1376 lines
68 KiB
Fortran
1376 lines
68 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
|
|
!--------------------------------------------------------------------------------------------------
|
|
module homogenization
|
|
use prec, only: &
|
|
#ifdef FEM
|
|
tOutputData, &
|
|
#endif
|
|
pInt, &
|
|
pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! General variables for the homogenization at a material point
|
|
implicit none
|
|
private
|
|
real(pReal), dimension(:,:,:,:), allocatable, public :: &
|
|
materialpoint_F0, & !< def grad of IP at start of FE increment
|
|
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
|
|
materialpoint_P !< first P--K stress of IP
|
|
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
|
|
materialpoint_dPdF !< tangent of first P--K stress at IP
|
|
#ifdef FEM
|
|
type(tOutputData), dimension(:), allocatable, public :: &
|
|
homogOutput
|
|
type(tOutputData), dimension(:,:), allocatable, public :: &
|
|
crystalliteOutput, &
|
|
phaseOutput
|
|
#else
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
materialpoint_results !< results array of material point
|
|
#endif
|
|
integer(pInt), public, protected :: &
|
|
materialpoint_sizeResults, &
|
|
homogenization_maxSizePostResults, &
|
|
thermal_maxSizePostResults, &
|
|
damage_maxSizePostResults, &
|
|
vacancyflux_maxSizePostResults, &
|
|
porosity_maxSizePostResults, &
|
|
hydrogenflux_maxSizePostResults
|
|
|
|
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
|
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment
|
|
materialpoint_subF !< def grad of IP to be reached at end of homog inc
|
|
real(pReal), dimension(:,:), allocatable, private :: &
|
|
materialpoint_subFrac, &
|
|
materialpoint_subStep, &
|
|
materialpoint_subdt
|
|
logical, dimension(:,:), allocatable, private :: &
|
|
materialpoint_requested, &
|
|
materialpoint_converged
|
|
logical, dimension(:,:,:), allocatable, private :: &
|
|
materialpoint_doneAndHappy
|
|
|
|
public :: &
|
|
homogenization_init, &
|
|
materialpoint_stressAndItsTangent, &
|
|
materialpoint_postResults
|
|
private :: &
|
|
homogenization_partitionDeformation, &
|
|
homogenization_updateState, &
|
|
homogenization_averageStressAndItsTangent, &
|
|
homogenization_postResults
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_init
|
|
#ifdef __GFORTRAN__
|
|
use, intrinsic :: iso_fortran_env, only: &
|
|
compiler_version, &
|
|
compiler_options
|
|
#endif
|
|
use math, only: &
|
|
math_I3
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_homogenization, &
|
|
debug_levelBasic, &
|
|
debug_e, &
|
|
debug_g
|
|
use mesh, only: &
|
|
mesh_maxNips, &
|
|
mesh_NcpElems, &
|
|
mesh_element, &
|
|
FE_Nips, &
|
|
FE_geomtype
|
|
#ifdef FEM
|
|
use crystallite, only: &
|
|
crystallite_sizePostResults
|
|
#else
|
|
use constitutive, only: &
|
|
constitutive_plasticity_maxSizePostResults, &
|
|
constitutive_source_maxSizePostResults
|
|
use crystallite, only: &
|
|
crystallite_maxSizePostResults
|
|
#endif
|
|
use material
|
|
use homogenization_none
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
use thermal_isothermal
|
|
use thermal_adiabatic
|
|
use thermal_conduction
|
|
use damage_none
|
|
use damage_local
|
|
use damage_nonlocal
|
|
use vacancyflux_isoconc
|
|
use vacancyflux_isochempot
|
|
use vacancyflux_cahnhilliard
|
|
use porosity_none
|
|
use porosity_phasefield
|
|
use hydrogenflux_isoconc
|
|
use hydrogenflux_cahnhilliard
|
|
use IO
|
|
use numerics, only: &
|
|
worldrank
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: FILEUNIT = 200_pInt
|
|
integer(pInt) :: e,i,p
|
|
integer(pInt), dimension(:,:), pointer :: thisSize
|
|
integer(pInt), dimension(:) , pointer :: thisNoutput
|
|
character(len=64), dimension(:,:), pointer :: thisOutput
|
|
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
|
|
logical :: knownHomogenization, knownThermal, knownDamage, knownVacancyflux, knownPorosity, knownHydrogenflux
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! open material.config
|
|
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
|
|
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse homogenization from config file
|
|
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) &
|
|
call homogenization_none_init()
|
|
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) &
|
|
call homogenization_isostrain_init(FILEUNIT)
|
|
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) &
|
|
call homogenization_RGC_init(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse thermal from config file
|
|
call IO_checkAndRewind(FILEUNIT)
|
|
if (any(thermal_type == THERMAL_isothermal_ID)) &
|
|
call thermal_isothermal_init()
|
|
if (any(thermal_type == THERMAL_adiabatic_ID)) &
|
|
call thermal_adiabatic_init(FILEUNIT)
|
|
if (any(thermal_type == THERMAL_conduction_ID)) &
|
|
call thermal_conduction_init(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse damage from config file
|
|
call IO_checkAndRewind(FILEUNIT)
|
|
if (any(damage_type == DAMAGE_none_ID)) &
|
|
call damage_none_init()
|
|
if (any(damage_type == DAMAGE_local_ID)) &
|
|
call damage_local_init(FILEUNIT)
|
|
if (any(damage_type == DAMAGE_nonlocal_ID)) &
|
|
call damage_nonlocal_init(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse vacancy transport from config file
|
|
call IO_checkAndRewind(FILEUNIT)
|
|
if (any(vacancyflux_type == VACANCYFLUX_isoconc_ID)) &
|
|
call vacancyflux_isoconc_init()
|
|
if (any(vacancyflux_type == VACANCYFLUX_isochempot_ID)) &
|
|
call vacancyflux_isochempot_init(FILEUNIT)
|
|
if (any(vacancyflux_type == VACANCYFLUX_cahnhilliard_ID)) &
|
|
call vacancyflux_cahnhilliard_init(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse porosity from config file
|
|
call IO_checkAndRewind(FILEUNIT)
|
|
if (any(porosity_type == POROSITY_none_ID)) &
|
|
call porosity_none_init()
|
|
if (any(porosity_type == POROSITY_phasefield_ID)) &
|
|
call porosity_phasefield_init(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse hydrogen transport from config file
|
|
call IO_checkAndRewind(FILEUNIT)
|
|
if (any(hydrogenflux_type == HYDROGENFLUX_isoconc_ID)) &
|
|
call hydrogenflux_isoconc_init()
|
|
if (any(hydrogenflux_type == HYDROGENFLUX_cahnhilliard_ID)) &
|
|
call hydrogenflux_cahnhilliard_init(FILEUNIT)
|
|
close(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write description file for homogenization output
|
|
mainProcess2: if (worldrank == 0) then
|
|
call IO_write_jobFile(FILEUNIT,'outputHomogenization')
|
|
do p = 1,material_Nhomogenization
|
|
if (any(material_homog == p)) then
|
|
i = homogenization_typeInstance(p) ! which instance of this homogenization type
|
|
knownHomogenization = .true. ! assume valid
|
|
select case(homogenization_type(p)) ! split per homogenization type
|
|
case (HOMOGENIZATION_NONE_ID)
|
|
outputName = HOMOGENIZATION_NONE_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID)
|
|
outputName = HOMOGENIZATION_ISOSTRAIN_label
|
|
thisNoutput => homogenization_isostrain_Noutput
|
|
thisOutput => homogenization_isostrain_output
|
|
thisSize => homogenization_isostrain_sizePostResult
|
|
case (HOMOGENIZATION_RGC_ID)
|
|
outputName = HOMOGENIZATION_RGC_label
|
|
thisNoutput => homogenization_RGC_Noutput
|
|
thisOutput => homogenization_RGC_output
|
|
thisSize => homogenization_RGC_sizePostResult
|
|
case default
|
|
knownHomogenization = .false.
|
|
end select
|
|
write(FILEUNIT,'(/,a,/)') '['//trim(homogenization_name(p))//']'
|
|
if (knownHomogenization) then
|
|
write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName)
|
|
write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
|
|
if (homogenization_type(p) /= HOMOGENIZATION_NONE_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
i = thermal_typeInstance(p) ! which instance of this thermal type
|
|
knownThermal = .true. ! assume valid
|
|
select case(thermal_type(p)) ! split per thermal type
|
|
case (THERMAL_isothermal_ID)
|
|
outputName = THERMAL_isothermal_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (THERMAL_adiabatic_ID)
|
|
outputName = THERMAL_adiabatic_label
|
|
thisNoutput => thermal_adiabatic_Noutput
|
|
thisOutput => thermal_adiabatic_output
|
|
thisSize => thermal_adiabatic_sizePostResult
|
|
case (THERMAL_conduction_ID)
|
|
outputName = THERMAL_conduction_label
|
|
thisNoutput => thermal_conduction_Noutput
|
|
thisOutput => thermal_conduction_output
|
|
thisSize => thermal_conduction_sizePostResult
|
|
case default
|
|
knownThermal = .false.
|
|
end select
|
|
if (knownThermal) then
|
|
write(FILEUNIT,'(a)') '(thermal)'//char(9)//trim(outputName)
|
|
if (thermal_type(p) /= THERMAL_isothermal_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
i = damage_typeInstance(p) ! which instance of this damage type
|
|
knownDamage = .true. ! assume valid
|
|
select case(damage_type(p)) ! split per damage type
|
|
case (DAMAGE_none_ID)
|
|
outputName = DAMAGE_none_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (DAMAGE_local_ID)
|
|
outputName = DAMAGE_local_label
|
|
thisNoutput => damage_local_Noutput
|
|
thisOutput => damage_local_output
|
|
thisSize => damage_local_sizePostResult
|
|
case (DAMAGE_nonlocal_ID)
|
|
outputName = DAMAGE_nonlocal_label
|
|
thisNoutput => damage_nonlocal_Noutput
|
|
thisOutput => damage_nonlocal_output
|
|
thisSize => damage_nonlocal_sizePostResult
|
|
case default
|
|
knownDamage = .false.
|
|
end select
|
|
if (knownDamage) then
|
|
write(FILEUNIT,'(a)') '(damage)'//char(9)//trim(outputName)
|
|
if (damage_type(p) /= DAMAGE_none_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
i = vacancyflux_typeInstance(p) ! which instance of this vacancy flux type
|
|
knownVacancyflux = .true. ! assume valid
|
|
select case(vacancyflux_type(p)) ! split per vacancy flux type
|
|
case (VACANCYFLUX_isoconc_ID)
|
|
outputName = VACANCYFLUX_isoconc_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (VACANCYFLUX_isochempot_ID)
|
|
outputName = VACANCYFLUX_isochempot_label
|
|
thisNoutput => vacancyflux_isochempot_Noutput
|
|
thisOutput => vacancyflux_isochempot_output
|
|
thisSize => vacancyflux_isochempot_sizePostResult
|
|
case (VACANCYFLUX_cahnhilliard_ID)
|
|
outputName = VACANCYFLUX_cahnhilliard_label
|
|
thisNoutput => vacancyflux_cahnhilliard_Noutput
|
|
thisOutput => vacancyflux_cahnhilliard_output
|
|
thisSize => vacancyflux_cahnhilliard_sizePostResult
|
|
case default
|
|
knownVacancyflux = .false.
|
|
end select
|
|
if (knownVacancyflux) then
|
|
write(FILEUNIT,'(a)') '(vacancyflux)'//char(9)//trim(outputName)
|
|
if (vacancyflux_type(p) /= VACANCYFLUX_isoconc_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
i = porosity_typeInstance(p) ! which instance of this porosity type
|
|
knownPorosity = .true. ! assume valid
|
|
select case(porosity_type(p)) ! split per porosity type
|
|
case (POROSITY_none_ID)
|
|
outputName = POROSITY_none_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (POROSITY_phasefield_ID)
|
|
outputName = POROSITY_phasefield_label
|
|
thisNoutput => porosity_phasefield_Noutput
|
|
thisOutput => porosity_phasefield_output
|
|
thisSize => porosity_phasefield_sizePostResult
|
|
case default
|
|
knownPorosity = .false.
|
|
end select
|
|
if (knownPorosity) then
|
|
write(FILEUNIT,'(a)') '(porosity)'//char(9)//trim(outputName)
|
|
if (porosity_type(p) /= POROSITY_none_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
i = hydrogenflux_typeInstance(p) ! which instance of this hydrogen flux type
|
|
knownHydrogenflux = .true. ! assume valid
|
|
select case(hydrogenflux_type(p)) ! split per hydrogen flux type
|
|
case (HYDROGENFLUX_isoconc_ID)
|
|
outputName = HYDROGENFLUX_isoconc_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (HYDROGENFLUX_cahnhilliard_ID)
|
|
outputName = HYDROGENFLUX_cahnhilliard_label
|
|
thisNoutput => hydrogenflux_cahnhilliard_Noutput
|
|
thisOutput => hydrogenflux_cahnhilliard_output
|
|
thisSize => hydrogenflux_cahnhilliard_sizePostResult
|
|
case default
|
|
knownHydrogenflux = .false.
|
|
end select
|
|
if (knownHydrogenflux) then
|
|
write(FILEUNIT,'(a)') '(hydrogenflux)'//char(9)//trim(outputName)
|
|
if (hydrogenflux_type(p) /= HYDROGENFLUX_isoconc_ID) then
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
endif
|
|
endif
|
|
enddo
|
|
close(FILEUNIT)
|
|
endif mainProcess2
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate and initialize global variables
|
|
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems) ! initialize to identity
|
|
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
materialpoint_F = materialpoint_F0 ! initialize to identity
|
|
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems), source=.false.)
|
|
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems), source=.true.)
|
|
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems), source=.true.)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate and initialize global state and postresutls variables
|
|
homogenization_maxSizePostResults = 0_pInt
|
|
thermal_maxSizePostResults = 0_pInt
|
|
damage_maxSizePostResults = 0_pInt
|
|
vacancyflux_maxSizePostResults = 0_pInt
|
|
porosity_maxSizePostResults = 0_pInt
|
|
hydrogenflux_maxSizePostResults = 0_pInt
|
|
do p = 1,material_Nhomogenization
|
|
homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState (p)%sizePostResults)
|
|
thermal_maxSizePostResults = max(thermal_maxSizePostResults, thermalState (p)%sizePostResults)
|
|
damage_maxSizePostResults = max(damage_maxSizePostResults ,damageState (p)%sizePostResults)
|
|
vacancyflux_maxSizePostResults = max(vacancyflux_maxSizePostResults ,vacancyfluxState (p)%sizePostResults)
|
|
porosity_maxSizePostResults = max(porosity_maxSizePostResults ,porosityState (p)%sizePostResults)
|
|
hydrogenflux_maxSizePostResults = max(hydrogenflux_maxSizePostResults ,hydrogenfluxState(p)%sizePostResults)
|
|
enddo
|
|
|
|
#ifdef FEM
|
|
allocate(homogOutput (material_Nhomogenization ))
|
|
allocate(crystalliteOutput(material_Ncrystallite, homogenization_maxNgrains))
|
|
allocate(phaseOutput (material_Nphase, homogenization_maxNgrains))
|
|
do p = 1, material_Nhomogenization
|
|
homogOutput(p)%sizeResults = homogState (p)%sizePostResults + &
|
|
thermalState (p)%sizePostResults + &
|
|
damageState (p)%sizePostResults + &
|
|
vacancyfluxState (p)%sizePostResults + &
|
|
porosityState (p)%sizePostResults + &
|
|
hydrogenfluxState(p)%sizePostResults
|
|
homogOutput(p)%sizeIpCells = count(material_homog==p)
|
|
allocate(homogOutput(p)%output(homogOutput(p)%sizeResults,homogOutput(p)%sizeIpCells))
|
|
enddo
|
|
do p = 1, material_Ncrystallite; do e = 1, homogenization_maxNgrains
|
|
crystalliteOutput(p,e)%sizeResults = crystallite_sizePostResults(p)
|
|
crystalliteOutput(p,e)%sizeIpCells = count(microstructure_crystallite(mesh_element(4,:)) == p .and. &
|
|
homogenization_Ngrains (mesh_element(3,:)) >= e)*mesh_maxNips
|
|
allocate(crystalliteOutput(p,e)%output(crystalliteOutput(p,e)%sizeResults,crystalliteOutput(p,e)%sizeIpCells))
|
|
enddo; enddo
|
|
do p = 1, material_Nphase; do e = 1, homogenization_maxNgrains
|
|
phaseOutput(p,e)%sizeResults = plasticState (p)%sizePostResults + &
|
|
sum(sourceState (p)%p(:)%sizePostResults)
|
|
phaseOutput(p,e)%sizeIpCells = count(material_phase(e,:,:) == p)
|
|
allocate(phaseOutput(p,e)%output(phaseOutput(p,e)%sizeResults,phaseOutput(p,e)%sizeIpCells))
|
|
enddo; enddo
|
|
#else
|
|
materialpoint_sizeResults = 1 & ! grain count
|
|
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
|
|
+ thermal_maxSizePostResults &
|
|
+ damage_maxSizePostResults &
|
|
+ vacancyflux_maxSizePostResults &
|
|
+ porosity_maxSizePostResults &
|
|
+ hydrogenflux_maxSizePostResults &
|
|
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
|
|
+ 1 + constitutive_plasticity_maxSizePostResults & ! constitutive size & constitutive results
|
|
+ constitutive_source_maxSizePostResults)
|
|
allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
|
|
#endif
|
|
|
|
mainProcess: if (worldrank == 0) then
|
|
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
endif mainProcess
|
|
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
#ifdef TODO
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state)
|
|
#endif
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
|
|
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
|
|
#ifndef FEM
|
|
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_results: ', shape(materialpoint_results)
|
|
#endif
|
|
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
|
|
endif
|
|
flush(6)
|
|
|
|
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) &
|
|
call IO_error(602_pInt,ext_msg='component (grain)', el=debug_e, g=debug_g)
|
|
|
|
end subroutine homogenization_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief parallelized calculation of stress and corresponding tangent at material points
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
|
|
use numerics, only: &
|
|
subStepMinHomog, &
|
|
subStepSizeHomog, &
|
|
stepIncreaseHomog, &
|
|
nHomog, &
|
|
nMPstate
|
|
use math, only: &
|
|
math_transpose33
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
terminallyIll
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
plasticState, &
|
|
sourceState, &
|
|
homogState, &
|
|
thermalState, &
|
|
damageState, &
|
|
vacancyfluxState, &
|
|
porosityState, &
|
|
hydrogenfluxState, &
|
|
phase_Nsources, &
|
|
mappingHomogenization, &
|
|
phaseAt, phasememberAt, &
|
|
homogenization_Ngrains
|
|
use crystallite, only: &
|
|
crystallite_F0, &
|
|
crystallite_Fp0, &
|
|
crystallite_Fp, &
|
|
crystallite_Fi0, &
|
|
crystallite_Fi, &
|
|
crystallite_Lp0, &
|
|
crystallite_Lp, &
|
|
crystallite_Li0, &
|
|
crystallite_Li, &
|
|
crystallite_dPdF, &
|
|
crystallite_dPdF0, &
|
|
crystallite_Tstar0_v, &
|
|
crystallite_Tstar_v, &
|
|
crystallite_partionedF0, &
|
|
crystallite_partionedF, &
|
|
crystallite_partionedFp0, &
|
|
crystallite_partionedLp0, &
|
|
crystallite_partionedFi0, &
|
|
crystallite_partionedLi0, &
|
|
crystallite_partioneddPdF0, &
|
|
crystallite_partionedTstar0_v, &
|
|
crystallite_dt, &
|
|
crystallite_requested, &
|
|
crystallite_converged, &
|
|
crystallite_stressAndItsTangent, &
|
|
crystallite_orientations
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_homogenization, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_MaterialpointLoopDistribution, &
|
|
debug_MaterialpointStateLoopDistribution
|
|
|
|
implicit none
|
|
real(pReal), intent(in) :: dt !< time increment
|
|
logical, intent(in) :: updateJaco !< initiating Jacobian update
|
|
integer(pInt) :: &
|
|
NiterationHomog, &
|
|
NiterationMPstate, &
|
|
g, & !< grain number
|
|
i, & !< integration point number
|
|
e, & !< element number
|
|
mySource, &
|
|
myNgrains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize to starting condition
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
|
|
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
|
|
math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
|
|
math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize restoration points of ...
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do g = 1,myNgrains
|
|
|
|
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
|
|
plasticState (phaseAt(g,i,e))%state0( :,phasememberAt(g,i,e))
|
|
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%state0( :,phasememberAt(g,i,e))
|
|
enddo
|
|
|
|
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads
|
|
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) ! ...intermediate def grads
|
|
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) ! ...intermediate velocity grads
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
|
|
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads
|
|
crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e) ! ...2nd PK stress
|
|
|
|
enddo; enddo
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e))
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
|
|
materialpoint_subFrac(i,e) = 0.0_pReal
|
|
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
|
|
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
|
|
materialpoint_requested(i,e) = .true. ! everybody requires calculation
|
|
endforall
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
thermalState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
damageState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal damage state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal vacancy transport state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
porosityState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal porosity state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal hydrogen transport state
|
|
enddo
|
|
NiterationHomog = 0_pInt
|
|
|
|
cutBackLooping: do while (.not. terminallyIll .and. &
|
|
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
|
|
converged: if ( materialpoint_converged(i,e) ) then
|
|
#ifdef DEBUG
|
|
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
|
|
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
|
|
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
|
|
endif
|
|
#endif
|
|
|
|
!---------------------------------------------------------------------------------------------------
|
|
! calculate new subStep and new subFrac
|
|
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
|
|
!$OMP FLUSH(materialpoint_subFrac)
|
|
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
|
|
stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
|
|
|
|
! wind forward grain starting point of...
|
|
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
|
|
|
|
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
|
|
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
|
|
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
|
|
|
|
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_Li(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
|
|
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
|
|
|
|
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = &
|
|
crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
|
|
do g = 1,myNgrains
|
|
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e)) = &
|
|
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e))
|
|
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e)) = &
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e))
|
|
enddo
|
|
enddo
|
|
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
thermalState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
damageState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) ! ...internal damage state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal vacancy transport state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
porosityState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal porosity state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e))! ...internal hydrogen transport state
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
|
|
!$OMP FLUSH(materialpoint_subF0)
|
|
elseif (materialpoint_requested(i,e)) then steppingNeeded ! already at final time (??)
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionHomog)
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
|
|
!$OMP END CRITICAL (distributionHomog)
|
|
endif
|
|
endif steppingNeeded
|
|
|
|
else converged
|
|
if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
|
|
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
|
|
! cutback makes no sense
|
|
!$OMP FLUSH(terminallyIll)
|
|
if (.not. terminallyIll) then ! so first signals terminally ill...
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
!$OMP CRITICAL (setTerminallyIll)
|
|
terminallyIll = .true. ! ...and kills all others
|
|
!$OMP END CRITICAL (setTerminallyIll)
|
|
else ! cutback makes sense
|
|
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
#ifdef DEBUG
|
|
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
|
|
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
|
|
materialpoint_subStep(i,e),' at el ip',e,i
|
|
endif
|
|
#endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! restore...
|
|
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads
|
|
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = &
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
|
|
crystallite_Tstar_v(1:6,1:myNgrains,i,e) = &
|
|
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
do g = 1, myNgrains
|
|
plasticState (phaseAt(g,i,e))%state( :,phasememberAt(g,i,e)) = &
|
|
plasticState (phaseAt(g,i,e))%partionedState0(:,phasememberAt(g,i,e))
|
|
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%state( :,phasememberAt(g,i,e)) = &
|
|
sourceState(phaseAt(g,i,e))%p(mySource)%partionedState0(:,phasememberAt(g,i,e))
|
|
enddo
|
|
enddo
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal homogenization state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
thermalState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
thermalState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
thermalState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal thermal state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
damageState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
damageState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
damageState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) ! ...internal damage state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
vacancyfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal vacancy transport state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
porosityState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
porosityState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
porosityState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal porosity state
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%State( :,mappingHomogenization(1,i,e)) = &
|
|
hydrogenfluxState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))! ...internal hydrogen transport state
|
|
endif
|
|
endif converged
|
|
|
|
if (materialpoint_subStep(i,e) > subStepMinHomog) then
|
|
materialpoint_requested(i,e) = .true.
|
|
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
|
|
materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
|
|
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
|
|
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
|
|
endif
|
|
enddo IpLooping1
|
|
enddo elementLooping1
|
|
!$OMP END PARALLEL DO
|
|
|
|
NiterationMPstate = 0_pInt
|
|
|
|
convergenceLooping: do while (.not. terminallyIll .and. &
|
|
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
) .and. &
|
|
NiterationMPstate < nMPstate)
|
|
NiterationMPstate = NiterationMPstate + 1
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! deformation partitioning
|
|
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
|
|
! results in crystallite_partionedF
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if ( materialpoint_requested(i,e) .and. & ! process requested but...
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
|
|
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
|
|
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
|
|
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
|
|
else
|
|
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
|
|
endif
|
|
enddo IpLooping2
|
|
enddo elementLooping2
|
|
!$OMP END PARALLEL DO
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! crystallite integration
|
|
! based on crystallite_partionedF0,.._partionedF
|
|
! incrementing by crystallite_dt
|
|
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! state update
|
|
!$OMP PARALLEL DO
|
|
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if ( materialpoint_requested(i,e) .and. &
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then
|
|
if (.not. all(crystallite_converged(:,i,e))) then
|
|
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
|
|
materialpoint_converged(i,e) = .false.
|
|
else
|
|
materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
|
|
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy
|
|
endif
|
|
!$OMP FLUSH(materialpoint_converged)
|
|
if (materialpoint_converged(i,e)) then
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionMPState)
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt
|
|
!$OMP END CRITICAL (distributionMPState)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo IpLooping3
|
|
enddo elementLooping3
|
|
!$OMP END PARALLEL DO
|
|
|
|
enddo convergenceLooping
|
|
|
|
NiterationHomog = NiterationHomog + 1_pInt
|
|
|
|
enddo cutBackLooping
|
|
|
|
if (.not. terminallyIll ) then
|
|
call crystallite_orientations() ! calculate crystal orientations
|
|
!$OMP PARALLEL DO
|
|
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
call homogenization_averageStressAndItsTangent(i,e)
|
|
enddo IpLooping4
|
|
enddo elementLooping4
|
|
!$OMP END PARALLEL DO
|
|
else
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
end subroutine materialpoint_stressAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief parallelized calculation of result array at material points
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine materialpoint_postResults
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
mappingHomogenization, &
|
|
#ifdef FEM
|
|
phaseAt, phasememberAt, &
|
|
homogenization_maxNgrains, &
|
|
material_Ncrystallite, &
|
|
material_Nphase, &
|
|
#else
|
|
homogState, &
|
|
thermalState, &
|
|
damageState, &
|
|
vacancyfluxState, &
|
|
porosityState, &
|
|
hydrogenfluxState, &
|
|
#endif
|
|
plasticState, &
|
|
sourceState, &
|
|
material_phase, &
|
|
homogenization_Ngrains, &
|
|
microstructure_crystallite
|
|
#ifdef FEM
|
|
use constitutive, only: &
|
|
constitutive_plasticity_maxSizePostResults, &
|
|
constitutive_source_maxSizePostResults
|
|
#endif
|
|
use crystallite, only: &
|
|
#ifdef FEM
|
|
crystallite_maxSizePostResults, &
|
|
#endif
|
|
crystallite_sizePostResults, &
|
|
crystallite_postResults
|
|
|
|
implicit none
|
|
integer(pInt) :: &
|
|
thePos, &
|
|
theSize, &
|
|
myNgrains, &
|
|
myCrystallite, &
|
|
g, & !< grain number
|
|
i, & !< integration point number
|
|
e !< element number
|
|
#ifdef FEM
|
|
integer(pInt) :: &
|
|
myHomog, &
|
|
myPhase, &
|
|
crystalliteCtr(material_Ncrystallite, homogenization_maxNgrains), &
|
|
phaseCtr (material_Nphase, homogenization_maxNgrains)
|
|
real(pReal), dimension(1+crystallite_maxSizePostResults + &
|
|
1+constitutive_plasticity_maxSizePostResults + &
|
|
constitutive_source_maxSizePostResults) :: &
|
|
crystalliteResults
|
|
|
|
|
|
|
|
crystalliteCtr = 0_pInt; phaseCtr = 0_pInt
|
|
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
myCrystallite = microstructure_crystallite(mesh_element(4,e))
|
|
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
myHomog = mappingHomogenization(2,i,e)
|
|
thePos = mappingHomogenization(1,i,e)
|
|
homogOutput(myHomog)%output(1: &
|
|
homogOutput(myHomog)%sizeResults, &
|
|
thePos) = homogenization_postResults(i,e)
|
|
|
|
grainLooping :do g = 1,myNgrains
|
|
myPhase = phaseAt(g,i,e)
|
|
crystalliteResults(1:1+crystallite_sizePostResults(myCrystallite) + &
|
|
1+plasticState(myPhase)%sizePostResults + &
|
|
sum(sourceState(myPhase)%p(:)%sizePostResults)) = crystallite_postResults(g,i,e)
|
|
if (microstructure_crystallite(mesh_element(4,e)) == myCrystallite .and. &
|
|
homogenization_Ngrains (mesh_element(3,e)) >= g) then
|
|
crystalliteCtr(myCrystallite,g) = crystalliteCtr(myCrystallite,g) + 1_pInt
|
|
crystalliteOutput(myCrystallite,g)% &
|
|
output(1:crystalliteOutput(myCrystallite,g)%sizeResults,crystalliteCtr(myCrystallite,g)) = &
|
|
crystalliteResults(2:1+crystalliteOutput(myCrystallite,g)%sizeResults)
|
|
endif
|
|
if (material_phase(g,i,e) == myPhase) then
|
|
phaseCtr(myPhase,g) = phaseCtr(myPhase,g) + 1_pInt
|
|
phaseOutput(myPhase,g)% &
|
|
output(1:phaseOutput(myPhase,g)%sizeResults,phaseCtr(myPhase,g)) = &
|
|
crystalliteResults(3 + crystalliteOutput(myCrystallite,g)%sizeResults: &
|
|
1 + crystalliteOutput(myCrystallite,g)%sizeResults + &
|
|
1 + plasticState (myphase)%sizePostResults + &
|
|
sum(sourceState(myphase)%p(:)%sizePostResults))
|
|
endif
|
|
enddo grainLooping
|
|
enddo IpLooping
|
|
enddo elementLooping
|
|
#else
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
|
|
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
myCrystallite = microstructure_crystallite(mesh_element(4,e))
|
|
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
thePos = 0_pInt
|
|
|
|
theSize = homogState (mappingHomogenization(2,i,e))%sizePostResults &
|
|
+ thermalState (mappingHomogenization(2,i,e))%sizePostResults &
|
|
+ damageState (mappingHomogenization(2,i,e))%sizePostResults &
|
|
+ vacancyfluxState (mappingHomogenization(2,i,e))%sizePostResults &
|
|
+ porosityState (mappingHomogenization(2,i,e))%sizePostResults &
|
|
+ hydrogenfluxState(mappingHomogenization(2,i,e))%sizePostResults
|
|
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
|
|
thePos = thePos + 1_pInt
|
|
|
|
if (theSize > 0_pInt) then ! any homogenization results to mention?
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results
|
|
thePos = thePos + theSize
|
|
endif
|
|
|
|
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
|
|
thePos = thePos + 1_pInt
|
|
|
|
grainLooping :do g = 1,myNgrains
|
|
theSize = 1 + crystallite_sizePostResults(myCrystallite) + &
|
|
1 + plasticState (material_phase(g,i,e))%sizePostResults + & !ToDo
|
|
sum(sourceState(material_phase(g,i,e))%p(:)%sizePostResults)
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results
|
|
thePos = thePos + theSize
|
|
enddo grainLooping
|
|
enddo IpLooping
|
|
enddo elementLooping
|
|
!$OMP END PARALLEL DO
|
|
#endif
|
|
|
|
end subroutine materialpoint_postResults
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief partition material point def grad onto constituents
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_partitionDeformation(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use crystallite, only: &
|
|
crystallite_partionedF
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_partitionDeformation
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_partitionDeformation
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el) = 0.0_pReal
|
|
crystallite_partionedF(1:3,1:3,1:1,ip,el) = &
|
|
spread(materialpoint_subF(1:3,1:3,ip,el),3,1)
|
|
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
call homogenization_isostrain_partitionDeformation(&
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
el)
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
call homogenization_RGC_partitionDeformation(&
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
ip, &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
end subroutine homogenization_partitionDeformation
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
|
|
!> "happy" with result
|
|
!--------------------------------------------------------------------------------------------------
|
|
function homogenization_updateState(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
thermal_type, &
|
|
damage_type, &
|
|
vacancyflux_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_RGC_ID, &
|
|
THERMAL_adiabatic_ID, &
|
|
DAMAGE_local_ID, &
|
|
VACANCYFLUX_isochempot_ID
|
|
use crystallite, only: &
|
|
crystallite_P, &
|
|
crystallite_dPdF, &
|
|
crystallite_partionedF,&
|
|
crystallite_partionedF0
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_updateState
|
|
use thermal_adiabatic, only: &
|
|
thermal_adiabatic_updateState
|
|
use damage_local, only: &
|
|
damage_local_updateState
|
|
use vacancyflux_isochempot, only: &
|
|
vacancyflux_isochempot_updateState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
logical, dimension(2) :: homogenization_updateState
|
|
|
|
homogenization_updateState = .true.
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
homogenization_updateState = &
|
|
homogenization_updateState .and. &
|
|
homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
materialpoint_subdt(ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
chosenThermal: select case (thermal_type(mesh_element(3,el)))
|
|
case (THERMAL_adiabatic_ID) chosenThermal
|
|
homogenization_updateState = &
|
|
homogenization_updateState .and. &
|
|
thermal_adiabatic_updateState(materialpoint_subdt(ip,el), &
|
|
ip, &
|
|
el)
|
|
end select chosenThermal
|
|
|
|
chosenDamage: select case (damage_type(mesh_element(3,el)))
|
|
case (DAMAGE_local_ID) chosenDamage
|
|
homogenization_updateState = &
|
|
homogenization_updateState .and. &
|
|
damage_local_updateState(materialpoint_subdt(ip,el), &
|
|
ip, &
|
|
el)
|
|
end select chosenDamage
|
|
|
|
chosenVacancyflux: select case (vacancyflux_type(mesh_element(3,el)))
|
|
case (VACANCYFLUX_isochempot_ID) chosenVacancyflux
|
|
homogenization_updateState = &
|
|
homogenization_updateState .and. &
|
|
vacancyflux_isochempot_updateState(materialpoint_subdt(ip,el), &
|
|
ip, &
|
|
el)
|
|
end select chosenVacancyflux
|
|
|
|
end function homogenization_updateState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief derive average stress and stiffness from constituent quantities
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_averageStressAndItsTangent(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use crystallite, only: &
|
|
crystallite_P,crystallite_dPdF
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_averageStressAndItsTangent
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_averageStressAndItsTangent
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
materialpoint_P(1:3,1:3,ip,el) = sum(crystallite_P(1:3,1:3,1:1,ip,el),3)
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) &
|
|
= sum(crystallite_dPdF(1:3,1:3,1:3,1:3,1:1,ip,el),5)
|
|
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
call homogenization_isostrain_averageStressAndItsTangent(&
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
el)
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
call homogenization_RGC_averageStressAndItsTangent(&
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
end subroutine homogenization_averageStressAndItsTangent
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of homogenization results for post file inclusion. call only,
|
|
!> if homogenization_sizePostResults(i,e) > 0 !!
|
|
!--------------------------------------------------------------------------------------------------
|
|
function homogenization_postResults(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
mappingHomogenization, &
|
|
homogState, &
|
|
thermalState, &
|
|
damageState, &
|
|
vacancyfluxState, &
|
|
porosityState, &
|
|
hydrogenfluxState, &
|
|
homogenization_type, &
|
|
thermal_type, &
|
|
damage_type, &
|
|
vacancyflux_type, &
|
|
porosity_type, &
|
|
hydrogenflux_type, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID, &
|
|
THERMAL_isothermal_ID, &
|
|
THERMAL_adiabatic_ID, &
|
|
THERMAL_conduction_ID, &
|
|
DAMAGE_none_ID, &
|
|
DAMAGE_local_ID, &
|
|
DAMAGE_nonlocal_ID, &
|
|
VACANCYFLUX_isoconc_ID, &
|
|
VACANCYFLUX_isochempot_ID, &
|
|
VACANCYFLUX_cahnhilliard_ID, &
|
|
POROSITY_none_ID, &
|
|
POROSITY_phasefield_ID, &
|
|
HYDROGENFLUX_isoconc_ID, &
|
|
HYDROGENFLUX_cahnhilliard_ID
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_postResults
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_postResults
|
|
use thermal_adiabatic, only: &
|
|
thermal_adiabatic_postResults
|
|
use thermal_conduction, only: &
|
|
thermal_conduction_postResults
|
|
use damage_local, only: &
|
|
damage_local_postResults
|
|
use damage_nonlocal, only: &
|
|
damage_nonlocal_postResults
|
|
use vacancyflux_isochempot, only: &
|
|
vacancyflux_isochempot_postResults
|
|
use vacancyflux_cahnhilliard, only: &
|
|
vacancyflux_cahnhilliard_postResults
|
|
use porosity_phasefield, only: &
|
|
porosity_phasefield_postResults
|
|
use hydrogenflux_cahnhilliard, only: &
|
|
hydrogenflux_cahnhilliard_postResults
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
real(pReal), dimension( homogState (mappingHomogenization(2,ip,el))%sizePostResults &
|
|
+ thermalState (mappingHomogenization(2,ip,el))%sizePostResults &
|
|
+ damageState (mappingHomogenization(2,ip,el))%sizePostResults &
|
|
+ vacancyfluxState (mappingHomogenization(2,ip,el))%sizePostResults &
|
|
+ porosityState (mappingHomogenization(2,ip,el))%sizePostResults &
|
|
+ hydrogenfluxState(mappingHomogenization(2,ip,el))%sizePostResults) :: &
|
|
homogenization_postResults
|
|
integer(pInt) :: &
|
|
startPos, endPos
|
|
|
|
homogenization_postResults = 0.0_pReal
|
|
|
|
startPos = 1_pInt
|
|
endPos = homogState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
homogenization_postResults(startPos:endPos) = &
|
|
homogenization_isostrain_postResults(&
|
|
ip, &
|
|
el, &
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_F(1:3,1:3,ip,el))
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
homogenization_postResults(startPos:endPos) = &
|
|
homogenization_RGC_postResults(&
|
|
ip, &
|
|
el, &
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_F(1:3,1:3,ip,el))
|
|
end select chosenHomogenization
|
|
|
|
startPos = endPos + 1_pInt
|
|
endPos = endPos + thermalState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenThermal: select case (thermal_type(mesh_element(3,el)))
|
|
case (THERMAL_isothermal_ID) chosenThermal
|
|
|
|
case (THERMAL_adiabatic_ID) chosenThermal
|
|
homogenization_postResults(startPos:endPos) = &
|
|
thermal_adiabatic_postResults(ip, el)
|
|
case (THERMAL_conduction_ID) chosenThermal
|
|
homogenization_postResults(startPos:endPos) = &
|
|
thermal_conduction_postResults(ip, el)
|
|
end select chosenThermal
|
|
|
|
startPos = endPos + 1_pInt
|
|
endPos = endPos + damageState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenDamage: select case (damage_type(mesh_element(3,el)))
|
|
case (DAMAGE_none_ID) chosenDamage
|
|
|
|
case (DAMAGE_local_ID) chosenDamage
|
|
homogenization_postResults(startPos:endPos) = &
|
|
damage_local_postResults(ip, el)
|
|
|
|
case (DAMAGE_nonlocal_ID) chosenDamage
|
|
homogenization_postResults(startPos:endPos) = &
|
|
damage_nonlocal_postResults(ip, el)
|
|
end select chosenDamage
|
|
|
|
startPos = endPos + 1_pInt
|
|
endPos = endPos + vacancyfluxState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenVacancyflux: select case (vacancyflux_type(mesh_element(3,el)))
|
|
case (VACANCYFLUX_isoconc_ID) chosenVacancyflux
|
|
|
|
case (VACANCYFLUX_isochempot_ID) chosenVacancyflux
|
|
homogenization_postResults(startPos:endPos) = &
|
|
vacancyflux_isochempot_postResults(ip, el)
|
|
case (VACANCYFLUX_cahnhilliard_ID) chosenVacancyflux
|
|
homogenization_postResults(startPos:endPos) = &
|
|
vacancyflux_cahnhilliard_postResults(ip, el)
|
|
end select chosenVacancyflux
|
|
|
|
startPos = endPos + 1_pInt
|
|
endPos = endPos + porosityState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenPorosity: select case (porosity_type(mesh_element(3,el)))
|
|
case (POROSITY_none_ID) chosenPorosity
|
|
|
|
case (POROSITY_phasefield_ID) chosenPorosity
|
|
homogenization_postResults(startPos:endPos) = &
|
|
porosity_phasefield_postResults(ip, el)
|
|
end select chosenPorosity
|
|
|
|
startPos = endPos + 1_pInt
|
|
endPos = endPos + hydrogenfluxState(mappingHomogenization(2,ip,el))%sizePostResults
|
|
chosenHydrogenflux: select case (hydrogenflux_type(mesh_element(3,el)))
|
|
case (HYDROGENFLUX_isoconc_ID) chosenHydrogenflux
|
|
|
|
case (HYDROGENFLUX_cahnhilliard_ID) chosenHydrogenflux
|
|
homogenization_postResults(startPos:endPos) = &
|
|
hydrogenflux_cahnhilliard_postResults(ip, el)
|
|
end select chosenHydrogenflux
|
|
|
|
end function homogenization_postResults
|
|
|
|
end module homogenization
|