176 lines
9.0 KiB
Python
Executable File
176 lines
9.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import sys
|
|
from io import StringIO
|
|
from optparse import OptionParser
|
|
|
|
import numpy as np
|
|
from scipy import ndimage
|
|
|
|
import damask
|
|
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
|
|
getInterfaceEnergy = lambda A,B: np.float32((A*B != 0)*(A != B)*1.0) # 1.0 if A & B are distinct & nonzero, 0.0 otherwise
|
|
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
|
|
|
|
|
#--------------------------------------------------------------------------------------------------
|
|
# MAIN
|
|
#--------------------------------------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [geomfile(s)]', description = """
|
|
Smoothen interface roughness by simulated curvature flow.
|
|
This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain
|
|
up to a given distance 'd' voxels.
|
|
The final geometry is assembled by selecting at each voxel that grain index for which the concentration remains largest.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-d', '--distance',
|
|
dest = 'd',
|
|
type = 'float', metavar = 'float',
|
|
help = 'diffusion distance in voxels [%default]')
|
|
parser.add_option('-N', '--iterations',
|
|
dest = 'N',
|
|
type = 'int', metavar = 'int',
|
|
help = 'curvature flow iterations [%default]')
|
|
parser.add_option('-i', '--immutable',
|
|
action = 'extend', dest = 'immutable', metavar = '<int LIST>',
|
|
help = 'list of immutable microstructure indices')
|
|
parser.add_option('--ndimage',
|
|
dest = 'ndimage', action='store_true',
|
|
help = 'use ndimage.gaussian_filter in lieu of explicit FFT')
|
|
|
|
parser.set_defaults(d = 1,
|
|
N = 1,
|
|
immutable = [],
|
|
ndimage = False,
|
|
)
|
|
|
|
(options, filenames) = parser.parse_args()
|
|
|
|
options.immutable = list(map(int,options.immutable))
|
|
|
|
|
|
if filenames == []: filenames = [None]
|
|
|
|
for name in filenames:
|
|
damask.util.report(scriptName,name)
|
|
|
|
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
|
|
|
grid_original = geom.grid
|
|
damask.util.croak(geom)
|
|
microstructure = np.tile(geom.microstructure,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1
|
|
grid = np.array(microstructure.shape)
|
|
|
|
# --- initialize support data ---------------------------------------------------------------------
|
|
|
|
# store a copy the initial microstructure to find locations of immutable indices
|
|
microstructure_original = np.copy(microstructure)
|
|
|
|
if not options.ndimage:
|
|
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
|
|
|
|
# Calculates gaussian weights for simulating 3d diffusion
|
|
gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d),dtype=np.float32) \
|
|
/np.power(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(grid_original == 1))/2.,dtype=np.float32)
|
|
|
|
gauss[:,:,:grid[2]//2:-1] = gauss[:,:,1:(grid[2]+1)//2] # trying to cope with uneven (odd) grid size
|
|
gauss[:,:grid[1]//2:-1,:] = gauss[:,1:(grid[1]+1)//2,:]
|
|
gauss[:grid[0]//2:-1,:,:] = gauss[1:(grid[0]+1)//2,:,:]
|
|
gauss = np.fft.rfftn(gauss).astype(np.complex64)
|
|
|
|
for smoothIter in range(options.N):
|
|
|
|
interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32)
|
|
for i in (-1,0,1):
|
|
for j in (-1,0,1):
|
|
for k in (-1,0,1):
|
|
# assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood)
|
|
interfaceEnergy = np.maximum(interfaceEnergy,
|
|
getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll(
|
|
microstructure,i,axis=0), j,axis=1), k,axis=2)))
|
|
|
|
# periodically extend interfacial energy array by half a grid size in positive and negative directions
|
|
periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
grid[1]//2:-grid[1]//2,
|
|
grid[2]//2:-grid[2]//2]
|
|
|
|
# transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel
|
|
index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0.,
|
|
return_distances = False,
|
|
return_indices = True)
|
|
|
|
# want array index of nearest voxel on periodically extended boundary
|
|
periodic_bulkEnergy = periodic_interfaceEnergy[index[0],
|
|
index[1],
|
|
index[2]].reshape(2*grid) # fill bulk with energy of nearest interface
|
|
|
|
if options.ndimage:
|
|
periodic_diffusedEnergy = ndimage.gaussian_filter(
|
|
np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0.,
|
|
structure = struc,
|
|
iterations = int(round(options.d*2.))-1, # fat boundary
|
|
),
|
|
periodic_bulkEnergy, # ...and zero everywhere else
|
|
0.),
|
|
sigma = options.d)
|
|
else:
|
|
diffusedEnergy = np.fft.irfftn(np.fft.rfftn(
|
|
np.where(
|
|
ndimage.morphology.binary_dilation(interfaceEnergy > 0.,
|
|
structure = struc,
|
|
iterations = int(round(options.d*2.))-1),# fat boundary
|
|
periodic_bulkEnergy[grid[0]//2:-grid[0]//2, # retain filled energy on fat boundary...
|
|
grid[1]//2:-grid[1]//2,
|
|
grid[2]//2:-grid[2]//2], # ...and zero everywhere else
|
|
0.)).astype(np.complex64) *
|
|
gauss).astype(np.float32)
|
|
|
|
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
grid[1]//2:-grid[1]//2,
|
|
grid[2]//2:-grid[2]//2] # periodically extend the smoothed bulk energy
|
|
|
|
|
|
# transform voxels close to interface region
|
|
index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.95*np.amax(periodic_diffusedEnergy),
|
|
return_distances = False,
|
|
return_indices = True) # want index of closest bulk grain
|
|
|
|
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]//2:-grid[0]//2,
|
|
grid[1]//2:-grid[1]//2,
|
|
grid[2]//2:-grid[2]//2] # periodically extend the microstructure
|
|
|
|
microstructure = periodic_microstructure[index[0],
|
|
index[1],
|
|
index[2]].reshape(2*grid)[grid[0]//2:-grid[0]//2,
|
|
grid[1]//2:-grid[1]//2,
|
|
grid[2]//2:-grid[2]//2] # extent grains into interface region
|
|
|
|
# replace immutable microstructures with closest mutable ones
|
|
index = ndimage.morphology.distance_transform_edt(np.in1d(microstructure,options.immutable).reshape(grid),
|
|
return_distances = False,
|
|
return_indices = True)
|
|
microstructure = microstructure[index[0],
|
|
index[1],
|
|
index[2]]
|
|
|
|
immutable = np.zeros(microstructure.shape, dtype=np.bool)
|
|
# find locations where immutable microstructures have been in original structure
|
|
for micro in options.immutable:
|
|
immutable += microstructure_original == micro
|
|
|
|
# undo any changes involving immutable microstructures
|
|
microstructure = np.where(immutable, microstructure_original,microstructure)
|
|
|
|
geom=geom.duplicate(microstructure[0:grid_original[0],0:grid_original[1],0:grid_original[2]])
|
|
geom.add_comments(scriptID + ' ' + ' '.join(sys.argv[1:]))
|
|
|
|
geom.to_file(sys.stdout if name is None else name,format='ASCII',pack=False)
|