GET', 'SEED', 1_pInt, value_halton)
|
|
seed = value_halton(1)
|
|
|
|
call halton_memory ('GET', 'BASE', ndim, base)
|
|
|
|
call i_to_halton (seed, base, ndim, r)
|
|
|
|
value_halton(1) = 1_pInt
|
|
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
|
|
|
ENDSUBROUTINE halton
|
|
|
|
|
|
!*******************************************************************************
|
|
! HALTON_MEMORY sets or returns quantities associated with the Halton sequence.
|
|
!
|
|
! Parameters:
|
|
! Input, character (len = *) action_halton, the desired action.
|
|
! 'GET' means get the value of a particular quantity.
|
|
! 'SET' means set the value of a particular quantity.
|
|
! 'INC' means increment the value of a particular quantity.
|
|
! (Only the SEED can be incremented.)
|
|
!
|
|
! Input, character (len = *) name_halton, the name of the quantity.
|
|
! 'BASE' means the Halton base or bases.
|
|
! 'NDIM' means the spatial dimension.
|
|
! 'SEED' means the current Halton seed.
|
|
!
|
|
! Input/output, integer NDIM, the dimension of the quantity.
|
|
! If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
|
|
! is the number of entries in value_halton to be put into BASE.
|
|
!
|
|
! Input/output, integer value_halton(NDIM), contains a value.
|
|
! If action_halton is 'SET', then on input, value_halton contains values to be assigned
|
|
! to the internal variable.
|
|
! If action_halton is 'GET', then on output, value_halton contains the values of
|
|
! the specified internal variable.
|
|
! If action_halton is 'INC', then on input, value_halton contains the increment to
|
|
! be added to the specified internal variable.
|
|
!
|
|
! Modified: 09 March 2003
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
|
|
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
|
implicit none
|
|
|
|
character(len = *), intent(in) :: action_halton, name_halton
|
|
integer(pInt), dimension(*), intent(inout) :: value_halton
|
|
integer(pInt), allocatable, save, dimension(:) :: base
|
|
logical, save :: first_call = .true.
|
|
integer(pInt), intent(in) :: ndim
|
|
integer(pInt):: i
|
|
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
|
|
|
|
|
if (first_call) then
|
|
ndim_save = 1_pInt
|
|
allocate(base(ndim_save))
|
|
base(1) = 2_pInt
|
|
first_call = .false.
|
|
endif
|
|
!
|
|
! Set
|
|
!
|
|
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
|
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
|
|
|
if(ndim_save /= ndim) then
|
|
deallocate(base)
|
|
ndim_save = ndim
|
|
allocate(base(ndim_save))
|
|
endif
|
|
|
|
base(1:ndim) = value_halton(1:ndim)
|
|
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
|
|
|
if(ndim_save /= value_halton(1)) then
|
|
deallocate(base)
|
|
ndim_save = value_halton(1)
|
|
allocate(base(ndim_save))
|
|
do i = 1_pInt, ndim_save
|
|
base(i) = prime (i)
|
|
enddo
|
|
else
|
|
ndim_save = value_halton(1)
|
|
endif
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
seed = value_halton(1)
|
|
endif
|
|
!
|
|
! Get
|
|
!
|
|
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
|
if(ndim /= ndim_save) then
|
|
deallocate(base)
|
|
ndim_save = ndim
|
|
allocate(base(ndim_save))
|
|
do i = 1_pInt, ndim_save
|
|
base(i) = prime(i)
|
|
enddo
|
|
endif
|
|
value_halton(1:ndim_save) = base(1:ndim_save)
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
|
value_halton(1) = ndim_save
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
value_halton(1) = seed
|
|
endif
|
|
!
|
|
! Increment
|
|
!
|
|
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
|
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
seed = seed + value_halton(1)
|
|
end if
|
|
endif
|
|
|
|
ENDSUBROUTINE halton_memory
|
|
|
|
|
|
!*******************************************************************************
|
|
! HALTON_NDIM_SET sets the dimension for a Halton sequence.
|
|
!
|
|
! Parameters:
|
|
! Input, integer NDIM, the dimension of the Halton vectors.
|
|
!
|
|
! Modified: 26 February 2001
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
!
|
|
subroutine halton_ndim_set (ndim)
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ndim
|
|
integer(pInt) :: value_halton(1)
|
|
|
|
value_halton(1) = ndim
|
|
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
|
|
|
ENDSUBROUTINE halton_ndim_set
|
|
|
|
|
|
!*******************************************************************************
|
|
! HALTON_SEED_SET sets the "seed" for the Halton sequence.
|
|
!
|
|
! Calling HALTON repeatedly returns the elements of the
|
|
! Halton sequence in order, starting with element number 1.
|
|
! An internal counter, called SEED, keeps track of the next element
|
|
! to return. Each time the routine is called, the SEED-th element
|
|
! is computed, and then SEED is incremented by 1.
|
|
!
|
|
! To restart the Halton sequence, it is only necessary to reset
|
|
! SEED to 1. It might also be desirable to reset SEED to some other value.
|
|
! This routine allows the user to specify any value of SEED.
|
|
!
|
|
! The default value of SEED is 1, which restarts the Halton sequence.
|
|
!
|
|
! Parameters:
|
|
! Input, integer SEED, the seed for the Halton sequence.
|
|
!
|
|
! Modified: 26 February 2001
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
!
|
|
subroutine halton_seed_set (seed)
|
|
implicit none
|
|
|
|
integer(pInt), parameter :: ndim = 1_pInt
|
|
integer(pInt), intent(in) :: seed
|
|
integer(pInt) :: value_halton(ndim)
|
|
|
|
value_halton(1) = seed
|
|
call halton_memory ('SET', 'SEED', ndim, value_halton)
|
|
|
|
ENDSUBROUTINE halton_seed_set
|
|
|
|
|
|
!*******************************************************************************
|
|
! I_TO_HALTON computes an element of a Halton sequence.
|
|
!
|
|
! Reference:
|
|
! J H Halton: On the efficiency of certain quasi-random sequences of points
|
|
! in evaluating multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
|
!
|
|
! Parameters:
|
|
! Input, integer SEED, the index of the desired element.
|
|
! Only the absolute value of SEED is considered. SEED = 0 is allowed,
|
|
! and returns R = 0.
|
|
!
|
|
! Input, integer BASE(NDIM), the Halton bases, which should be
|
|
! distinct prime numbers. This routine only checks that each base
|
|
! is greater than 1.
|
|
!
|
|
! Input, integer NDIM, the dimension of the sequence.
|
|
!
|
|
! Output, real R(NDIM), the SEED-th element of the Halton sequence
|
|
! for the given bases.
|
|
!
|
|
! Modified: 26 February 2001
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz RotersA
|
|
|
|
subroutine i_to_halton (seed, base, ndim, r)
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ndim
|
|
integer(pInt), intent(in), dimension(ndim) :: base
|
|
real(pReal), dimension(ndim) :: base_inv
|
|
integer(pInt), dimension(ndim) :: digit
|
|
integer(pInt) :: i
|
|
real(pReal), dimension(ndim), intent(out) ::r
|
|
integer(pInt) :: seed
|
|
integer(pInt), dimension(ndim) :: seed2
|
|
|
|
seed2(1:ndim) = abs(seed)
|
|
|
|
r(1:ndim) = 0.0_pReal
|
|
|
|
if (any (base(1:ndim) <= 1_pInt)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write (*, '(a)') ' '
|
|
write (*, '(a)') 'I_TO_HALTON - Fatal error!'
|
|
write (*, '(a)') ' An input base BASE is <= 1!'
|
|
do i = 1, ndim
|
|
write (*, '(i6,i6)') i, base(i)
|
|
enddo
|
|
call flush(6)
|
|
!$OMP END CRITICAL (write2out)
|
|
stop
|
|
end if
|
|
|
|
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
|
|
|
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
|
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
|
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
|
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
|
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
|
enddo
|
|
|
|
ENDSUBROUTINE i_to_halton
|
|
|
|
|
|
!*******************************************************************************
|
|
! PRIME returns any of the first PRIME_MAX prime numbers.
|
|
!
|
|
! Note:
|
|
! PRIME_MAX is 1500, and the largest prime stored is 12553.
|
|
! Reference:
|
|
! Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
|
! US Department of Commerce, 1964, pages 870-873.
|
|
!
|
|
! Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
|
! 30th Edition, CRC Press, 1996, pages 95-98.
|
|
!
|
|
! Parameters:
|
|
! Input, integer N, the index of the desired prime number.
|
|
! N = -1 returns PRIME_MAX, the index of the largest prime available.
|
|
! N = 0 is legal, returning PRIME = 1.
|
|
! It should generally be true that 0 <= N <= PRIME_MAX.
|
|
!
|
|
! Output, integer PRIME, the N-th prime. If N is out of range, PRIME
|
|
! is returned as 0.
|
|
!
|
|
! Modified: 21 June 2002
|
|
! Author: John Burkardt
|
|
!
|
|
! Modified: 29 April 2005
|
|
! Author: Franz Roters
|
|
!
|
|
function prime(n)
|
|
implicit none
|
|
|
|
integer(pInt), parameter :: prime_max = 1500
|
|
integer(pInt), save :: icall = 0_pInt
|
|
integer(pInt), intent(in) :: n
|
|
integer(pInt), save, dimension(prime_max) :: npvec
|
|
integer(pInt) prime
|
|
|
|
if (icall == 0_pInt) then
|
|
icall = 1_pInt
|
|
|
|
npvec(1:100) = (/&
|
|
2_pInt, 3_pInt, 5_pInt, 7_pInt, 11_pInt, 13_pInt, 17_pInt, 19_pInt, 23_pInt, 29_pInt, &
|
|
31_pInt, 37_pInt, 41_pInt, 43_pInt, 47_pInt, 53_pInt, 59_pInt, 61_pInt, 67_pInt, 71_pInt, &
|
|
73_pInt, 79_pInt, 83_pInt, 89_pInt, 97_pInt, 101_pInt, 103_pInt, 107_pInt, 109_pInt, 113_pInt, &
|
|
127_pInt, 131_pInt, 137_pInt, 139_pInt, 149_pInt, 151_pInt, 157_pInt, 163_pInt, 167_pInt, 173_pInt, &
|
|
179_pInt, 181_pInt, 191_pInt, 193_pInt, 197_pInt, 199_pInt, 211_pInt, 223_pInt, 227_pInt, 229_pInt, &
|
|
233_pInt, 239_pInt, 241_pInt, 251_pInt, 257_pInt, 263_pInt, 269_pInt, 271_pInt, 277_pInt, 281_pInt, &
|
|
283_pInt, 293_pInt, 307_pInt, 311_pInt, 313_pInt, 317_pInt, 331_pInt, 337_pInt, 347_pInt, 349_pInt, &
|
|
353_pInt, 359_pInt, 367_pInt, 373_pInt, 379_pInt, 383_pInt, 389_pInt, 397_pInt, 401_pInt, 409_pInt, &
|
|
419_pInt, 421_pInt, 431_pInt, 433_pInt, 439_pInt, 443_pInt, 449_pInt, 457_pInt, 461_pInt, 463_pInt, &
|
|
467_pInt, 479_pInt, 487_pInt, 491_pInt, 499_pInt, 503_pInt, 509_pInt, 521_pInt, 523_pInt, 541_pInt/)
|
|
|
|
npvec(101:200) = (/ &
|
|
547_pInt, 557_pInt, 563_pInt, 569_pInt, 571_pInt, 577_pInt, 587_pInt, 593_pInt, 599_pInt, 601_pInt, &
|
|
607_pInt, 613_pInt, 617_pInt, 619_pInt, 631_pInt, 641_pInt, 643_pInt, 647_pInt, 653_pInt, 659_pInt, &
|
|
661_pInt, 673_pInt, 677_pInt, 683_pInt, 691_pInt, 701_pInt, 709_pInt, 719_pInt, 727_pInt, 733_pInt, &
|
|
739_pInt, 743_pInt, 751_pInt, 757_pInt, 761_pInt, 769_pInt, 773_pInt, 787_pInt, 797_pInt, 809_pInt, &
|
|
811_pInt, 821_pInt, 823_pInt, 827_pInt, 829_pInt, 839_pInt, 853_pInt, 857_pInt, 859_pInt, 863_pInt, &
|
|
877_pInt, 881_pInt, 883_pInt, 887_pInt, 907_pInt, 911_pInt, 919_pInt, 929_pInt, 937_pInt, 941_pInt, &
|
|
947_pInt, 953_pInt, 967_pInt, 971_pInt, 977_pInt, 983_pInt, 991_pInt, 997_pInt, 1009_pInt, 1013_pInt, &
|
|
1019_pInt, 1021_pInt, 1031_pInt, 1033_pInt, 1039_pInt, 1049_pInt, 1051_pInt, 1061_pInt, 1063_pInt, 1069_pInt, &
|
|
1087_pInt, 1091_pInt, 1093_pInt, 1097_pInt, 1103_pInt, 1109_pInt, 1117_pInt, 1123_pInt, 1129_pInt, 1151_pInt, &
|
|
1153_pInt, 1163_pInt, 1171_pInt, 1181_pInt, 1187_pInt, 1193_pInt, 1201_pInt, 1213_pInt, 1217_pInt, 1223_pInt/)
|
|
|
|
npvec(201:300) = (/ &
|
|
1229_pInt, 1231_pInt, 1237_pInt, 1249_pInt, 1259_pInt, 1277_pInt, 1279_pInt, 1283_pInt, 1289_pInt, 1291_pInt, &
|
|
1297_pInt, 1301_pInt, 1303_pInt, 1307_pInt, 1319_pInt, 1321_pInt, 1327_pInt, 1361_pInt, 1367_pInt, 1373_pInt, &
|
|
1381_pInt, 1399_pInt, 1409_pInt, 1423_pInt, 1427_pInt, 1429_pInt, 1433_pInt, 1439_pInt, 1447_pInt, 1451_pInt, &
|
|
1453_pInt, 1459_pInt, 1471_pInt, 1481_pInt, 1483_pInt, 1487_pInt, 1489_pInt, 1493_pInt, 1499_pInt, 1511_pInt, &
|
|
1523_pInt, 1531_pInt, 1543_pInt, 1549_pInt, 1553_pInt, 1559_pInt, 1567_pInt, 1571_pInt, 1579_pInt, 1583_pInt, &
|
|
1597_pInt, 1601_pInt, 1607_pInt, 1609_pInt, 1613_pInt, 1619_pInt, 1621_pInt, 1627_pInt, 1637_pInt, 1657_pInt, &
|
|
1663_pInt, 1667_pInt, 1669_pInt, 1693_pInt, 1697_pInt, 1699_pInt, 1709_pInt, 1721_pInt, 1723_pInt, 1733_pInt, &
|
|
1741_pInt, 1747_pInt, 1753_pInt, 1759_pInt, 1777_pInt, 1783_pInt, 1787_pInt, 1789_pInt, 1801_pInt, 1811_pInt, &
|
|
1823_pInt, 1831_pInt, 1847_pInt, 1861_pInt, 1867_pInt, 1871_pInt, 1873_pInt, 1877_pInt, 1879_pInt, 1889_pInt, &
|
|
1901_pInt, 1907_pInt, 1913_pInt, 1931_pInt, 1933_pInt, 1949_pInt, 1951_pInt, 1973_pInt, 1979_pInt, 1987_pInt/)
|
|
|
|
npvec(301:400) = (/ &
|
|
1993_pInt, 1997_pInt, 1999_pInt, 2003_pInt, 2011_pInt, 2017_pInt, 2027_pInt, 2029_pInt, 2039_pInt, 2053_pInt, &
|
|
2063_pInt, 2069_pInt, 2081_pInt, 2083_pInt, 2087_pInt, 2089_pInt, 2099_pInt, 2111_pInt, 2113_pInt, 2129_pInt, &
|
|
2131_pInt, 2137_pInt, 2141_pInt, 2143_pInt, 2153_pInt, 2161_pInt, 2179_pInt, 2203_pInt, 2207_pInt, 2213_pInt, &
|
|
2221_pInt, 2237_pInt, 2239_pInt, 2243_pInt, 2251_pInt, 2267_pInt, 2269_pInt, 2273_pInt, 2281_pInt, 2287_pInt, &
|
|
2293_pInt, 2297_pInt, 2309_pInt, 2311_pInt, 2333_pInt, 2339_pInt, 2341_pInt, 2347_pInt, 2351_pInt, 2357_pInt, &
|
|
2371_pInt, 2377_pInt, 2381_pInt, 2383_pInt, 2389_pInt, 2393_pInt, 2399_pInt, 2411_pInt, 2417_pInt, 2423_pInt, &
|
|
2437_pInt, 2441_pInt, 2447_pInt, 2459_pInt, 2467_pInt, 2473_pInt, 2477_pInt, 2503_pInt, 2521_pInt, 2531_pInt, &
|
|
2539_pInt, 2543_pInt, 2549_pInt, 2551_pInt, 2557_pInt, 2579_pInt, 2591_pInt, 2593_pInt, 2609_pInt, 2617_pInt, &
|
|
2621_pInt, 2633_pInt, 2647_pInt, 2657_pInt, 2659_pInt, 2663_pInt, 2671_pInt, 2677_pInt, 2683_pInt, 2687_pInt, &
|
|
2689_pInt, 2693_pInt, 2699_pInt, 2707_pInt, 2711_pInt, 2713_pInt, 2719_pInt, 2729_pInt, 2731_pInt, 2741_pInt/)
|
|
|
|
npvec(401:500) = (/ &
|
|
2749_pInt, 2753_pInt, 2767_pInt, 2777_pInt, 2789_pInt, 2791_pInt, 2797_pInt, 2801_pInt, 2803_pInt, 2819_pInt, &
|
|
2833_pInt, 2837_pInt, 2843_pInt, 2851_pInt, 2857_pInt, 2861_pInt, 2879_pInt, 2887_pInt, 2897_pInt, 2903_pInt, &
|
|
2909_pInt, 2917_pInt, 2927_pInt, 2939_pInt, 2953_pInt, 2957_pInt, 2963_pInt, 2969_pInt, 2971_pInt, 2999_pInt, &
|
|
3001_pInt, 3011_pInt, 3019_pInt, 3023_pInt, 3037_pInt, 3041_pInt, 3049_pInt, 3061_pInt, 3067_pInt, 3079_pInt, &
|
|
3083_pInt, 3089_pInt, 3109_pInt, 3119_pInt, 3121_pInt, 3137_pInt, 3163_pInt, 3167_pInt, 3169_pInt, 3181_pInt, &
|
|
3187_pInt, 3191_pInt, 3203_pInt, 3209_pInt, 3217_pInt, 3221_pInt, 3229_pInt, 3251_pInt, 3253_pInt, 3257_pInt, &
|
|
3259_pInt, 3271_pInt, 3299_pInt, 3301_pInt, 3307_pInt, 3313_pInt, 3319_pInt, 3323_pInt, 3329_pInt, 3331_pInt, &
|
|
3343_pInt, 3347_pInt, 3359_pInt, 3361_pInt, 3371_pInt, 3373_pInt, 3389_pInt, 3391_pInt, 3407_pInt, 3413_pInt, &
|
|
3433_pInt, 3449_pInt, 3457_pInt, 3461_pInt, 3463_pInt, 3467_pInt, 3469_pInt, 3491_pInt, 3499_pInt, 3511_pInt, &
|
|
3517_pInt, 3527_pInt, 3529_pInt, 3533_pInt, 3539_pInt, 3541_pInt, 3547_pInt, 3557_pInt, 3559_pInt, 3571_pInt/)
|
|
|
|
npvec(501:600) = (/ &
|
|
3581_pInt, 3583_pInt, 3593_pInt, 3607_pInt, 3613_pInt, 3617_pInt, 3623_pInt, 3631_pInt, 3637_pInt, 3643_pInt, &
|
|
3659_pInt, 3671_pInt, 3673_pInt, 3677_pInt, 3691_pInt, 3697_pInt, 3701_pInt, 3709_pInt, 3719_pInt, 3727_pInt, &
|
|
3733_pInt, 3739_pInt, 3761_pInt, 3767_pInt, 3769_pInt, 3779_pInt, 3793_pInt, 3797_pInt, 3803_pInt, 3821_pInt, &
|
|
3823_pInt, 3833_pInt, 3847_pInt, 3851_pInt, 3853_pInt, 3863_pInt, 3877_pInt, 3881_pInt, 3889_pInt, 3907_pInt, &
|
|
3911_pInt, 3917_pInt, 3919_pInt, 3923_pInt, 3929_pInt, 3931_pInt, 3943_pInt, 3947_pInt, 3967_pInt, 3989_pInt, &
|
|
4001_pInt, 4003_pInt, 4007_pInt, 4013_pInt, 4019_pInt, 4021_pInt, 4027_pInt, 4049_pInt, 4051_pInt, 4057_pInt, &
|
|
4073_pInt, 4079_pInt, 4091_pInt, 4093_pInt, 4099_pInt, 4111_pInt, 4127_pInt, 4129_pInt, 4133_pInt, 4139_pInt, &
|
|
4153_pInt, 4157_pInt, 4159_pInt, 4177_pInt, 4201_pInt, 4211_pInt, 4217_pInt, 4219_pInt, 4229_pInt, 4231_pInt, &
|
|
4241_pInt, 4243_pInt, 4253_pInt, 4259_pInt, 4261_pInt, 4271_pInt, 4273_pInt, 4283_pInt, 4289_pInt, 4297_pInt, &
|
|
4327_pInt, 4337_pInt, 4339_pInt, 4349_pInt, 4357_pInt, 4363_pInt, 4373_pInt, 4391_pInt, 4397_pInt, 4409_pInt/)
|
|
|
|
npvec(601:700) = (/ &
|
|
4421_pInt, 4423_pInt, 4441_pInt, 4447_pInt, 4451_pInt, 4457_pInt, 4463_pInt, 4481_pInt, 4483_pInt, 4493_pInt, &
|
|
4507_pInt, 4513_pInt, 4517_pInt, 4519_pInt, 4523_pInt, 4547_pInt, 4549_pInt, 4561_pInt, 4567_pInt, 4583_pInt, &
|
|
4591_pInt, 4597_pInt, 4603_pInt, 4621_pInt, 4637_pInt, 4639_pInt, 4643_pInt, 4649_pInt, 4651_pInt, 4657_pInt, &
|
|
4663_pInt, 4673_pInt, 4679_pInt, 4691_pInt, 4703_pInt, 4721_pInt, 4723_pInt, 4729_pInt, 4733_pInt, 4751_pInt, &
|
|
4759_pInt, 4783_pInt, 4787_pInt, 4789_pInt, 4793_pInt, 4799_pInt, 4801_pInt, 4813_pInt, 4817_pInt, 4831_pInt, &
|
|
4861_pInt, 4871_pInt, 4877_pInt, 4889_pInt, 4903_pInt, 4909_pInt, 4919_pInt, 4931_pInt, 4933_pInt, 4937_pInt, &
|
|
4943_pInt, 4951_pInt, 4957_pInt, 4967_pInt, 4969_pInt, 4973_pInt, 4987_pInt, 4993_pInt, 4999_pInt, 5003_pInt, &
|
|
5009_pInt, 5011_pInt, 5021_pInt, 5023_pInt, 5039_pInt, 5051_pInt, 5059_pInt, 5077_pInt, 5081_pInt, 5087_pInt, &
|
|
5099_pInt, 5101_pInt, 5107_pInt, 5113_pInt, 5119_pInt, 5147_pInt, 5153_pInt, 5167_pInt, 5171_pInt, 5179_pInt, &
|
|
5189_pInt, 5197_pInt, 5209_pInt, 5227_pInt, 5231_pInt, 5233_pInt, 5237_pInt, 5261_pInt, 5273_pInt, 5279_pInt/)
|
|
|
|
npvec(701:800) = (/ &
|
|
5281_pInt, 5297_pInt, 5303_pInt, 5309_pInt, 5323_pInt, 5333_pInt, 5347_pInt, 5351_pInt, 5381_pInt, 5387_pInt, &
|
|
5393_pInt, 5399_pInt, 5407_pInt, 5413_pInt, 5417_pInt, 5419_pInt, 5431_pInt, 5437_pInt, 5441_pInt, 5443_pInt, &
|
|
5449_pInt, 5471_pInt, 5477_pInt, 5479_pInt, 5483_pInt, 5501_pInt, 5503_pInt, 5507_pInt, 5519_pInt, 5521_pInt, &
|
|
5527_pInt, 5531_pInt, 5557_pInt, 5563_pInt, 5569_pInt, 5573_pInt, 5581_pInt, 5591_pInt, 5623_pInt, 5639_pInt, &
|
|
5641_pInt, 5647_pInt, 5651_pInt, 5653_pInt, 5657_pInt, 5659_pInt, 5669_pInt, 5683_pInt, 5689_pInt, 5693_pInt, &
|
|
5701_pInt, 5711_pInt, 5717_pInt, 5737_pInt, 5741_pInt, 5743_pInt, 5749_pInt, 5779_pInt, 5783_pInt, 5791_pInt, &
|
|
5801_pInt, 5807_pInt, 5813_pInt, 5821_pInt, 5827_pInt, 5839_pInt, 5843_pInt, 5849_pInt, 5851_pInt, 5857_pInt, &
|
|
5861_pInt, 5867_pInt, 5869_pInt, 5879_pInt, 5881_pInt, 5897_pInt, 5903_pInt, 5923_pInt, 5927_pInt, 5939_pInt, &
|
|
5953_pInt, 5981_pInt, 5987_pInt, 6007_pInt, 6011_pInt, 6029_pInt, 6037_pInt, 6043_pInt, 6047_pInt, 6053_pInt, &
|
|
6067_pInt, 6073_pInt, 6079_pInt, 6089_pInt, 6091_pInt, 6101_pInt, 6113_pInt, 6121_pInt, 6131_pInt, 6133_pInt/)
|
|
|
|
npvec(801:900) = (/ &
|
|
6143_pInt, 6151_pInt, 6163_pInt, 6173_pInt, 6197_pInt, 6199_pInt, 6203_pInt, 6211_pInt, 6217_pInt, 6221_pInt, &
|
|
6229_pInt, 6247_pInt, 6257_pInt, 6263_pInt, 6269_pInt, 6271_pInt, 6277_pInt, 6287_pInt, 6299_pInt, 6301_pInt, &
|
|
6311_pInt, 6317_pInt, 6323_pInt, 6329_pInt, 6337_pInt, 6343_pInt, 6353_pInt, 6359_pInt, 6361_pInt, 6367_pInt, &
|
|
6373_pInt, 6379_pInt, 6389_pInt, 6397_pInt, 6421_pInt, 6427_pInt, 6449_pInt, 6451_pInt, 6469_pInt, 6473_pInt, &
|
|
6481_pInt, 6491_pInt, 6521_pInt, 6529_pInt, 6547_pInt, 6551_pInt, 6553_pInt, 6563_pInt, 6569_pInt, 6571_pInt, &
|
|
6577_pInt, 6581_pInt, 6599_pInt, 6607_pInt, 6619_pInt, 6637_pInt, 6653_pInt, 6659_pInt, 6661_pInt, 6673_pInt, &
|
|
6679_pInt, 6689_pInt, 6691_pInt, 6701_pInt, 6703_pInt, 6709_pInt, 6719_pInt, 6733_pInt, 6737_pInt, 6761_pInt, &
|
|
6763_pInt, 6779_pInt, 6781_pInt, 6791_pInt, 6793_pInt, 6803_pInt, 6823_pInt, 6827_pInt, 6829_pInt, 6833_pInt, &
|
|
6841_pInt, 6857_pInt, 6863_pInt, 6869_pInt, 6871_pInt, 6883_pInt, 6899_pInt, 6907_pInt, 6911_pInt, 6917_pInt, &
|
|
6947_pInt, 6949_pInt, 6959_pInt, 6961_pInt, 6967_pInt, 6971_pInt, 6977_pInt, 6983_pInt, 6991_pInt, 6997_pInt/)
|
|
|
|
npvec(901:1000) = (/ &
|
|
7001_pInt, 7013_pInt, 7019_pInt, 7027_pInt, 7039_pInt, 7043_pInt, 7057_pInt, 7069_pInt, 7079_pInt, 7103_pInt, &
|
|
7109_pInt, 7121_pInt, 7127_pInt, 7129_pInt, 7151_pInt, 7159_pInt, 7177_pInt, 7187_pInt, 7193_pInt, 7207_pInt, &
|
|
7211_pInt, 7213_pInt, 7219_pInt, 7229_pInt, 7237_pInt, 7243_pInt, 7247_pInt, 7253_pInt, 7283_pInt, 7297_pInt, &
|
|
7307_pInt, 7309_pInt, 7321_pInt, 7331_pInt, 7333_pInt, 7349_pInt, 7351_pInt, 7369_pInt, 7393_pInt, 7411_pInt, &
|
|
7417_pInt, 7433_pInt, 7451_pInt, 7457_pInt, 7459_pInt, 7477_pInt, 7481_pInt, 7487_pInt, 7489_pInt, 7499_pInt, &
|
|
7507_pInt, 7517_pInt, 7523_pInt, 7529_pInt, 7537_pInt, 7541_pInt, 7547_pInt, 7549_pInt, 7559_pInt, 7561_pInt, &
|
|
7573_pInt, 7577_pInt, 7583_pInt, 7589_pInt, 7591_pInt, 7603_pInt, 7607_pInt, 7621_pInt, 7639_pInt, 7643_pInt, &
|
|
7649_pInt, 7669_pInt, 7673_pInt, 7681_pInt, 7687_pInt, 7691_pInt, 7699_pInt, 7703_pInt, 7717_pInt, 7723_pInt, &
|
|
7727_pInt, 7741_pInt, 7753_pInt, 7757_pInt, 7759_pInt, 7789_pInt, 7793_pInt, 7817_pInt, 7823_pInt, 7829_pInt, &
|
|
7841_pInt, 7853_pInt, 7867_pInt, 7873_pInt, 7877_pInt, 7879_pInt, 7883_pInt, 7901_pInt, 7907_pInt, 7919_pInt/)
|
|
|
|
npvec(1001:1100) = (/ &
|
|
7927_pInt, 7933_pInt, 7937_pInt, 7949_pInt, 7951_pInt, 7963_pInt, 7993_pInt, 8009_pInt, 8011_pInt, 8017_pInt, &
|
|
8039_pInt, 8053_pInt, 8059_pInt, 8069_pInt, 8081_pInt, 8087_pInt, 8089_pInt, 8093_pInt, 8101_pInt, 8111_pInt, &
|
|
8117_pInt, 8123_pInt, 8147_pInt, 8161_pInt, 8167_pInt, 8171_pInt, 8179_pInt, 8191_pInt, 8209_pInt, 8219_pInt, &
|
|
8221_pInt, 8231_pInt, 8233_pInt, 8237_pInt, 8243_pInt, 8263_pInt, 8269_pInt, 8273_pInt, 8287_pInt, 8291_pInt, &
|
|
8293_pInt, 8297_pInt, 8311_pInt, 8317_pInt, 8329_pInt, 8353_pInt, 8363_pInt, 8369_pInt, 8377_pInt, 8387_pInt, &
|
|
8389_pInt, 8419_pInt, 8423_pInt, 8429_pInt, 8431_pInt, 8443_pInt, 8447_pInt, 8461_pInt, 8467_pInt, 8501_pInt, &
|
|
8513_pInt, 8521_pInt, 8527_pInt, 8537_pInt, 8539_pInt, 8543_pInt, 8563_pInt, 8573_pInt, 8581_pInt, 8597_pInt, &
|
|
8599_pInt, 8609_pInt, 8623_pInt, 8627_pInt, 8629_pInt, 8641_pInt, 8647_pInt, 8663_pInt, 8669_pInt, 8677_pInt, &
|
|
8681_pInt, 8689_pInt, 8693_pInt, 8699_pInt, 8707_pInt, 8713_pInt, 8719_pInt, 8731_pInt, 8737_pInt, 8741_pInt, &
|
|
8747_pInt, 8753_pInt, 8761_pInt, 8779_pInt, 8783_pInt, 8803_pInt, 8807_pInt, 8819_pInt, 8821_pInt, 8831_pInt/)
|
|
|
|
npvec(1101:1200) = (/ &
|
|
8837_pInt, 8839_pInt, 8849_pInt, 8861_pInt, 8863_pInt, 8867_pInt, 8887_pInt, 8893_pInt, 8923_pInt, 8929_pInt, &
|
|
8933_pInt, 8941_pInt, 8951_pInt, 8963_pInt, 8969_pInt, 8971_pInt, 8999_pInt, 9001_pInt, 9007_pInt, 9011_pInt, &
|
|
9013_pInt, 9029_pInt, 9041_pInt, 9043_pInt, 9049_pInt, 9059_pInt, 9067_pInt, 9091_pInt, 9103_pInt, 9109_pInt, &
|
|
9127_pInt, 9133_pInt, 9137_pInt, 9151_pInt, 9157_pInt, 9161_pInt, 9173_pInt, 9181_pInt, 9187_pInt, 9199_pInt, &
|
|
9203_pInt, 9209_pInt, 9221_pInt, 9227_pInt, 9239_pInt, 9241_pInt, 9257_pInt, 9277_pInt, 9281_pInt, 9283_pInt, &
|
|
9293_pInt, 9311_pInt, 9319_pInt, 9323_pInt, 9337_pInt, 9341_pInt, 9343_pInt, 9349_pInt, 9371_pInt, 9377_pInt, &
|
|
9391_pInt, 9397_pInt, 9403_pInt, 9413_pInt, 9419_pInt, 9421_pInt, 9431_pInt, 9433_pInt, 9437_pInt, 9439_pInt, &
|
|
9461_pInt, 9463_pInt, 9467_pInt, 9473_pInt, 9479_pInt, 9491_pInt, 9497_pInt, 9511_pInt, 9521_pInt, 9533_pInt, &
|
|
9539_pInt, 9547_pInt, 9551_pInt, 9587_pInt, 9601_pInt, 9613_pInt, 9619_pInt, 9623_pInt, 9629_pInt, 9631_pInt, &
|
|
9643_pInt, 9649_pInt, 9661_pInt, 9677_pInt, 9679_pInt, 9689_pInt, 9697_pInt, 9719_pInt, 9721_pInt, 9733_pInt/)
|
|
|
|
npvec(1201:1300) = (/ &
|
|
9739_pInt, 9743_pInt, 9749_pInt, 9767_pInt, 9769_pInt, 9781_pInt, 9787_pInt, 9791_pInt, 9803_pInt, 9811_pInt, &
|
|
9817_pInt, 9829_pInt, 9833_pInt, 9839_pInt, 9851_pInt, 9857_pInt, 9859_pInt, 9871_pInt, 9883_pInt, 9887_pInt, &
|
|
9901_pInt, 9907_pInt, 9923_pInt, 9929_pInt, 9931_pInt, 9941_pInt, 9949_pInt, 9967_pInt, 9973_pInt,10007_pInt, &
|
|
10009_pInt,10037_pInt,10039_pInt,10061_pInt,10067_pInt,10069_pInt,10079_pInt,10091_pInt,10093_pInt,10099_pInt, &
|
|
10103_pInt,10111_pInt,10133_pInt,10139_pInt,10141_pInt,10151_pInt,10159_pInt,10163_pInt,10169_pInt,10177_pInt, &
|
|
10181_pInt,10193_pInt,10211_pInt,10223_pInt,10243_pInt,10247_pInt,10253_pInt,10259_pInt,10267_pInt,10271_pInt, &
|
|
10273_pInt,10289_pInt,10301_pInt,10303_pInt,10313_pInt,10321_pInt,10331_pInt,10333_pInt,10337_pInt,10343_pInt, &
|
|
10357_pInt,10369_pInt,10391_pInt,10399_pInt,10427_pInt,10429_pInt,10433_pInt,10453_pInt,10457_pInt,10459_pInt, &
|
|
10463_pInt,10477_pInt,10487_pInt,10499_pInt,10501_pInt,10513_pInt,10529_pInt,10531_pInt,10559_pInt,10567_pInt, &
|
|
10589_pInt,10597_pInt,10601_pInt,10607_pInt,10613_pInt,10627_pInt,10631_pInt,10639_pInt,10651_pInt,10657_pInt/)
|
|
|
|
npvec(1301:1400) = (/ &
|
|
10663_pInt,10667_pInt,10687_pInt,10691_pInt,10709_pInt,10711_pInt,10723_pInt,10729_pInt,10733_pInt,10739_pInt, &
|
|
10753_pInt,10771_pInt,10781_pInt,10789_pInt,10799_pInt,10831_pInt,10837_pInt,10847_pInt,10853_pInt,10859_pInt, &
|
|
10861_pInt,10867_pInt,10883_pInt,10889_pInt,10891_pInt,10903_pInt,10909_pInt,19037_pInt,10939_pInt,10949_pInt, &
|
|
10957_pInt,10973_pInt,10979_pInt,10987_pInt,10993_pInt,11003_pInt,11027_pInt,11047_pInt,11057_pInt,11059_pInt, &
|
|
11069_pInt,11071_pInt,11083_pInt,11087_pInt,11093_pInt,11113_pInt,11117_pInt,11119_pInt,11131_pInt,11149_pInt, &
|
|
11159_pInt,11161_pInt,11171_pInt,11173_pInt,11177_pInt,11197_pInt,11213_pInt,11239_pInt,11243_pInt,11251_pInt, &
|
|
11257_pInt,11261_pInt,11273_pInt,11279_pInt,11287_pInt,11299_pInt,11311_pInt,11317_pInt,11321_pInt,11329_pInt, &
|
|
11351_pInt,11353_pInt,11369_pInt,11383_pInt,11393_pInt,11399_pInt,11411_pInt,11423_pInt,11437_pInt,11443_pInt, &
|
|
11447_pInt,11467_pInt,11471_pInt,11483_pInt,11489_pInt,11491_pInt,11497_pInt,11503_pInt,11519_pInt,11527_pInt, &
|
|
11549_pInt,11551_pInt,11579_pInt,11587_pInt,11593_pInt,11597_pInt,11617_pInt,11621_pInt,11633_pInt,11657_pInt/)
|
|
|
|
npvec(1401:1500) = (/ &
|
|
11677_pInt,11681_pInt,11689_pInt,11699_pInt,11701_pInt,11717_pInt,11719_pInt,11731_pInt,11743_pInt,11777_pInt, &
|
|
11779_pInt,11783_pInt,11789_pInt,11801_pInt,11807_pInt,11813_pInt,11821_pInt,11827_pInt,11831_pInt,11833_pInt, &
|
|
11839_pInt,11863_pInt,11867_pInt,11887_pInt,11897_pInt,11903_pInt,11909_pInt,11923_pInt,11927_pInt,11933_pInt, &
|
|
11939_pInt,11941_pInt,11953_pInt,11959_pInt,11969_pInt,11971_pInt,11981_pInt,11987_pInt,12007_pInt,12011_pInt, &
|
|
12037_pInt,12041_pInt,12043_pInt,12049_pInt,12071_pInt,12073_pInt,12097_pInt,12101_pInt,12107_pInt,12109_pInt, &
|
|
12113_pInt,12119_pInt,12143_pInt,12149_pInt,12157_pInt,12161_pInt,12163_pInt,12197_pInt,12203_pInt,12211_pInt, &
|
|
12227_pInt,12239_pInt,12241_pInt,12251_pInt,12253_pInt,12263_pInt,12269_pInt,12277_pInt,12281_pInt,12289_pInt, &
|
|
12301_pInt,12323_pInt,12329_pInt,12343_pInt,12347_pInt,12373_pInt,12377_pInt,12379_pInt,12391_pInt,12401_pInt, &
|
|
12409_pInt,12413_pInt,12421_pInt,12433_pInt,12437_pInt,12451_pInt,12457_pInt,12473_pInt,12479_pInt,12487_pInt, &
|
|
12491_pInt,12497_pInt,12503_pInt,12511_pInt,12517_pInt,12527_pInt,12539_pInt,12541_pInt,12547_pInt,12553_pInt/)
|
|
|
|
endif
|
|
|
|
if(n == -1_pInt) then
|
|
prime = prime_max
|
|
else if (n == 0_pInt) then
|
|
prime = 1_pInt
|
|
else if (n <= prime_max) then
|
|
prime = npvec(n)
|
|
else ! why not use io_error here?
|
|
prime = 0_pInt
|
|
!$OMP CRITICAL (write2out)
|
|
write (6, '(a)') ' '
|
|
write (6, '(a)') 'PRIME - Fatal error!'
|
|
write (6, '(a,i6)') ' Illegal prime index N = ', n
|
|
write (6, '(a,i6)') ' N must be between 0 and PRIME_MAX = ', prime_max
|
|
call flush(6)
|
|
!$OMP END CRITICAL (write2out)
|
|
stop
|
|
end if
|
|
endfunction prime
|
|
|
|
|
|
!**************************************************************************
|
|
! volume of tetrahedron given by four vertices
|
|
!**************************************************************************
|
|
pure function math_volTetrahedron(v1,v2,v3,v4)
|
|
|
|
implicit none
|
|
|
|
real(pReal) math_volTetrahedron
|
|
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
|
|
real(pReal), dimension (3,3) :: m
|
|
|
|
m(1:3,1) = v1-v2
|
|
m(1:3,2) = v2-v3
|
|
m(1:3,3) = v3-v4
|
|
|
|
math_volTetrahedron = math_det3x3(m)/6.0_pReal
|
|
|
|
endfunction math_volTetrahedron
|
|
|
|
|
|
!**************************************************************************
|
|
! rotate 3x3 tensor forward
|
|
!**************************************************************************
|
|
pure function math_rotate_forward3x3(tensor,rot_tensor)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3) :: math_rotate_forward3x3
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
math_rotate_forward3x3 = math_mul33x33(rot_tensor,&
|
|
math_mul33x33(tensor,math_transpose3x3(rot_tensor)))
|
|
|
|
endfunction math_rotate_forward3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! rotate 3x3 tensor backward
|
|
!**************************************************************************
|
|
pure function math_rotate_backward3x3(tensor,rot_tensor)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3) :: math_rotate_backward3x3
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
math_rotate_backward3x3 = math_mul33x33(math_transpose3x3(rot_tensor),&
|
|
math_mul33x33(tensor,rot_tensor))
|
|
|
|
endfunction math_rotate_backward3x3
|
|
|
|
|
|
!**************************************************************************
|
|
! rotate 3x3x3x3 tensor
|
|
! C'_ijkl=g_im*g_jn*g_ko*g_lp*C_mnop
|
|
!**************************************************************************
|
|
pure function math_rotate_forward3x3x3x3(tensor,rot_tensor)
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3x3x3x3
|
|
real(pReal), dimension(3,3), intent(in) :: rot_tensor
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
|
|
integer(pInt) :: i,j,k,l,m,n,o,p
|
|
|
|
math_rotate_forward3x3x3x3= 0.0_pReal
|
|
|
|
do i = 1_pInt,3_pInt; do j = 1_pInt,3_pInt; do k = 1_pInt,3_pInt; do l = 1_pInt,3_pInt
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt; do p = 1_pInt,3_pInt
|
|
math_rotate_forward3x3x3x3(i,j,k,l) = tensor(i,j,k,l)+rot_tensor(m,i)*rot_tensor(n,j)*&
|
|
rot_tensor(o,k)*rot_tensor(p,l)*tensor(m,n,o,p)
|
|
enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo
|
|
|
|
endfunction math_rotate_forward3x3x3x3
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Functions below are taken from the old postprocessingMath.f90
|
|
! mostly they are used in combination with f2py to build fortran
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! put the next two funtions into mesh?
|
|
function mesh_location(idx,resolution)
|
|
! small helper functions for indexing
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
|
|
integer(pInt), intent(in) :: idx
|
|
integer(pInt), intent(in), dimension(3) :: resolution
|
|
integer(pInt), dimension(3) :: mesh_location
|
|
mesh_location = (/modulo(idx/ resolution(3) / resolution(2),resolution(1)), &
|
|
modulo(idx/ resolution(3), resolution(2)), &
|
|
modulo(idx, resolution(3))/)
|
|
|
|
end function mesh_location
|
|
|
|
|
|
function mesh_index(location,resolution)
|
|
! small helper functions for indexing
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
integer(pInt), intent(in), dimension(3) :: resolution, location
|
|
integer(pInt) :: mesh_index
|
|
|
|
mesh_index = modulo(location(3), resolution(3)) +&
|
|
(modulo(location(2), resolution(2)))*resolution(3) +&
|
|
(modulo(location(1), resolution(1)))*resolution(3)*resolution(2)
|
|
|
|
end function mesh_index
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine volume_compare(res,geomdim,defgrad,nodes,volume_mismatch)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate the mismatch between volume of reconstructed (compatible
|
|
! cube and determinant of defgrad at the FP
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: volume_mismatch
|
|
! other variables
|
|
real(pReal), dimension(8,3) :: coords
|
|
integer(pInt) i,j,k
|
|
real(pReal) vol_initial
|
|
|
|
print*, 'Calculating volume mismatch'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
vol_initial = geomdim(1)*geomdim(2)*geomdim(3)/(real(res(1)*res(2)*res(3), pReal))
|
|
do k = 1_pInt,res(3)
|
|
do j = 1_pInt,res(2)
|
|
do i = 1_pInt,res(1)
|
|
coords(1,1:3) = nodes(i, j, k ,1:3)
|
|
coords(2,1:3) = nodes(i+1_pInt,j, k ,1:3)
|
|
coords(3,1:3) = nodes(i+1_pInt,j+1_pInt,k ,1:3)
|
|
coords(4,1:3) = nodes(i, j+1_pInt,k ,1:3)
|
|
coords(5,1:3) = nodes(i, j, k+1_pInt,1:3)
|
|
coords(6,1:3) = nodes(i+1_pInt,j, k+1_pInt,1:3)
|
|
coords(7,1:3) = nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3)
|
|
coords(8,1:3) = nodes(i, j+1_pInt,k+1_pInt,1:3)
|
|
volume_mismatch(i,j,k) = abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(4,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(5,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(4,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(2,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(6,1:3))) &
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(1,1:3)))
|
|
volume_mismatch(i,j,k) = volume_mismatch(i,j,k)/math_det3x3(defgrad(i,j,k,1:3,1:3))
|
|
enddo; enddo; enddo
|
|
volume_mismatch = volume_mismatch/vol_initial
|
|
|
|
end subroutine volume_compare
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine shape_compare(res,geomdim,defgrad,nodes,centroids,shape_mismatch)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate the mismatch between the vectors from the central point to
|
|
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
|
! the initial volume element with the current deformation gradient
|
|
implicit none
|
|
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: shape_mismatch
|
|
! other variables
|
|
real(pReal), dimension(8,3) :: coords_initial
|
|
integer(pInt) i,j,k
|
|
|
|
print*, 'Calculating shape mismatch'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
coords_initial(1,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(2,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(3,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(4,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(5,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(6,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(7,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
coords_initial(8,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
do i=1_pInt,8_pInt
|
|
enddo
|
|
do k = 1_pInt,res(3)
|
|
do j = 1_pInt,res(2)
|
|
do i = 1_pInt,res(1)
|
|
shape_mismatch(i,j,k) = &
|
|
sqrt(sum((nodes(i, j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(1,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(2,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(3,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(4,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(5,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(6,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(7,1:3)))**2.0_pReal))&
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(8,1:3)))**2.0_pReal))
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine shape_compare
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine mesh_regular_grid(res,geomdim,defgrad_av,centroids,nodes)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to build mesh of (distoreted) cubes for given coordinates (= center of the cubes)
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
! output variables
|
|
real(pReal),intent(out), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
! variables with dimension depending on input
|
|
real(pReal), dimension(res(1)+2_pInt,res(2)+2_pInt,res(3)+2_pInt,3) :: wrappedCentroids
|
|
! other variables
|
|
integer(pInt) :: i,j,k,n
|
|
integer(pInt), dimension(3), parameter :: diag = 1_pInt
|
|
integer(pInt), dimension(3) :: shift = 0_pInt, lookup = 0_pInt, me = 0_pInt
|
|
integer(pInt), dimension(3,8) :: neighbor = reshape((/ &
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
0_pInt, 1_pInt, 1_pInt &
|
|
/), &
|
|
(/3,8/))
|
|
print*, 'Meshing cubes around centroids'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
nodes = 0.0_pReal
|
|
wrappedCentroids = 0.0_pReal
|
|
wrappedCentroids(2_pInt:res(1)+1_pInt,2_pInt:res(2)+1_pInt,2_pInt:res(3)+1_pInt,1:3) = centroids
|
|
|
|
do k = 0_pInt,res(3)+1_pInt
|
|
do j = 0_pInt,res(2)+1_pInt
|
|
do i = 0_pInt,res(1)+1_pInt
|
|
if (k==0_pInt .or. k==res(3)+1_pInt .or. & ! z skin
|
|
j==0_pInt .or. j==res(2)+1_pInt .or. & ! y skin
|
|
i==0_pInt .or. i==res(1)+1_pInt ) then ! x skin
|
|
me = (/i,j,k/) ! me on skin
|
|
shift = sign(abs(res+diag-2_pInt*me)/(res+diag),res+diag-2_pInt*me)
|
|
lookup = me-diag+shift*res
|
|
wrappedCentroids(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
|
centroids(lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt,1:3) - &
|
|
matmul(defgrad_av, shift*geomdim)
|
|
endif
|
|
enddo; enddo; enddo
|
|
do k = 0_pInt,res(3)
|
|
do j = 0_pInt,res(2)
|
|
do i = 0_pInt,res(1)
|
|
do n = 1_pInt,8_pInt
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) + wrappedCentroids(i+1_pInt+neighbor(1_pInt,n), &
|
|
j+1_pInt+neighbor(2,n), &
|
|
k+1_pInt+neighbor(3,n),1:3)
|
|
enddo; enddo; enddo; enddo
|
|
nodes = nodes/8.0_pReal
|
|
|
|
end subroutine mesh_regular_grid
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine deformed_linear(res,geomdim,defgrad_av,defgrad,coord_avgCorner)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
! using linear interpolation (blurres out high frequency defomation)
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in), dimension( res(1),res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension( res(1),res(2),res(3),3) :: coord_avgCorner
|
|
! variables with dimension depending on input
|
|
real(pReal), dimension(8,6,res(1),res(2),res(3),3) :: coord
|
|
real(pReal), dimension( 8,res(1),res(2),res(3),3) :: coord_avgOrder
|
|
! other variables
|
|
real(pReal), dimension(3) :: myStep, fones = 1.0_pReal, parameter_coords, negative, positive
|
|
integer(pInt), dimension(3) :: rear, init, ones = 1_pInt, oppo, me
|
|
integer(pInt) i, j, k, s, o
|
|
integer(pInt), dimension(3,8) :: corner = reshape((/ &
|
|
0_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 0_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 0_pInt,&
|
|
0_pInt, 1_pInt, 0_pInt,&
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 1_pInt, 1_pInt,&
|
|
0_pInt, 0_pInt, 1_pInt,&
|
|
1_pInt, 0_pInt, 1_pInt &
|
|
/), &
|
|
(/3,8/))
|
|
integer(pInt), dimension(3,8) :: step = reshape((/ &
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt, 1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt, 1_pInt,&
|
|
1_pInt,-1_pInt, 1_pInt,&
|
|
-1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt,-1_pInt,-1_pInt,&
|
|
1_pInt, 1_pInt,-1_pInt,&
|
|
-1_pInt, 1_pInt,-1_pInt &
|
|
/), &
|
|
(/3,8/))
|
|
integer(pInt), dimension(3,6) :: order = reshape((/ &
|
|
1_pInt, 2_pInt, 3_pInt,&
|
|
1_pInt, 3_pInt, 2_pInt,&
|
|
2_pInt, 1_pInt, 3_pInt,&
|
|
2_pInt, 3_pInt, 1_pInt,&
|
|
3_pInt, 1_pInt, 2_pInt,&
|
|
3_pInt, 2_pInt, 1_pInt &
|
|
/), &
|
|
(/3,6/))
|
|
|
|
print*, 'Restore geometry using linear integration'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
coord_avgOrder = 0.0_pReal
|
|
|
|
do s = 0_pInt, 7_pInt ! corners (from 0 to 7)
|
|
init = corner(:,s+1_pInt)*(res-ones) +ones
|
|
oppo = corner(:,mod((s+4_pInt),8_pInt)+1_pInt)*(res-ones) +ones
|
|
do o=1_pInt,6_pInt ! orders (from 1 to 6)
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1_pInt)
|
|
rear(order(2,o)) = init(order(2,o))
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1_pInt)
|
|
rear(order(1,o)) = init(order(1,o))
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1_pInt)
|
|
me(order(1,o)) = i
|
|
me(order(2,o)) = j
|
|
me(order(3,o)) = k
|
|
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = geomdim * (matmul(defgrad_av,corner(1:3,s+1)) + &
|
|
matmul(defgrad(me(1),me(2),me(3),1:3,1:3),0.5*step(1:3,s+1_pInt)/res))
|
|
|
|
else
|
|
myStep = (me-rear)*geomdim/res
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = coord(s+1_pInt,o,rear(1),rear(2),rear(3),1:3) + &
|
|
0.5*matmul(defgrad(me(1),me(2),me(3),1:3,1:3) + &
|
|
defgrad(rear(1),rear(2),rear(3),1:3,1:3),myStep)
|
|
endif
|
|
rear = me
|
|
enddo; enddo; enddo; enddo
|
|
do i = 1_pInt,6_pInt
|
|
coord_avgOrder(s+1_pInt,1:res(1),1:res(2),1:res(3),1:3) = coord_avgOrder(s+1_pInt, 1:res(1),1:res(2),1:res(3),1:3)&
|
|
+ coord(s+1_pInt,i,1:res(1),1:res(2),1:res(3),1:3)/6.0
|
|
enddo
|
|
enddo
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
do i = 0_pInt, res(1)-1_pInt
|
|
parameter_coords = (2.0_pReal*(/real(i,pReal)+0.0_pReal,real(j,pReal)+0.0_pReal,real(k,pReal)+0.0_pReal/)&
|
|
-real(res,pReal)+fones)/(real(res,pReal)-fones)
|
|
positive = fones + parameter_coords
|
|
negative = fones - parameter_coords
|
|
coord_avgCorner(i+1_pInt,j+1_pInt,k+1_pInt,1:3)&
|
|
=(coord_avgOrder(1,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(2,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(3,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(4,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(5,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(6,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(7,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*positive(3)&
|
|
+ coord_avgOrder(8,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*positive(3))*0.125
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine deformed_linear
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine deformed_fft(res,geomdim,defgrad_av,scaling,defgrad,coords)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
! using integration in Fourier space (more accurate than deformed(...))
|
|
!
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
real(pReal), intent(in) :: scaling
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3) :: coords
|
|
! variables with dimension depending on input
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: coords_fft
|
|
complex(pReal), dimension(res(1), res(2),res(3),3,3) :: defgrad_fft
|
|
! other variables
|
|
integer(pInt) :: i, j, k
|
|
integer(pInt), dimension(3) :: k_s
|
|
complex(pReal), parameter :: integration_factor = cmplx(0.0_pReal,pi*2.0_pReal)
|
|
real(pReal), dimension(3) :: step, offset_coords
|
|
integer*8, dimension(2) :: plan_fft
|
|
|
|
print*, 'Restore geometry using FFT-based integration'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),9,&
|
|
defgrad_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
defgrad_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),3,&
|
|
coords_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
coords, (/res(1), res(2),res(3)/),1, res(1)* res(2)*res(3),fftw_planner_flag)
|
|
|
|
coords_fft = 0.0
|
|
defgrad_fft = defgrad ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
step = geomdim/real(res, pReal)
|
|
|
|
call dfftw_execute_dft(plan_fft(1), defgrad_fft, defgrad_fft)
|
|
|
|
do k = 1_pInt, res(3)
|
|
k_s(3) = k-1_pInt
|
|
if(k > res(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-res(3)
|
|
do j = 1_pInt, res(2)
|
|
k_s(2) = j-1_pInt
|
|
if(j > res(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-res(2)
|
|
do i = 1_pInt, res(1)/2_pInt+1_pInt
|
|
k_s(1) = i-1_pInt
|
|
if(i/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
+ defgrad_fft(i,j,k,1:3,1)*geomdim(1)/(real(k_s(1),pReal)*integration_factor)
|
|
if(j/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
+ defgrad_fft(i,j,k,1:3,2)*geomdim(2)/(real(k_s(2),pReal)*integration_factor)
|
|
if(k/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
+ defgrad_fft(i,j,k,1:3,3)*geomdim(3)/(real(k_s(3),pReal)*integration_factor)
|
|
enddo; enddo; enddo
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), coords_fft, coords)
|
|
coords = coords/real(res(1)*res(2)*res(3))
|
|
|
|
offset_coords = matmul(defgrad(1,1,1,1:3,1:3),step/2.0_pReal) - scaling*coords(1,1,1,1:3)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
coords(i,j,k,1:3) = scaling*coords(i,j,k,1:3) + offset_coords + matmul(defgrad_av,&
|
|
(/step(1)*real(i-1_pInt,pReal),&
|
|
step(2)*real(j-1_pInt,pReal),&
|
|
step(3)*real(k-1_pInt,pReal)/))
|
|
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine deformed_fft
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine curl_fft(res,geomdim,vec_tens,field,curl_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! calculates curl field using differentation in Fourier space
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
integer(pInt), intent(in) :: vec_tens
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,vec_tens) :: field
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3,vec_tens) :: curl_field
|
|
! variables with dimension depending on input
|
|
complex(pReal), dimension(res(1), res(2),res(3),3,vec_tens) :: field_fft
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3,vec_tens) :: curl_field_fft
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
|
! other variables
|
|
integer(pInt) i, j, k
|
|
integer*8 :: plan_fft(2)
|
|
|
|
print*, 'Calculating curl of vector/tensor field'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
curl_field_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
curl_field,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),fftw_planner_flag)
|
|
|
|
field_fft = field ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
call dfftw_execute_dft_r2c(plan_fft(1), field_fft, field_fft)
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
do i = 0_pInt, res(1)/2_pInt
|
|
xi(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = real((/i,j,k/), pReal)/geomdim
|
|
if(k==res(3)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,3)= 0.0_pReal ! set highest frequencies to zero
|
|
if(j==res(2)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,2)= 0.0_pReal
|
|
if(i==res(1)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,1)= 0.0_pReal
|
|
enddo; enddo; enddo
|
|
|
|
do k = 1, res(3)
|
|
do j = 1, res(2)
|
|
do i = 1, res(1)/2+1
|
|
curl_field_fft(i,j,k,1,vec_tens) = sum(field_fft(i,j,k,1,:)*xi(i,j,k,:))
|
|
if(vec_tens == 3) then
|
|
curl_field_fft (i,j,k,2,vec_tens) = sum(field_fft(i,j,k,2,:)*xi(i,j,k,:))
|
|
curl_field_fft(i,j,k,3,vec_tens) = sum(field_fft(i,j,k,3,:)*xi(i,j,k,:))
|
|
endif
|
|
enddo; enddo; enddo
|
|
! divergence_field_fft = divergence_field_fft*img*2.0*pi
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), curl_field_fft, curl_field)
|
|
|
|
end subroutine curl_fft
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine divergence_fft(res,geomdim,vec_tens,field,divergence_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! calculates divergence field using integration in Fourier space
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
integer(pInt), intent(in) :: vec_tens
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),vec_tens,3) :: field
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),vec_tens) :: divergence_field
|
|
! variables with dimension depending on input
|
|
complex(pReal), dimension(res(1) ,res(2),res(3),vec_tens,3) :: field_fft
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),vec_tens) :: divergence_field_fft
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
|
! other variables
|
|
integer(pInt) :: i, j, k
|
|
complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal)
|
|
integer*8, dimension(2) :: plan_fft
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),vec_tens,&
|
|
divergence_field_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
divergence_field,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),fftw_planner_flag)
|
|
|
|
print*, 'Calculating divergence of tensor/vector field using FFT'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
field_fft = field ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
call dfftw_execute_dft_r2c(plan_fft(1), field_fft, field_fft)
|
|
|
|
! Alternative calculation of discrete frequencies k_s, ordered as in FFTW (wrap around)
|
|
! do k = 0,res(3)/2 -1
|
|
! do j = 0,res(2)/2 -1
|
|
! do i = 0,res(1)/2 -1
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/-i,-j,-k/)/geomdim
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/ i,-j,-k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+mod(res(3)-k,res(3)),:) = (/-i, j,-k/)/geomdim
|
|
! xi(1+i, 1+j, 1+mod(res(3)-k,res(3)),:) = (/ i, j,-k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+k, :) = (/-i,-j, k/)/geomdim
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+k, :) = (/ i,-j, k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+k, :) = (/-i, j, k/)/geomdim
|
|
! xi(1+i, 1+j, 1+k, :) = (/ i, j, k/)/geomdim
|
|
! xi(1+i, 1+j, 1+k, :) = (/ i, j, k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+k, :) = (/-i, j, k/)/geomdim
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+k, :) = (/ i,-j, k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+k, :) = (/-i,-j, k/)/geomdim
|
|
! xi(1+i, 1+j, 1+mod(res(3)-k,res(3)),:) = (/ i, j,-k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+mod(res(3)-k,res(3)),:) = (/-i, j,-k/)/geomdim
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/ i,-j,-k/)/geomdim
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/-i,-j,-k/)/geomdim
|
|
! enddo; enddo; enddo
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
do i = 0_pInt, res(1)/2_pInt
|
|
xi(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = (/real(i,pReal),real(j,pReal),real(k,pReal)/)/geomdim
|
|
if(k==res(3)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,3)= 0.0_pReal ! set highest frequencies to zero
|
|
if(j==res(2)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,2)= 0.0_pReal
|
|
if(i==res(1)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,1)= 0.0_pReal
|
|
enddo; enddo; enddo
|
|
do k = 1_pInt, res(3)
|
|
do j = 1_pInt, res(2)
|
|
do i = 1_pInt, res(1)/2_pInt+1_pInt
|
|
divergence_field_fft(i,j,k,1) = sum(field_fft(i,j,k,1,1:3)*xi(i,j,k,1:3))
|
|
if(vec_tens == 3_pInt) then
|
|
divergence_field_fft(i,j,k,2) = sum(field_fft(i,j,k,2,1:3)*xi(i,j,k,1:3))
|
|
divergence_field_fft(i,j,k,3) = sum(field_fft(i,j,k,3,1:3)*xi(i,j,k,1:3))
|
|
endif
|
|
enddo; enddo; enddo
|
|
divergence_field_fft = divergence_field_fft*img*2.0_pReal*pi
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), divergence_field_fft, divergence_field)
|
|
! why not weighting the divergence field?
|
|
end subroutine divergence_fft
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine divergence_fdm(res,geomdim,vec_tens,order,field,divergence_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
! calculates divergence field using FDM with variable accuracy
|
|
! use vec_tes to decide if tensor (3) or vector (1)
|
|
|
|
implicit none
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
integer(pInt), intent(in) :: vec_tens
|
|
integer(pInt), intent(inout) :: order
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),vec_tens,3) :: field
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),vec_tens) :: divergence_field
|
|
! other variables
|
|
integer(pInt), dimension(6,3) :: coordinates
|
|
integer(pInt) i, j, k, m, l
|
|
real(pReal), dimension(4,4), parameter :: FDcoefficient = reshape((/ &
|
|
1.0_pReal/2.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal,& !from http://en.wikipedia.org/wiki/Finite_difference_coefficients
|
|
2.0_pReal/3.0_pReal,-1.0_pReal/12.0_pReal, 0.0_pReal, 0.0_pReal,&
|
|
3.0_pReal/4.0_pReal,-3.0_pReal/20.0_pReal,1.0_pReal/ 60.0_pReal, 0.0_pReal,&
|
|
4.0_pReal/5.0_pReal,-1.0_pReal/ 5.0_pReal,4.0_pReal/105.0_pReal,-1.0_pReal/280.0_pReal/),&
|
|
(/4,4/))
|
|
|
|
print*, 'Calculating divergence of tensor/vector field using FDM'
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
divergence_field = 0.0_pReal
|
|
order = order + 1_pInt
|
|
do k = 0_pInt, res(3)-1_pInt; do j = 0_pInt, res(2)-1_pInt; do i = 0_pInt, res(1)-1_pInt
|
|
do m = 1_pInt, order
|
|
coordinates(1,1:3) = mesh_location(mesh_index((/i+m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
coordinates(2,1:3) = mesh_location(mesh_index((/i-m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
coordinates(3,1:3) = mesh_location(mesh_index((/i,j+m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
coordinates(4,1:3) = mesh_location(mesh_index((/i,j-m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
coordinates(5,1:3) = mesh_location(mesh_index((/i,j,k+m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
coordinates(6,1:3) = mesh_location(mesh_index((/i,j,k-m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
do l = 1_pInt, vec_tens
|
|
divergence_field(i+1_pInt,j+1_pInt,k+1_pInt,l) = divergence_field(i+1_pInt,j+1_pInt,k+1_pInt,l) + FDcoefficient(m,order) * &
|
|
((field(coordinates(1,1),coordinates(1,2),coordinates(1,3),l,1)- &
|
|
field(coordinates(2,1),coordinates(2,2),coordinates(2,3),l,1))*real(res(1),pReal)/geomdim(1) +&
|
|
(field(coordinates(3,1),coordinates(3,2),coordinates(3,3),l,2)- &
|
|
field(coordinates(4,1),coordinates(4,2),coordinates(4,3),l,2))*real(res(2),pReal)/geomdim(2) +&
|
|
(field(coordinates(5,1),coordinates(5,2),coordinates(5,3),l,3)- &
|
|
field(coordinates(6,1),coordinates(6,2),coordinates(6,3),l,3))*real(res(3),pReal)/geomdim(3))
|
|
enddo
|
|
enddo
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine divergence_fdm
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine tensor_avg(res,tensor,avg)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
!calculate average of tensor field
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) ::tensor
|
|
! output variables
|
|
real(pReal), intent(out), dimension(3,3) :: avg
|
|
! other variables
|
|
real(pReal) wgt
|
|
integer(pInt) m,n
|
|
|
|
wgt = 1.0_pReal/real(res(1)*res(2)*res(3), pReal)
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
avg(m,n) = sum(tensor(1:res(1),1:res(2),1:res(3),m,n)) * wgt
|
|
enddo; enddo
|
|
|
|
end subroutine tensor_avg
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine logstrain_spat(res,defgrad,logstrain_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
!calculate logarithmic strain in spatial configuration for given defgrad field
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
! other variables
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
integer(pInt) :: i, j, k
|
|
logical :: errmatinv
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real2,temp33_Real,errmatinv) !store R in temp33_Real
|
|
temp33_Real2 = math_inv3x3(temp33_Real)
|
|
temp33_Real = math_mul33x33(defgrad(i,j,k,1:3,1:3),temp33_Real2) ! v = F o inv(R), store in temp33_Real2
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine logstrain_spat
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine logstrain_mat(res,defgrad,logstrain_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
!calculate logarithmic strain in material configuration for given defgrad field
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
! other variables
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
integer(pInt) :: i, j, k
|
|
logical :: errmatinv
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real,temp33_Real2,errmatinv) !store U in temp33_Real
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine logstrain_mat
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine calculate_cauchy(res,defgrad,p_stress,c_stress)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
!calculate cauchy stress for given PK1 stress and defgrad field
|
|
!
|
|
implicit none
|
|
! input variables
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: p_stress
|
|
! output variables
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: c_stress
|
|
! other variables
|
|
real(pReal) :: jacobi
|
|
integer(pInt) :: i, j, k
|
|
|
|
c_stress = 0.0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
jacobi = math_det3x3(defgrad(i,j,k,1:3,1:3))
|
|
c_stress(i,j,k,1:3,1:3) = matmul(p_stress(i,j,k,1:3,1:3),transpose(defgrad(i,j,k,1:3,1:3)))/jacobi
|
|
enddo; enddo; enddo
|
|
|
|
end subroutine calculate_cauchy
|
|
|
|
END MODULE math
|