98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
from scipy import spatial as _spatial
|
|
import numpy as _np
|
|
|
|
from . import util
|
|
from . import grid_filters
|
|
|
|
|
|
def from_random(size,N_seeds,grid=None,seed=None):
|
|
"""
|
|
Random seeding in space.
|
|
|
|
Parameters
|
|
----------
|
|
size : numpy.ndarray of shape (3)
|
|
Physical size of the periodic field.
|
|
N_seeds : int
|
|
Number of seeds.
|
|
grid : numpy.ndarray of shape (3), optional.
|
|
If given, ensures that all seeds initiate one grain if using a
|
|
standard Voronoi tessellation.
|
|
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
|
A seed to initialize the BitGenerator. Defaults to None.
|
|
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
|
|
|
"""
|
|
rng = _np.random.default_rng(seed)
|
|
if grid is None:
|
|
coords = rng.random((N_seeds,3)) * size
|
|
else:
|
|
grid_coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
|
|
coords = grid_coords[rng.choice(_np.prod(grid),N_seeds, replace=False)] \
|
|
+ _np.broadcast_to(size/grid,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving grid
|
|
|
|
return coords
|
|
|
|
|
|
def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,seed=None):
|
|
"""
|
|
Seeding in space according to a Poisson disc distribution.
|
|
|
|
Parameters
|
|
----------
|
|
size : numpy.ndarray of shape (3)
|
|
Physical size of the periodic field.
|
|
N_seeds : int
|
|
Number of seeds.
|
|
N_candidates : int
|
|
Number of candidates to consider for finding best candidate.
|
|
distance : float
|
|
Minimum acceptable distance to other seeds.
|
|
periodic : boolean, optional
|
|
Calculate minimum distance for periodically repeated grid.
|
|
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
|
A seed to initialize the BitGenerator. Defaults to None.
|
|
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
|
|
|
"""
|
|
rng = _np.random.default_rng(seed)
|
|
coords = _np.empty((N_seeds,3))
|
|
coords[0] = rng.random(3) * size
|
|
|
|
i = 1
|
|
progress = util._ProgressBar(N_seeds+1,'',50)
|
|
while i < N_seeds:
|
|
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
|
tree = _spatial.cKDTree(coords[:i],boxsize=size) if periodic else \
|
|
_spatial.cKDTree(coords[:i])
|
|
distances, dev_null = tree.query(candidates)
|
|
best = distances.argmax()
|
|
if distances[best] > distance: # require minimum separation
|
|
coords[i] = candidates[best] # maximum separation to existing point cloud
|
|
i += 1
|
|
progress.update(i)
|
|
|
|
return coords
|
|
|
|
|
|
def from_geom(geom,selection=None,invert=False):
|
|
"""
|
|
Create seed from existing geometry description.
|
|
|
|
Parameters
|
|
----------
|
|
geom : damask.Geom
|
|
Geometry, from which the material IDs are used as seeds
|
|
selection : iterable of integers, optional
|
|
Material IDs to consider
|
|
invert : boolean, false
|
|
Do not consider the material IDs given in selection. Defaults to False.
|
|
|
|
"""
|
|
material = geom.material.reshape((-1,1),order='F')
|
|
mask = _np.full(geom.grid.prod(),True,dtype=bool) if selection is None else \
|
|
_np.isin(material,selection,invert=invert)
|
|
coords = grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
|
|
|
|
return (coords[mask],material[mask])
|