DAMASK_EICMD/code/DAMASK_spectral_SolverAL.f90

591 lines
24 KiB
Fortran

! module DAMASK_spectral_SolverAL
! use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
! use DAMASK_spectral_Utilities
! use math
! use mesh, only : &
! mesh_spectral_getResolution, &
! mesh_spectral_getDimension
! implicit none
! #include <finclude/petsc.h>
! #include <finclude/petscvec.h90>
! character (len=*), parameter, public :: &
! DAMASK_spectral_SolverAL_label = 'AL'
! !--------------------------------------------------------------------------------------------------
! ! PETSc data
! SNES snes
! KSP ksp
! DM da
! Vec x,r
! PetscErrorCode ierr_psc
! PetscMPIInt rank
! PetscObject dummy
! PetscInt xs,xm,gxs,gxm
! PetscInt ys,ym,gys,gym
! PetscInt zs,zm,gzs,gzm
! character(len=1024) :: PetSc_options = '-snes_type ngmres -snes_ngmres_anderson -snes_monitor -snes_view'
! !external FormFunctionLocal, SNESConverged_Interactive
! !--------------------------------------------------------------------------------------------------
! ! common pointwise data
! real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, F_lambda, F_lambda_lastInc, P
! real(pReal), dimension(:,:,:,:), allocatable :: coordinates
! real(pReal), dimension(:,:,:), allocatable :: temperature
! !--------------------------------------------------------------------------------------------------
! ! stress, stiffness and compliance average etc.
! real(pReal), dimension(3,3) :: &
! F_aim = math_I3, &
! F_aim_lastInc = math_I3, &
! P_av
! real(pReal), dimension(3,3,3,3) :: &
! !C_ref = 0.0_pReal, &
! C = 0.0_pReal
! integer(pInt) :: iter
! real(pReal) :: err_div, err_stress
! contains
! subroutine AL_init()
! use IO, only: &
! IO_read_JobBinaryFile, &
! IO_write_JobBinaryFile
! use FEsolving, only: &
! restartInc
! use DAMASK_interface, only: &
! getSolverJobName
! implicit none
! integer(pInt) :: i,j,k
! call Utilities_init()
! allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
! allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
! allocate (F_lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
! allocate (F_lambda_lastInc(res(1),res(2),res(3),3,3), source = 0.0_pReal)
! allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
! allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
! allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal)
! !--------------------------------------------------------------------------------------------------
! ! init fields
! if (restartInc == 1_pInt) then ! no deformation (no restart)
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! F(i,j,k,1:3,1:3) = math_I3
! F_lastInc(i,j,k,1:3,1:3) = math_I3
! F_lambda(i,j,k,1:3,1:3) = math_I3
! F_lambda_lastInc(i,j,k,1:3,1:3) = math_I3
! coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
! - geomdim/real(2_pInt*res,pReal)
! enddo; enddo; enddo
! elseif (restartInc > 1_pInt) then ! using old values from file
! if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
! restartInc - 1_pInt,' from file'
! call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
! trim(getSolverJobName()),size(F))
! read (777,rec=1) F
! close (777)
! call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
! trim(getSolverJobName()),size(F_lastInc))
! read (777,rec=1) F_lastInc
! close (777)
! call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda',&
! trim(getSolverJobName()),size(F_lambda))
! read (777,rec=1) F
! close (777)
! call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda_lastInc',&
! trim(getSolverJobName()),size(F_lambda_lastInc))
! read (777,rec=1) F_lastInc
! close (777)
! call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
! read (777,rec=1) F_aim
! close (777)
! call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
! read (777,rec=1) F_aim_lastInc
! close (777)
! coordinates = 0.0 ! change it later!!!
! endif
! call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,&
! P,C,P_av,.false.,math_I3)
! !--------------------------------------------------------------------------------------------------
! ! reference stiffness
! if (restartInc == 1_pInt) then
! call IO_write_jobBinaryFile(777,'C_ref',size(C))
! write (777,rec=1) C
! close(777)
! elseif (restartInc > 1_pInt) then
! call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C))
! read (777,rec=1) C
! close (777)
! endif
! call Utilities_updateGamma(C_ref)
! !--------------------------------------------------------------------------------------------------
! ! PETSc Init
! call PetscInitialize(PETSC_NULL_CHARACTER,ierr_psc)
! call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr_psc)
! call SNESCreate(PETSC_COMM_WORLD,snes,ierr_psc)
! call DMDACreate3d(PETSC_COMM_WORLD, &
! DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, &
! DMDA_STENCIL_BOX,res(1),res(2),res(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, &
! 18,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr_psc)
! call DMCreateGlobalVector(da,x,ierr_psc)
! call VecDuplicate(x,r,ierr_psc)
! call DMDASetLocalFunction(da,FormFunctionLocal,ierr_psc)
! call SNESSetDM(snes,da,ierr_psc)
! call SNESSetFunction(snes,r,SNESDMDAComputeFunction,da,ierr_psc)
! call SNESSetConvergenceTest(snes,SNESConverged_Interactive,dummy,PETSC_NULL_FUNCTION,ierr_psc)
! call PetscOptionsInsertString(PetSc_options,ierr_psc)
! call SNESSetFromOptions(snes,ierr_psc)
! call DMDAGetCorners(da,xs,ys,zs,xm,ym,zm,ierr_psc)
! call DMDAGetCorners(da,gxs,gys,gzs,gxm,gym,gzm,ierr_psc)
! xs = xs+1; gxs = gxs+1; xm = xm-1; gxm = gxm-1
! ys = ys+1; gys = gys+1; ym = ym-1; gym = gym-1
! zs = zs+1; gzs = gzs+1; zm = zm-1; gzm = gzm-1
! end subroutine AL_init
! type(solutionState) function AL_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
! use numerics, only: &
! itmax, &
! itmin, &
! update_gamma
! use IO, only: &
! IO_write_JobBinaryFile
! use FEsolving, only: &
! restartWrite
! implicit none
! !--------------------------------------------------------------------------------------------------
! ! input data for solution
! real(pReal), intent(in) :: timeinc, timeinc_old
! real(pReal), intent(in) :: guessmode
! logical, intent(in) :: velgrad
! real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
! logical, dimension(9), intent(in) :: mask_stressVector
! !--------------------------------------------------------------------------------------------------
! ! loop variables, convergence etc.
! real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
! real(pReal), dimension(3,3) :: temp33_Real
! real(pReal), dimension(3,3,3,3) :: S
! real(pReal), dimension(3,3) :: mask_stress, &
! mask_defgrad, &
! deltaF_aim, &
! F_aim_lab, &
! F_aim_lab_lastIter
! integer(pInt) :: i, j, k
! logical :: ForwardData
! real(pReal) :: defgradDet
! real(pReal) :: defgradDetMax, defgradDetMin
! PetscScalar, pointer :: xx_psc(:)
! mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
! mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
! if (restartWrite) then
! write(6,'(a)') 'writing converged results for restart'
! call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) ! writing deformation gradient field to file
! write (777,rec=1) F_LastInc
! close (777)
! call IO_write_jobBinaryFile(777,'C',size(C))
! write (777,rec=1) C
! close(777)
! endif
! ForwardData = .True.
! if (velgrad) then ! calculate deltaF_aim from given L and current F
! deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
! else ! deltaF_aim = fDot *timeinc where applicable
! deltaF_aim = timeinc * mask_defgrad * F_BC
! endif
! !--------------------------------------------------------------------------------------------------
! ! winding forward of deformation aim in loadcase system
! temp33_Real = F_aim
! F_aim = F_aim &
! + guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
! + deltaF_aim
! F_aim_lastInc = temp33_Real
! F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
! !--------------------------------------------------------------------------------------------------
! ! update local deformation gradient and coordinates
! deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! temp33_Real = F(i,j,k,1:3,1:3)
! F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
! + guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))* &
! timeinc/timeinc_old + (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
! F_lastInc(i,j,k,1:3,1:3) = temp33_Real
! temp33_Real = F_lambda(i,j,k,1:3,1:3)
! F_lambda(i,j,k,1:3,1:3) = F_lambda(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
! + guessmode * (F_lambda(i,j,k,1:3,1:3) - F_lambda_lastInc(i,j,k,1:3,1:3))* &
! timeinc/timeinc_old + (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
! F_lambda_lastInc(i,j,k,1:3,1:3) = temp33_Real
! enddo; enddo; enddo
! call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),& ! calculate current coordinates
! 1.0_pReal,F_lastInc,coordinates)
! iter = 0_pInt
! S = Utilities_stressBC(rotation_BC,mask_stressVector,C)
! if (update_gamma) call Utilities_updateGamma(C)
! call VecGetArrayF90(x,xx_psc,ierr_psc)
! call FormInitialGuessLocal(xx_psc)
! call VecRestoreArrayF90(x,xx_psc,ierr_psc)
! call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr_psc)
! convergenceLoop: do while((iter < itmax .and. (any([err_div ,err_stress] > 1.0_pReal)))&
! .or. iter < itmin)
! iter = iter + 1_pInt
! !--------------------------------------------------------------------------------------------------
! ! report begin of new iteration
! write(6,'(a)') ''
! write(6,'(a)') '=================================================================='
! write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
! write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
! math_transpose33(F_aim)
! F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
! !--------------------------------------------------------------------------------------------------
! ! evaluate constitutive response
! call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
! P,C,P_av,ForwardData,rotation_BC)
! ForwardData = .False.
! !--------------------------------------------------------------------------------------------------
! ! stress BC handling
! if(any(mask_stressVector)) then ! calculate stress BC if applied
! F_aim = F_aim - math_mul3333xx33(S, ((P_av - P_BC)))
! err_stress = mask_stress * (P_av - P_BC)
! else
! err_stress = 0.0_pReal
! endif
! F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
! !--------------------------------------------------------------------------------------------------
! ! updated deformation gradient
! field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
! call FFT_forward()
! err_div = calcDivergence()
! call convolution_fourier(F_aim_lab_lastIter - F_aim_lab, C_ref)
! call FFT_backward()
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
! enddo; enddo; enddo
! !--------------------------------------------------------------------------------------------------
! ! calculate some additional output
! if(debugGeneral) then
! maxCorrectionSkew = 0.0_pReal
! maxCorrectionSym = 0.0_pReal
! temp33_Real = 0.0_pReal
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! maxCorrectionSym = max(maxCorrectionSym,&
! maxval(math_symmetric33(field_real(i,j,k,1:3,1:3))))
! maxCorrectionSkew = max(maxCorrectionSkew,&
! maxval(math_skew33(field_real(i,j,k,1:3,1:3))))
! temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3)
! enddo; enddo; enddo
! write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
! maxCorrectionSym*wgt
! write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
! maxCorrectionSkew*wgt
! write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
! maxval(math_symmetric33(temp33_real))/&
! maxval(math_skew33(temp33_real))
! endif
! !--------------------------------------------------------------------------------------------------
! ! calculate bounds of det(F) and report
! if(debugGeneral) then
! defgradDetMax = -huge(1.0_pReal)
! defgradDetMin = +huge(1.0_pReal)
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! defgradDet = math_det33(F(i,j,k,1:3,1:3))
! defgradDetMax = max(defgradDetMax,defgradDet)
! defgradDetMin = min(defgradDetMin,defgradDet)
! enddo; enddo; enddo
! write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
! write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
! endif
! enddo convergenceLoop
! end function AL_solution
! subroutine AL_destroy()
! implicit none
! call VecDestroy(x,ierr_psc)
! call VecDestroy(r,ierr_psc)
! call SNESDestroy(snes,ierr_psc)
! call DMDestroy(da,ierr_psc)
! call PetscFinalize(ierr_psc)
! call Utilities_destroy()
! end subroutine AL_destroy
! ! -------------------------------------------------------------------
! subroutine FormInitialGuessLocal(xx_psc)
! implicit none
! #include <finclude/petsc.h>
! ! Input/output variables:
! PetscScalar xx_psc(0:17,gxs:(gxs+gxm),gys:(gys+gym),gxs:(gzs+gzm))
! integer(pInt) :: i, j, k
! ! Compute function over the locally owned part of the grid
! do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm
! xx_psc(0,i,j,k) = F(i,j,k,1,1)
! xx_psc(1,i,j,k) = F(i,j,k,1,2)
! xx_psc(2,i,j,k) = F(i,j,k,1,3)
! xx_psc(3,i,j,k) = F(i,j,k,2,1)
! xx_psc(4,i,j,k) = F(i,j,k,2,2)
! xx_psc(5,i,j,k) = F(i,j,k,2,3)
! xx_psc(6,i,j,k) = F(i,j,k,3,1)
! xx_psc(7,i,j,k) = F(i,j,k,3,2)
! xx_psc(8,i,j,k) = F(i,j,k,3,3)
! xx_psc(9,i,j,k) = F_lambda(i,j,k,1,1)
! xx_psc(10,i,j,k) = F_lambda(i,j,k,1,2)
! xx_psc(11,i,j,k) = F_lambda(i,j,k,1,3)
! xx_psc(12,i,j,k) = F_lambda(i,j,k,2,1)
! xx_psc(13,i,j,k) = F_lambda(i,j,k,2,2)
! xx_psc(14,i,j,k) = F_lambda(i,j,k,2,3)
! xx_psc(15,i,j,k) = F_lambda(i,j,k,3,1)
! xx_psc(16,i,j,k) = F_lambda(i,j,k,3,2)
! xx_psc(17,i,j,k) = F_lambda(i,j,k,3,3)
! enddo; enddo; enddo
! return
! end subroutine FormInitialGuessLocal
! ! ---------------------------------------------------------------------
! !
! ! Input Parameter:
! ! x - local vector data
! !
! ! Output Parameters:
! ! f - local vector data, f(x)
! ! ierr - error code
! !
! ! Notes:
! ! This routine uses standard Fortran-style computations over a 3-dim array.
! !
! subroutine FormFunctionLocal(in,x_scal,f_scal,dummy,ierr_psc)
! use numerics, only: &
! itmax, &
! itmin
! implicit none
! #include <finclude/petsc.h>
! integer(pInt) :: i,j,k
! ! Input/output variables:
! DMDALocalInfo in(DMDA_LOCAL_INFO_SIZE)
! PetscScalar x_scal(0:17,XG_RANGE,YG_RANGE,ZG_RANGE)
! PetscScalar f_scal(0:17,X_RANGE,Y_RANGE,Z_RANGE)
! real(pReal), dimension (3,3) :: temp, lambda_av, F_star_av
! PetscObject dummy
! PetscInt gzs,gze
! PetscInt gxs,gxe
! PetscInt gys,gye
! PetscErrorCode ierr_psc
! gxs = in(DMDA_LOCAL_INFO_GXS)+1
! gxe = gxs+in(DMDA_LOCAL_INFO_GXM)-1
! gys = in(DMDA_LOCAL_INFO_GYS)+1
! gye = gxs+in(DMDA_LOCAL_INFO_GYM)-1
! gzs = in(DMDA_LOCAL_INFO_GZS)+1
! gze = gzs+in(DMDA_LOCAL_INFO_GZM)-1
! iter = iter + 1_pInt
! !--------------------------------------------------------------------------------------------------
! ! report begin of new iteration
! write(6,'(a)') ''
! write(6,'(a)') '=================================================================='
! write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
! write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
! math_transpose33(F_aim)
! ! F_star_av = 0.0
! ! lambda_av = 0.0
! ! do k=gzs,gze; do j=gys,gye; do i=gxs,gxe
! ! F(i,j,k,1,1) = x_scal(0,i,j,k)
! ! F(i,j,k,1,2) = x_scal(1,i,j,k)
! ! F(i,j,k,1,3) = x_scal(2,i,j,k)
! ! F(i,j,k,2,1) = x_scal(3,i,j,k)
! ! F(i,j,k,2,2) = x_scal(4,i,j,k)
! ! F(i,j,k,2,3) = x_scal(5,i,j,k)
! ! F(i,j,k,3,1) = x_scal(6,i,j,k)
! ! F(i,j,k,3,2) = x_scal(7,i,j,k)
! ! F(i,j,k,3,3) = x_scal(8,i,j,k)
! ! F_lambda(i,j,k,1,1) = x_scal(9,i,j,k)
! ! F_lambda(i,j,k,1,2) = x_scal(10,i,j,k)
! ! F_lambda(i,j,k,1,3) = x_scal(11,i,j,k)
! ! F_lambda(i,j,k,2,1) = x_scal(12,i,j,k)
! ! F_lambda(i,j,k,2,2) = x_scal(13,i,j,k)
! ! F_lambda(i,j,k,2,3) = x_scal(14,i,j,k)
! ! F_lambda(i,j,k,3,1) = x_scal(15,i,j,k)
! ! F_lambda(i,j,k,3,2) = x_scal(16,i,j,k)
! ! F_lambda(i,j,k,3,3) = x_scal(17,i,j,k)
! ! F_star_av = F_star_av + F(i,j,k,1:3,1:3)
! ! lambda_av = lambda_av + F_lambda(i,j,k,1:3,1:3)
! ! enddo; enddo; enddo
! ! F_star_av = F_star_av *wgt
! lambda_av = math_mul3333xx33(C_inc0,lambda_av*wgt-math_I3)
! !--------------------------------------------------------------------------------------------------
! ! evaluate constitutive response
! real(pReal), intent(in) :: timeinc, timeinc_old
! real(pReal), intent(in) :: guessmode
! logical, intent(in) :: velgrad
! real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
! logical, dimension(9), intent(in) :: mask_stressVector
! call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
! P,C,P_av,ForwardData,rotation_BC)
! ForwardData = .False.
! !--------------------------------------------------------------------------------------------------
! ! stress BC handling
! if(any(mask_stressVector)) then ! calculate stress BC if applied
! F_aim = F_aim - math_mul3333xx33(S, ((P_av - P_BC)))
! err_stress = maxval(mask_stress * (P_av - P_BC))
! else
! err_stress = 0.0_pReal
! endif
! F_aim_lab = math_rotate_backward33(F_aim,rotation_BC)
! !--------------------------------------------------------------------------------------------------
! ! doing Fourier transform
! field_real = 0.0_pReal
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! field_real(i,j,k,1:3,1:3) = math_mul3333xx33(C_ref,F_lambda(i,j,k,1:3,1:3)-F(i,j,k,1:3,1:3))
! enddo; enddo; enddo
! call Utilities_forwardFFT()
! call Utilities_fourierConvolution(F_aim_lab)
! call Utilities_backwardFFT()
! err_f = 0.0_pReal
! err_f_point = 0.0_pReal
! err_p = 0.0_pReal
! err_p_point = 0.0_pReal
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! temp33_real = field_real(i,j,k,1:3,1:3) - F(i,j,k,1:3,1:3)
! err_f_point = max(err_f_point, maxval(abs(temp33_real)))
! err_f = err_f + sum(temp33_real*temp33_real)
! temp33_real = F_lambda(i,j,k,1:3,1:3) - &
! math_mul3333xx33(S_inc0,P(i,j,k,1:3,1:3)) + math_I3
! err_p_point = max(err_p_point, maxval(abs(temp33_real)))
! err_p = err_p + sum(temp33_real*temp33_real)
! enddo; enddo; enddo
! err_f = wgt*sqrt(err_f/sum((F_aim-math_I3)*(F_aim-math_I3)))
! err_p = wgt*sqrt(err_p/sum((F_aim-math_I3)*(F_aim-math_I3)))
! write(6,'(a,es14.7,es14.7)') 'error stress = ',err_stress/err_stress_tol
! write(6,*) ' '
! write(6,'(a,es14.7)') 'max abs err F', err_f
! write(6,'(a,es14.7)') 'max abs err P', err_p
! do k=zs,ze; do j=ys,ye; do i=xs,xe
! temp = math_mul3333xx33(S_inc0,P(i,j,k,1:3,1:3)) + math_I3 - F_lambda(i,j,k,1:3,1:3) &
! + F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3)
! f_scal(0,i,j,k) = temp(1,1)
! f_scal(1,i,j,k) = temp(1,2)
! f_scal(2,i,j,k) = temp(1,3)
! f_scal(3,i,j,k) = temp(2,1)
! f_scal(4,i,j,k) = temp(2,2)
! f_scal(5,i,j,k) = temp(2,3)
! f_scal(6,i,j,k) = temp(3,1)
! f_scal(7,i,j,k) = temp(3,2)
! f_scal(8,i,j,k) = temp(3,3)
! f_scal(9,i,j,k) = F(i,j,k,1,1) - field_real(i,j,k,1,1)
! f_scal(10,i,j,k) = F(i,j,k,1,2) - field_real(i,j,k,1,2)
! f_scal(11,i,j,k) = F(i,j,k,1,3) - field_real(i,j,k,1,3)
! f_scal(12,i,j,k) = F(i,j,k,2,1) - field_real(i,j,k,2,1)
! f_scal(13,i,j,k) = F(i,j,k,2,2) - field_real(i,j,k,2,2)
! f_scal(14,i,j,k) = F(i,j,k,2,3) - field_real(i,j,k,2,3)
! f_scal(15,i,j,k) = F(i,j,k,3,1) - field_real(i,j,k,3,1)
! f_scal(16,i,j,k) = F(i,j,k,3,2) - field_real(i,j,k,3,2)
! f_scal(17,i,j,k) = F(i,j,k,3,3) - field_real(i,j,k,3,3)
! enddo; enddo; enddo
! return
! end subroutine FormFunctionLocal
! ! ---------------------------------------------------------------------
! ! User defined convergence check
! !
! subroutine SNESConverged_Interactive(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr_psc)
! implicit none
! #include <finclude/petsc.h>
! ! Input/output variables:
! SNES snes
! PetscInt it
! PetscReal xnorm, snorm, fnorm
! SNESConvergedReason reason
! PetscObject dummy
! PetscErrorCode ierr_psc
! err_crit = max(err_stress/err_stress_tol, &
! err_f/1e-6, err_p/1e-5)
! !fnorm*wgt/sqrt(sum((F_star_av-math_I3)*(F_star_av-math_I3)))/err_div_tol)
! if ((err_crit > 1.0_pReal .or. it < itmin) .and. it < itmax) then
! reason = 0
! else
! reason = 1
! endif
! return
! end subroutine SNESConverged_Interactive
! end module DAMASK_spectral_SolverAL