DAMASK_EICMD/code/DAMASK_spectral_SolverAL.f90

546 lines
21 KiB
Fortran

!--------------------------------------------------------------------------------------------------
! $Id: DAMASK_spectral_SolverAL.f90 1654 2012-08-03 09:25:48Z MPIE\m.diehl $
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief AL scheme solver
!--------------------------------------------------------------------------------------------------
module DAMASK_spectral_SolverAL
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use DAMASK_spectral_Utilities, only: &
solutionState
implicit none
character (len=*), parameter, public :: &
DAMASK_spectral_SolverAL_label = 'AL'
!--------------------------------------------------------------------------------------------------
! derived types
type solutionParams
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
end type solutionParams
type(solutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: snes
DM, private :: da
Vec, private :: x,r
PetscMPIInt, private :: rank
integer(pInt), private :: iter
PetscInt, private :: xs,xm,gxs,gxm
PetscInt, private :: ys,ym,gys,gym
PetscInt, private :: zs,zm,gzs,gzm
character(len=1024), private :: PetSc_options = '-snes_type ngmres -snes_ngmres_anderson -snes_monitor -snes_view'
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: F, F_lastInc, F_lambda, F_lambda_lastInc, P
real(pReal), private, dimension(:,:,:,:), allocatable :: coordinates
real(pReal), private, dimension(:,:,:), allocatable :: temperature
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
F_aim = math_I3, &
F_aim_lastInc = math_I3, &
P_av
real(pReal), private, dimension(3,3,3,3) :: &
C = 0.0_pReal, &
S = 0.0_pReal, &
C_scale = 0.0_pReal, &
S_scale = 0.0_pReal
real(pReal), private :: err_stress, err_f, err_p
logical, private :: ForwardData
real(pReal), private, dimension(3,3) :: &
mask_stress = 0.0_pReal
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine AL_init()
use IO, only: &
IO_read_JobBinaryFile, &
IO_write_JobBinaryFile
use FEsolving, only: &
restartInc
use DAMASK_interface, only: &
getSolverJobName
use DAMASK_spectral_Utilities, only: &
Utilities_init, &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
debugrestart
use mesh, only: &
res, &
geomdim
implicit none
integer(pInt) :: i,j,k
real(pReal), dimension(3,3) :: temp33_Real
PetscErrorCode ierr_psc
call Utilities_init()
write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectral_solverAL init -+>>>'
write(6,'(a)') ' $Id: DAMASK_spectral_SolverAL.f90 1654 2012-08-03 09:25:48Z MPIE\m.diehl $'
#include "compilation_info.f90"
write(6,'(a)') ''
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lambda_lastInc(res(1),res(2),res(3),3,3), source = 0.0_pReal)
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! init fields
if (restartInc == 1_pInt) then ! no deformation (no restart)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = math_I3
F_lastInc(i,j,k,1:3,1:3) = math_I3
F_lambda(i,j,k,1:3,1:3) = math_I3
F_lambda_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
- geomdim/real(2_pInt*res,pReal)
enddo; enddo; enddo
elseif (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
restartInc - 1_pInt,' from file'
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda',&
trim(getSolverJobName()),size(F_lambda))
read (777,rec=1) F
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda_lastInc',&
trim(getSolverJobName()),size(F_lambda_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
read (777,rec=1) F_aim
close (777)
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
coordinates = 0.0 ! change it later!!!
endif
call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,&
P,C,P_av,.false.,math_I3)
!--------------------------------------------------------------------------------------------------
! reference stiffness
if (restartInc == 1_pInt) then
call IO_write_jobBinaryFile(777,'C_ref',size(C))
write (777,rec=1) C
close(777)
elseif (restartInc > 1_pInt) then
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C))
read (777,rec=1) C
close (777)
endif
call Utilities_updateGamma(C)
C_scale = C
S_scale = math_invSym3333(C)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call PetscInitialize(PETSC_NULL_CHARACTER,ierr_psc)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr_psc)
call SNESCreate(PETSC_COMM_WORLD,snes,ierr_psc)
call DMDACreate3d(PETSC_COMM_WORLD, &
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, &
DMDA_STENCIL_BOX,res(1),res(2),res(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, &
18,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr_psc)
call DMCreateGlobalVector(da,x,ierr_psc)
call VecDuplicate(x,r,ierr_psc)
call DMDASetLocalFunction(da,AL_FormRHS,ierr_psc)
call SNESSetDM(snes,da,ierr_psc)
call SNESSetFunction(snes,r,SNESDMDAComputeFunction,da,ierr_psc)
call SNESSetConvergenceTest(snes,AL_converged,dummy,PETSC_NULL_FUNCTION,ierr_psc)
call PetscOptionsInsertString(PetSc_options,ierr_psc)
call SNESSetFromOptions(snes,ierr_psc)
call DMDAGetCorners(da,xs,ys,zs,xm,ym,zm,ierr_psc)
call DMDAGetCorners(da,gxs,gys,gzs,gxm,gym,gzm,ierr_psc)
xs = xs+1; gxs = gxs+1
xm = xm-1; gxm = gxm-1
ys = ys+1; gys = gys+1
ym = ym-1; gym = gym-1
zs = zs+1; gzs = gzs+1
zm = zm-1; gzm = gzm-1
end subroutine AL_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the AL scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(solutionState) function AL_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,temperature_bc,rotation_BC)
use numerics, only: &
update_gamma
use math, only: &
math_mul33x33 ,&
math_rotate_backward33, &
deformed_fft
use mesh, only: &
res,&
geomdim
use IO, only: &
IO_write_JobBinaryFile
use DAMASK_spectral_Utilities, only: &
boundaryCondition, &
Utilities_forwardField, &
Utilities_maskedCompliance, &
Utilities_updateGamma
use FEsolving, only: &
restartWrite
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: timeinc, timeinc_old, temperature_bc, guessmode
type(boundaryCondition), intent(in) :: P_BC,F_BC
real(pReal), dimension(3,3), intent(in) :: rotation_BC
real(pReal), dimension(3,3) :: deltaF_aim, &
F_aim_lab, &
F_aim_lab_lastIter
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: err_div, err_stress
integer(pInt) :: iter, row, column, i, j, k
real(pReal) :: defgradDet, defgradDetMax, defgradDetMin
real(pReal), dimension(3,3) :: temp33_Real
!--------------------------------------------------------------------------------------------------
!
PetscScalar, pointer :: xx_psc(:)
PetscErrorCode ierr_psc
!--------------------------------------------------------------------------------------------------
! restart information for spectral solver
if (restartWrite) then
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc))
write (777,rec=1) F_LastInc
close (777)
call IO_write_jobBinaryFile(777,'C',size(C))
write (777,rec=1) C
close(777)
endif
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
if (F_BC%myType=='l') then ! calculate deltaF_aim from given L and current F
deltaF_aim = timeinc * F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim)
elseif(F_BC%myType=='fdot') then ! deltaF_aim = fDot *timeinc where applicable
deltaF_aim = timeinc * F_BC%maskFloat * F_BC%values
endif
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * P_BC%maskFloat * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
call Utilities_forwardField(deltaF_aim,timeinc,timeinc_old,guessmode,F_lastInc,F)
call Utilities_forwardField(deltaF_aim,timeinc,timeinc_old,guessmode,F_lambda_lastInc,F_lambda)
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),1.0_pReal,F_lastInc,coordinates)
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C)
if (update_gamma) call Utilities_updateGamma(C)
iter = 0_pInt
ForwardData = .True.
mask_stress = P_BC%maskFloat
params%P_BC = P_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
call VecGetArrayF90(x,xx_psc,ierr_psc)
call AL_InitialGuess(xx_psc)
call VecRestoreArrayF90(x,xx_psc,ierr_psc)
call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr_psc)
end function AL_solution
! -------------------------------------------------------------------
subroutine AL_InitialGuess(xx_psc)
implicit none
#include <finclude/petsc.h>
! Input/output variables:
PetscScalar xx_psc(0:17,gxs:(gxs+gxm),gys:(gys+gym),gxs:(gzs+gzm))
integer(pInt) :: i, j, k
! Compute function over the locally owned part of the grid
do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm
xx_psc(0,i,j,k) = F(i,j,k,1,1)
xx_psc(1,i,j,k) = F(i,j,k,1,2)
xx_psc(2,i,j,k) = F(i,j,k,1,3)
xx_psc(3,i,j,k) = F(i,j,k,2,1)
xx_psc(4,i,j,k) = F(i,j,k,2,2)
xx_psc(5,i,j,k) = F(i,j,k,2,3)
xx_psc(6,i,j,k) = F(i,j,k,3,1)
xx_psc(7,i,j,k) = F(i,j,k,3,2)
xx_psc(8,i,j,k) = F(i,j,k,3,3)
xx_psc(9,i,j,k) = F_lambda(i,j,k,1,1)
xx_psc(10,i,j,k) = F_lambda(i,j,k,1,2)
xx_psc(11,i,j,k) = F_lambda(i,j,k,1,3)
xx_psc(12,i,j,k) = F_lambda(i,j,k,2,1)
xx_psc(13,i,j,k) = F_lambda(i,j,k,2,2)
xx_psc(14,i,j,k) = F_lambda(i,j,k,2,3)
xx_psc(15,i,j,k) = F_lambda(i,j,k,3,1)
xx_psc(16,i,j,k) = F_lambda(i,j,k,3,2)
xx_psc(17,i,j,k) = F_lambda(i,j,k,3,3)
enddo; enddo; enddo
return
end subroutine AL_InitialGuess
! ---------------------------------------------------------------------
!
! Input Parameter:
! x - local vector data
!
! Output Parameters:
! f - local vector data, f(x)
! ierr - error code
!
! Notes:
! This routine uses standard Fortran-style computations over a 3-dim array.
!
subroutine AL_FormRHS(in,x_scal,f_scal,dummy,ierr_psc)
use numerics, only: &
itmax, &
itmin
use math, only: &
math_rotate_backward33, &
math_transpose33, &
math_mul3333xx33
use mesh, only: &
res
use DAMASK_spectral_Utilities, only: &
field_real, &
Utilities_forwardFFT, &
Utilities_fourierConvolution, &
Utilities_backwardFFT, &
Utilities_constitutiveResponse
implicit none
#include <finclude/petsc.h>
integer(pInt) :: i,j,k
Input/output variables:
DMDALocalInfo in(DMDA_LOCAL_INFO_SIZE)
PetscScalar x_scal(0:17,XG_RANGE,YG_RANGE,ZG_RANGE)
PetscScalar f_scal(0:17,X_RANGE,Y_RANGE,Z_RANGE)
real(pReal), dimension (3,3) :: temp33_real
PetscObject dummy
PetscErrorCode ierr_psc
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm
F(i,j,k,1,1) = x_scal(0,i,j,k)
F(i,j,k,1,2) = x_scal(1,i,j,k)
F(i,j,k,1,3) = x_scal(2,i,j,k)
F(i,j,k,2,1) = x_scal(3,i,j,k)
F(i,j,k,2,2) = x_scal(4,i,j,k)
F(i,j,k,2,3) = x_scal(5,i,j,k)
F(i,j,k,3,1) = x_scal(6,i,j,k)
F(i,j,k,3,2) = x_scal(7,i,j,k)
F(i,j,k,3,3) = x_scal(8,i,j,k)
F_lambda(i,j,k,1,1) = x_scal(9,i,j,k)
F_lambda(i,j,k,1,2) = x_scal(10,i,j,k)
F_lambda(i,j,k,1,3) = x_scal(11,i,j,k)
F_lambda(i,j,k,2,1) = x_scal(12,i,j,k)
F_lambda(i,j,k,2,2) = x_scal(13,i,j,k)
F_lambda(i,j,k,2,3) = x_scal(14,i,j,k)
F_lambda(i,j,k,3,1) = x_scal(15,i,j,k)
F_lambda(i,j,k,3,2) = x_scal(16,i,j,k)
F_lambda(i,j,k,3,3) = x_scal(17,i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
call constitutiveResponse(coordinates,F,F_lastInc,temperature,params%timeinc,&
P,C,P_av,ForwardData,params%rotation_BC)
ForwardData = .False.
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) !S = 0.0 for no bc
err_stress = maxval(mask_stress * (P_av - params%P_BC)) ! mask = 0.0 for no bc
F_aim_lab = math_rotate_backward33(F_aim,params%rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! doing Fourier transform
field_real = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
field_real(i,j,k,1:3,1:3) = math_mul3333xx33(C_scale,F_lambda(i,j,k,1:3,1:3)-F(i,j,k,1:3,1:3))
enddo; enddo; enddo
call Utilities_forwardFFT()
call Utilities_fourierConvolution(F_aim_lab)
call Utilities_backwardFFT()
err_f = 0.0_pReal
err_p = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_real = field_real(i,j,k,1:3,1:3) - F(i,j,k,1:3,1:3)
err_f = err_f + sum(temp33_real*temp33_real)
temp33_real = F_lambda(i,j,k,1:3,1:3) - &
math_mul3333xx33(S_scale,P(i,j,k,1:3,1:3)) + math_I3
err_p = err_p + sum(temp33_real*temp33_real)
enddo; enddo; enddo
err_f = wgt*sqrt(err_f)/sum((F_aim-math_I3)*(F_aim-math_I3)))
err_p = wgt*sqrt(err_p)/sum((F_aim-math_I3)*(F_aim-math_I3)))
do k=zs,ze; do j=ys,ye; do i=xs,xe
temp33_real = math_mul3333xx33(S_scale,P(i,j,k,1:3,1:3)) + math_I3 - F_lambda(i,j,k,1:3,1:3) &
+ F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3)
f_scal(0,i,j,k) = temp33_real(1,1)
f_scal(1,i,j,k) = temp33_real(1,2)
f_scal(2,i,j,k) = temp33_real(1,3)
f_scal(3,i,j,k) = temp33_real(2,1)
f_scal(4,i,j,k) = temp33_real(2,2)
f_scal(5,i,j,k) = temp33_real(2,3)
f_scal(6,i,j,k) = temp33_real(3,1)
f_scal(7,i,j,k) = temp33_real(3,2)
f_scal(8,i,j,k) = temp33_real(3,3)
f_scal(9,i,j,k) = F(i,j,k,1,1) - field_real(i,j,k,1,1)
f_scal(10,i,j,k) = F(i,j,k,1,2) - field_real(i,j,k,1,2)
f_scal(11,i,j,k) = F(i,j,k,1,3) - field_real(i,j,k,1,3)
f_scal(12,i,j,k) = F(i,j,k,2,1) - field_real(i,j,k,2,1)
f_scal(13,i,j,k) = F(i,j,k,2,2) - field_real(i,j,k,2,2)
f_scal(14,i,j,k) = F(i,j,k,2,3) - field_real(i,j,k,2,3)
f_scal(15,i,j,k) = F(i,j,k,3,1) - field_real(i,j,k,3,1)
f_scal(16,i,j,k) = F(i,j,k,3,2) - field_real(i,j,k,3,2)
f_scal(17,i,j,k) = F(i,j,k,3,3) - field_real(i,j,k,3,3)
enddo; enddo; enddo
return
end subroutine AL_FormRHS
! ---------------------------------------------------------------------
! User defined convergence check
!
subroutine AL_converged(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr_psc)
use numerics, only: &
itmax, &
itmin, &
err_f_tol, &
err_p_tol, &
err_stress_tolrel, &
err_stress_tolabs
implicit none
#include <finclude/petsc.h>
! Input/output variables:
SNES snes
PetscInt it
PetscReal xnorm, snorm, fnorm
SNESConvergedReason reason
PetscObject dummy
PetscErrorCode ierr_psc
logical :: Converged
Converged = (iter < itmax) .and. (iter > itmin) .and. &
all([ err_f/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_f_tol, &
err_p/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_p_tol, &
err_stress/min(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs)] < 1.0_pReal)
if (Converged) then
reason = 1
else
reason = 0
endif
write(6,'(a,es14.7)') 'error stress BC = ', err_stress/min(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs)
write(6,'(a,es14.7)') 'error F = ', err_f/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_f_tol
write(6,'(a,es14.7)') 'error P = ', err_p/sqrt(sum((F_aim-math_I3)*(F_aim-math_I3)))/err_p_tol
return
end subroutine AL_converged
subroutine AL_destroy()
implicit none
call VecDestroy(x,ierr_psc)
call VecDestroy(r,ierr_psc)
call SNESDestroy(snes,ierr_psc)
call DMDestroy(da,ierr_psc)
call PetscFinalize(ierr_psc)
call Utilities_destroy()
end subroutine AL_destroy
end module DAMASK_spectral_SolverAL