DAMASK_EICMD/code/crystallite.f90

1566 lines
91 KiB
Fortran

!* $Id$
!***************************************
!* Module: CRYSTALLITE *
!***************************************
!* contains: *
!* - _init *
!* - materialpoint_stressAndItsTangent *
!* - _partitionDeformation *
!* - _updateState *
!* - _stressAndItsTangent *
!* - _postResults *
!***************************************
MODULE crystallite
use prec, only: pReal, pInt
implicit none
!
! ****************************************************************
! *** General variables for the crystallite calculation ***
! ****************************************************************
integer(pInt), parameter :: crystallite_Nresults = 14_pInt ! phaseID, volume, Euler angles, def gradient
real(pReal), dimension (:,:,:), allocatable :: crystallite_dt, & ! requested time increment of each grain
crystallite_subdt, & ! substepped time increment of each grain
crystallite_subFrac, & ! already calculated fraction of increment
crystallite_subStep, & ! size of next integration step
crystallite_Temperature, & ! Temp of each grain
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
crystallite_subTemperature0 ! Temp of each grain at start of crystallite inc
real(pReal), dimension (:,:,:,:), allocatable :: crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
crystallite_subTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
crystallite_eulerangles ! euler angles phi1 Phi phi2
real(pReal), dimension (:,:,:,:,:), allocatable :: crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
crystallite_Fp, & ! current plastic def grad (end of converged time step)
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
crystallite_Fp0, & ! plastic def grad at start of FE inc
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
crystallite_F0, & ! def grad at start of FE inc
crystallite_partionedF, & ! def grad to be reached at end of homog inc
crystallite_partionedF0, & ! def grad at start of homog inc
crystallite_subF, & ! def grad to be reached at end of crystallite inc
crystallite_subF0, & ! def grad at start of crystallite inc
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
crystallite_P, & ! 1st Piola-Kirchhoff stress per grain
crystallite_R, & ! crystal orientation (rotation matrix current -> lattice conf)
crystallite_misorientation ! misorientation between two neighboring ips (only calculated for single grain IPs)
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: crystallite_dPdF, & ! individual dPdF per grain
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
real(pReal) crystallite_statedamper ! damping for state update
logical, dimension (:,:,:), allocatable :: crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
crystallite_requested, & ! flag to request crystallite calculation
crystallite_onTrack, & ! flag to indicate ongoing calculation
crystallite_converged, & ! convergence flag
crystallite_stateConverged, & ! flag indicating convergence of state
crystallite_temperatureConverged, & ! flag indicating convergence of temperature
crystallite_todo ! requested and ontrack but not converged
CONTAINS
!********************************************************************
! allocate and initialize per grain variables
!********************************************************************
subroutine crystallite_init(Temperature)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debug_info, &
debug_reset
use math, only: math_I3, &
math_EulerToR
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains, &
material_EulerAngles, &
material_phase, &
phase_localConstitution
implicit none
!*** input variables ***!
real(pReal) Temperature
!*** output variables ***!
!*** local variables ***!
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
nMax, & ! maximum number of ip neighbors
myNgrains
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
allocate(crystallite_R(3,3,gMax,iMax,eMax)); crystallite_R = 0.0_pReal
allocate(crystallite_eulerangles(3,gMax,iMax,eMax)); crystallite_eulerangles = 0.0_pReal
allocate(crystallite_misorientation(4,nMax,gMax,iMax,eMax)); crystallite_misorientation = 0.0_pReal
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
allocate(crystallite_onTrack(gMax,iMax,eMax)); crystallite_onTrack = .true.
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .true.
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
do g = 1,myNgrains
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fe(:,:,g,i,e) = transpose(crystallite_Fp0(:,:,g,i,e))
crystallite_F0(:,:,g,i,e) = math_I3
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_requested(g,i,e) = .true.
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
enddo
enddo
enddo
!$OMPEND PARALLEL DO
call crystallite_orientations()
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
! *** Output to MARC output file ***
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- crystallite init -+>>>'
write(6,*) '$Id$'
write(6,*)
write(6,'(a35,x,7(i5,x))') 'crystallite_Nresults: ', crystallite_Nresults
write(6,*)
write(6,'(a35,x,7(i5,x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp: ', shape(crystallite_Lp)
write(6,'(a35,x,7(i5,x))') 'crystallite_F0: ', shape(crystallite_F0)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subF: ', shape(crystallite_subF)
write(6,'(a35,x,7(i5,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_P: ', shape(crystallite_P)
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
write(6,'(a35,x,7(i5,x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
write(6,'(a35,x,7(i5,x))') 'crystallite_R: ', shape(crystallite_R)
write(6,'(a35,x,7(i5,x))') 'crystallite_eulerangles: ', shape(crystallite_eulerangles)
write(6,'(a35,x,7(i5,x))') 'crystallite_misorientation: ', shape(crystallite_misorientation)
write(6,'(a35,x,7(i5,x))') 'crystallite_dt: ', shape(crystallite_dt)
write(6,'(a35,x,7(i5,x))') 'crystallite_subdt: ', shape(crystallite_subdt)
write(6,'(a35,x,7(i5,x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
write(6,'(a35,x,7(i5,x))') 'crystallite_subStep: ', shape(crystallite_subStep)
write(6,'(a35,x,7(i5,x))') 'crystallite_localConstitution: ', shape(crystallite_localConstitution)
write(6,'(a35,x,7(i5,x))') 'crystallite_requested: ', shape(crystallite_requested)
write(6,'(a35,x,7(i5,x))') 'crystallite_onTrack: ', shape(crystallite_onTrack)
write(6,'(a35,x,7(i5,x))') 'crystallite_converged: ', shape(crystallite_converged)
write(6,'(a35,x,7(i5,x))') 'crystallite_stateConverged: ', shape(crystallite_stateConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_temperatureConverged: ', shape(crystallite_temperatureConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_todo: ', shape(crystallite_todo)
write(6,*)
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localConstitution)
call flush(6)
!$OMPEND CRITICAL (write2out)
call debug_info()
call debug_reset()
return
endsubroutine
!********************************************************************
! calculate stress (P) and tangent (dPdF) for crystallites
!********************************************************************
subroutine crystallite_stressAndItsTangent(updateJaco)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use numerics, only: subStepMinCryst, &
subStepSizeCryst, &
stepIncreaseCryst, &
pert_Fg, &
pert_method, &
nState, &
nCryst
use debug, only: debugger, &
selectiveDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_CrystalliteLoopDistribution, &
debug_CrystalliteStateLoopDistribution, &
debug_StiffnessStateLoopDistribution
use IO, only: IO_warning
use math, only: math_inv3x3, &
math_mul33x33, &
math_mul66x6, &
math_Mandel6to33, &
math_Mandel33to6, &
math_I3, &
math_Plain3333to99
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP, &
theInc, &
cycleCounter
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_maxSizeState, &
constitutive_maxSizeDotState, &
constitutive_sizeState, &
constitutive_sizeDotState, &
constitutive_state, &
constitutive_subState0, &
constitutive_partionedState0, &
constitutive_homogenizedC, &
constitutive_dotState, &
constitutive_previousDotState, &
constitutive_previousDotState2, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
logical, intent(in) :: updateJaco ! flag indicating wehther we want to update the Jacobian (stiffness) or not
!*** output variables ***!
!*** local variables ***!
real(pReal) myTemperature, & ! local copy of the temperature
myPert ! perturbation with correct sign
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
Fe_guess, & ! guess for elastic deformation gradient
Tstar ! 2nd Piola-Kirchhoff stress tensor
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
NiterationState ! number of iterations in state loop
integer(pInt) e, ee, & ! element index
i, ii, & ! integration point index
g, gg, & ! grain index
k, &
l, &
perturbation , & ! loop counter for forward,backward perturbation mode
comp, &
myNgrains, &
mySizeState, &
mySizeDotState
integer(pInt), dimension(2,9) :: kl
logical onTrack, & ! flag indicating whether we are still on track
temperatureConverged, & ! flag indicating if temperature converged
stateConverged, & ! flag indicating if state converged
converged ! flag indicating if iteration converged
real(pReal), dimension(9,9) :: dPdF99
real(pReal), dimension(3,3,3,3,2) :: dPdF_perturbation
real(pReal), dimension(constitutive_maxSizeDotState) :: delta_dotState1, & ! difference between current and previous dotstate
delta_dotState2 ! difference between previousDotState and previousDotState2
real(pReal) dot_prod12, &
dot_prod22
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedF, &
storedFp, &
storedInvFp, &
storedFe, &
storedLp, &
storedP
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedTstar_v
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedTemperature
real(pReal), dimension(constitutive_maxSizeState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedState
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedDotState
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
storedConvergenceFlag
logical, dimension(3,3) :: mask
logical forceLocalStiffnessCalculation = .true. ! flag indicating that stiffness calculation is always done locally
! ------ initialize to starting condition ------
!$OMP CRITICAL (write2out)
! write (6,*)
! write (6,*) 'Crystallite request from Materialpoint'
! write (6,'(a,/,(f12.7,x))') 'crystallite_partionedTemp0 of 1 1 1' ,crystallite_partionedTemperature0(1,1,1)
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF0 of 1 1 1' ,crystallite_partionedF0(1:3,:,1,1,1)
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedFp0 of 1 1 1' ,crystallite_partionedFp0(1:3,:,1,1,1)
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF of 1 1 1' ,crystallite_partionedF(1:3,:,1,1,1)
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedLp0 of 1 1 1' ,crystallite_partionedLp0(1:3,:,1,1,1)
!$OMPEND CRITICAL (write2out)
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (crystallite_requested(g,i,e)) then ! initialize restoration point of ...
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
crystallite_subFp0(:,:,g,i,e) = crystallite_partionedFp0(:,:,g,i,e) ! ...plastic def grad
crystallite_subLp0(:,:,g,i,e) = crystallite_partionedLp0(:,:,g,i,e) ! ...plastic velocity grad
crystallite_subF0(:,:,g,i,e) = crystallite_partionedF0(:,:,g,i,e) ! ...def grad
crystallite_subTstar0_v(:,g,i,e) = crystallite_partionedTstar0_v(:,g,i,e) ! ...2nd PK stress
crystallite_subFrac(g,i,e) = 0.0_pReal
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst ! <<added flexibility in cutback size>>
crystallite_onTrack(g,i,e) = .true.
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --+>> crystallite loop <<+--
NiterationCrystallite = 0_pInt
do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinCryst)) ! cutback loop for crystallites
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_converged(g,i,e)) then
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a21,f10.8,a32,f10.8,a35)') 'winding forward from ', &
crystallite_subFrac(g,i,e),' to current crystallite_subfrac ', &
crystallite_subFrac(g,i,e)+crystallite_subStep(g,i,e),' in crystallite_stressAndItsTangent'
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
crystallite_subStep(g,i,e) = min(1.0_pReal-crystallite_subFrac(g,i,e), &
stepIncreaseCryst*crystallite_subStep(g,i,e)) ! <<introduce possibility for acceleration>>
if (crystallite_subStep(g,i,e) > subStepMinCryst) then
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
crystallite_subF0(:,:,g,i,e) = crystallite_subF(:,:,g,i,e) ! ...def grad
crystallite_subFp0(:,:,g,i,e) = crystallite_Fp(:,:,g,i,e) ! ...plastic def grad
crystallite_subLp0(:,:,g,i,e) = crystallite_Lp(:,:,g,i,e) ! ...plastic velocity gradient
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
crystallite_subTstar0_v(:,g,i,e) = crystallite_Tstar_v(:,g,i,e) ! ...2nd PK stress
elseif (crystallite_onTrack(g,i,e)) then ! this crystallite just converged
!$OMP CRITICAL (distributionCrystallite)
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) = &
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) + 1
!$OMPEND CRITICAL (distributionCrystallite)
endif
else
crystallite_subStep(g,i,e) = subStepSizeCryst*crystallite_subStep(g,i,e) ! cut step in half and restore...
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
crystallite_Fp(:,:,g,i,e) = crystallite_subFp0(:,:,g,i,e) ! ...plastic def grad
crystallite_invFp(:,:,g,i,e) = math_inv3x3(crystallite_Fp(:,:,g,i,e))
crystallite_Lp(:,:,g,i,e) = crystallite_subLp0(:,:,g,i,e) ! ...plastic velocity grad
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
crystallite_Tstar_v(:,g,i,e) = crystallite_subTstar0_v(:,g,i,e) ! ...2nd PK stress
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a78,f10.8)') 'cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',&
crystallite_subStep(g,i,e)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
endif
crystallite_onTrack(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
if (crystallite_onTrack(g,i,e)) then ! specify task (according to substep)
crystallite_subF(:,:,g,i,e) = crystallite_subF0(:,:,g,i,e) + &
crystallite_subStep(g,i,e) * &
(crystallite_partionedF(:,:,g,i,e) - crystallite_partionedF0(:,:,g,i,e))
crystallite_Fe(:,:,g,i,e) = math_mul33x33(crystallite_subF(:,:,g,i,e),crystallite_invFp(:,:,g,i,e))
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
crystallite_converged(g,i,e) = .false. ! start out non-converged
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
crystallite_todo = ( crystallite_requested &
.and. crystallite_onTrack &
.and. .not. crystallite_converged)
! --+>> preguess for state <<+--
!
! incrementing by crystallite_subdt
! based on constitutive_subState0
! results in constitutive_state
! first loop for collection of state evolution based on old state
! second loop for updating to new state
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (crystallite_todo(g,i,e)) then ! all undone crystallites
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
constitutive_dotState(g,i,e)%p = 0.0_pReal ! zero out dotStates
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then ! all undone crystallites
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
crystallite_misorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
crystallite_statedamper = 1.0_pReal
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then ! all undone crystallites
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
crystallite_converged(g,i,e) = .false. ! force at least one iteration step even if state already converged
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --+>> state loop <<+--
NiterationState = 0_pInt
do while ( any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2))) &
.and. NiterationState < nState) ! convergence loop for crystallite
NiterationState = NiterationState + 1_pInt
! --+>> stress integration <<+--
!
! incrementing by crystallite_subdt
! based on crystallite_subF0,.._subFp0,.._subLp0
! constitutive_state is internally interpolated with .._subState0
! to account for substepping within _integrateStress
! results in crystallite_Fp,.._Lp
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) & ! all undone crystallites
crystallite_onTrack(g,i,e) = crystallite_integrateStress(g,i,e)
enddo; enddo; enddo
!$OMPEND PARALLEL DO
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_onTrack(:,:,:)),'grains onTrack after stress integration'
!$OMPEND CRITICAL (write2out)
endif
crystallite_todo = crystallite_todo .and. crystallite_onTrack ! continue with non-broken grains
if (any(.not. crystallite_onTrack .and. .not. crystallite_localConstitution)) & ! any non-local is broken?
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! all nonlocal crystallites can be skipped
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after stress integration'
!$OMPEND CRITICAL (write2out)
endif
! --+>> state integration <<+--
!
! incrementing by crystallite_subdt
! based on constitutive_subState0
! results in constitutive_state
! first loop for collection of state evolution based on old state
! second loop for updating to new state
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (crystallite_todo(g,i,e)) then ! all undone crystallites
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
constitutive_dotState(g,i,e)%p = 0.0_pReal ! zero out dotState
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
crystallite_statedamper = 1.0_pReal
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then ! all undone crystallites
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
crystallite_misorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
delta_dotState1 = constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p
delta_dotState2 = constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p
dot_prod12 = dot_product(delta_dotState1, delta_dotState2)
dot_prod22 = dot_product(delta_dotState2, delta_dotState2)
if ( dot_prod22 > 0.0_pReal &
.and. ( dot_prod12 < 0.0_pReal &
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) &
crystallite_statedamper = min(crystallite_statedamper, &
0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) )
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then ! all undone crystallites
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
crystallite_converged(g,i,e) = crystallite_stateConverged(g,i,e) .and. crystallite_temperatureConverged(g,i,e)
if (crystallite_converged(g,i,e)) then
!$OMP CRITICAL (distributionState)
debug_CrystalliteStateLoopDistribution(NiterationState) = &
debug_CrystalliteStateLoopDistribution(NiterationState) + 1
!$OMPEND CRITICAL (distributionState)
endif
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after state integration no.', NiterationState
write(6,*)
! write(6,'(8(L,x))') crystallite_converged(:,:,:)
! do e = FEsolving_execElem(1),FEsolving_execElem(2)
! if (any(.not. crystallite_converged(:,:,e))) &
! write(6,'(i4,8(x,L))') e, crystallite_converged(:,:,e)
! enddo
!$OMPEND CRITICAL (write2out)
endif
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) & ! any non-local not yet converged?
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! all non-local not converged
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after non-local check'
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after state integration no.', NiterationState
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
enddo ! crystallite convergence loop
NiterationCrystallite = NiterationCrystallite + 1
enddo ! cutback loop
! ------ check for non-converged crystallites ------
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
! call IO_warning(600,e,i,g)
invFp = math_inv3x3(crystallite_partionedFp0(:,:,g,i,e))
Fe_guess = math_mul33x33(crystallite_partionedF(:,:,g,i,e),invFp)
Tstar = math_Mandel6to33( &
math_mul66x6( 0.5_pReal*constitutive_homogenizedC(g,i,e), &
math_Mandel33to6( math_mul33x33(transpose(Fe_guess),Fe_guess) - math_I3 ) &
) &
)
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --+>> stiffness calculation <<+--
if(updateJaco) then ! Jacobian required
crystallite_statedamper = 1.0_pReal
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
storedState(1:mySizeState,g,i,e) = constitutive_state(g,i,e)%p ! remember unperturbed, converged state, ...
storedDotState(1:mySizeDotState,g,i,e) = constitutive_dotState(g,i,e)%p ! ... dotStates, ...
enddo; enddo; enddo
storedTemperature = crystallite_Temperature ! ... Temperature, ...
storedF = crystallite_subF ! ... and kinematics
storedFp = crystallite_Fp
storedInvFp = crystallite_invFp
storedFe = crystallite_Fe
storedLp = crystallite_Lp
storedTstar_v = crystallite_Tstar_v
storedP = crystallite_P
storedConvergenceFlag = crystallite_converged
if (all(crystallite_localConstitution) .or. theInc < 2 .or. forceLocalStiffnessCalculation) then ! all grains have local constitution, so local convergence of perturbed grain is sufficient
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_requested(g,i,e)) then ! first check whether is requested at all!
if (crystallite_converged(g,i,e)) then ! grain converged in above iteration
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write (6,*) '#############'
write (6,*) 'central solution of cryst_StressAndTangent'
write (6,*) '#############'
write (6,'(a8,3(x,i4),/,3(3(f12.4,x)/))') ' P of', g, i, e, storedP(1:3,:,g,i,e)/1e6
write (6,'(a8,3(x,i4),/,3(3(f12.8,x)/))') ' Fp of', g, i, e, storedFp(1:3,:,g,i,e)
write (6,'(a8,3(x,i4),/,3(3(f12.8,x)/))') ' Lp of', g, i, e, storedLp(1:3,:,g,i,e)
!$OMPEND CRITICAL (write2out)
endif
do perturbation = 1,2
if (iand(pert_method,perturbation) > 0) then
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! forward or backward perturbation
do k = 1,3 ! perturbation...
do l = 1,3 ! ...components to the positive direction
crystallite_subF(k,l,g,i,e) = crystallite_subF(k,l,g,i,e) + myPert ! perturb single component (either forward or backward)
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write (6,'(i1,x,i1)') k,l
write (6,'(a8,3(x,i4),/,3(3(f12.6,x)/))') 'pertF of', g, i, e, crystallite_subF(1:3,:,g,i,e)
!$OMPEND CRITICAL (write2out)
endif
onTrack = .true.
converged = .false.
NiterationState = 0_pInt
do while(.not. converged .and. onTrack .and. NiterationState < nState) ! keep cycling until done (potentially non-converged)
NiterationState = NiterationState + 1_pInt
onTrack = crystallite_integrateStress(g,i,e) ! stress of perturbed situation (overwrites _P,_Tstar_v,_Fp,_Lp,_Fe)
if (onTrack) then
constitutive_dotState(g,i,e)%p = 0.0_pReal
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
crystallite_misorientation(:,:,g,i,e), crystallite_subdt(g,i,e), &
g,i,e)
stateConverged = crystallite_updateState(g,i,e) ! update state
temperatureConverged = crystallite_updateTemperature(g,i,e) ! update temperature
converged = stateConverged .and. temperatureConverged
endif
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write (6,*) '-------------'
write (6,'(a,x,l,x,l)') 'ontrack + converged:',onTrack,converged
write (6,'(a12,3(x,i4),/,3(3(f12.4,x)/))') 'pertP/MPa of', g, i, e, crystallite_P(1:3,:,g,i,e)/1e6
write (6,'(a12,3(x,i4),/,3(3(f12.4,x)/))') 'DP/MPa of', g, i, e, &
(crystallite_P(1:3,:,g,i,e)-storedP(1:3,:,g,i,e))/1e6
!$OMPEND CRITICAL (write2out)
endif
enddo
if (converged) & ! converged state warrants stiffness update
dPdF_perturbation(:,:,k,l,perturbation) = (crystallite_P(:,:,g,i,e) - storedP(:,:,g,i,e))/myPert ! tangent dP_ij/dFg_kl
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
constitutive_state(g,i,e)%p = storedState(1:mySizeState,g,i,e)
constitutive_dotState(g,i,e)%p = storedDotState(1:mySizeDotState,g,i,e)
crystallite_Temperature(g,i,e) = storedTemperature(g,i,e)
crystallite_subF(:,:,g,i,e) = storedF(:,:,g,i,e)
crystallite_Fp(:,:,g,i,e) = storedFp(:,:,g,i,e)
crystallite_invFp(:,:,g,i,e) = storedInvFp(:,:,g,i,e)
crystallite_Fe(:,:,g,i,e) = storedFe(:,:,g,i,e)
crystallite_Lp(:,:,g,i,e) = storedLp(:,:,g,i,e)
crystallite_Tstar_v(:,g,i,e) = storedTstar_v(:,g,i,e)
crystallite_P(:,:,g,i,e) = storedP(:,:,g,i,e)
!$OMP CRITICAL (out)
debug_StiffnessStateLoopDistribution(NiterationState) = &
debug_StiffnessstateLoopDistribution(NiterationState) + 1
!$OMPEND CRITICAL (out)
enddo; enddo
endif
enddo ! perturbation direction
select case(pert_method)
case (1)
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation(:,:,:,:,1)
case (2)
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation(:,:,:,:,2)
case (3)
crystallite_dPdF(:,:,:,:,g,i,e) = 0.5_pReal*(dPdF_perturbation(:,:,:,:,1)+dPdF_perturbation(:,:,:,:,2))
end select
else ! grain did not converge
crystallite_dPdF(:,:,:,:,g,i,e) = crystallite_fallbackdPdF(:,:,:,:,g,i,e) ! use (elastic) fallback
endif ! grain convergence
endif ! grain request
enddo ! grain loop
enddo ! ip loop
enddo ! element loop
!$OMPEND PARALLEL DO
elseif (any(.not. crystallite_localConstitution)) then ! if any nonlocal grain present, we have to do a full loop over all grains after each perturbance
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
! perturb components in the order of biggest change in F (-> component with biggest change in F is perturbed in first cycle, component with second biggest change in next cycle, ...)
mask = .true.
do comp = 1,9
kl(:,comp) = maxloc(abs(crystallite_subF(:,:,g,i,e)-crystallite_F0(:,:,g,i,e)), mask)
mask(kl(1,comp),kl(2,comp)) = .false.
enddo
k = kl(1,mod((cycleCounter-1)/2+1,9))
l = kl(2,mod((cycleCounter-1)/2+1,9))
crystallite_subF(k,l,g,i,e) = crystallite_subF(k,l,g,i,e) + pert_Fg ! perturb single component
NiterationState = 0_pInt
crystallite_todo = .true.
do while ( any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2))) &
.and. NiterationState < nState)
NiterationState = NiterationState + 1_pInt
do ee = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,ee))
do ii = FEsolving_execIP(1,ee),FEsolving_execIP(2,ee)
do gg = 1,myNgrains
if (crystallite_todo(gg,ii,ee)) &
crystallite_onTrack(gg,ii,ee) = crystallite_integrateStress(gg,ii,ee) ! stress integration
enddo; enddo; enddo
crystallite_todo = crystallite_todo .and. crystallite_onTrack ! continue with non-broken grains
if (any(.not. crystallite_onTrack .and. .not. crystallite_localConstitution)) & ! any non-local is broken?
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! all nonlocal crystallites can be skipped
do ee = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,ee))
do ii = FEsolving_execIP(1,ee),FEsolving_execIP(2,ee)
do gg = 1,myNgrains
if (crystallite_todo(gg,ii,ee)) &
constitutive_dotState(gg,ii,ee)%p = 0.0_pReal ! zero out dotState
enddo; enddo; enddo
do ee = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,ee))
do ii = FEsolving_execIP(1,ee),FEsolving_execIP(2,ee)
do gg = 1,myNgrains
if (crystallite_todo(gg,ii,ee)) &
call constitutive_collectDotState(crystallite_Tstar_v(:,gg,ii,ee), crystallite_subTstar0_v(:,gg,ii,ee), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(gg,ii,ee), &
crystallite_misorientation(:,:,g,i,e), crystallite_subdt(gg,ii,ee), &
gg, ii, ee) ! collect dot state
enddo; enddo; enddo
do ee = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,ee))
do ii = FEsolving_execIP(1,ee),FEsolving_execIP(2,ee)
do gg = 1,myNgrains
if (crystallite_todo(gg,ii,ee)) then
crystallite_stateConverged(gg,ii,ee) = crystallite_updateState(gg,ii,ee) ! update state
crystallite_temperatureConverged(gg,ii,ee) = crystallite_updateTemperature(gg,ii,ee) ! update temperature
crystallite_converged(gg,ii,ee) = crystallite_stateConverged(gg,ii,ee) &
.and. crystallite_temperatureConverged(gg,ii,ee)
endif
enddo
enddo
enddo
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) & ! any non-local not yet converged?
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! all non-local not converged
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
enddo ! state loop
if (all(crystallite_converged(:,:,FEsolving_execELem(1):FEsolving_execElem(2)))) then
crystallite_dPdF(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - storedP(:,:,g,i,e))/pert_Fg ! tangent dP_ij/dFg_kl
else ! grain did not converge
crystallite_dPdF(:,:,k,l,g,i,e) = crystallite_fallbackdPdF(:,:,k,l,g,i,e) ! use (elastic) fallback
endif
do ee = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,ee))
do ii = FEsolving_execIP(1,ee),FEsolving_execIP(2,ee)
do gg = 1,myNgrains
mySizeState = constitutive_sizeState(gg,ii,ee)
mySizeDotState = constitutive_sizeDotState(gg,ii,ee)
constitutive_state(gg,ii,ee)%p = storedState(1:mySizeState,gg,ii,ee)
constitutive_dotState(gg,ii,ee)%p = storedDotState(1:mySizeDotState,gg,ii,ee)
enddo; enddo; enddo
crystallite_Temperature = storedTemperature
crystallite_subF = storedF
crystallite_Fp = storedFp
crystallite_invFp = storedInvFp
crystallite_Fe = storedFe
crystallite_Lp = storedLp
crystallite_Tstar_v = storedTstar_v
crystallite_P = storedP
!$OMP CRITICAL (out)
debug_StiffnessStateLoopDistribution(NiterationState) = debug_StiffnessstateLoopDistribution(NiterationState) + 1
!$OMPEND CRITICAL (out)
enddo; enddo; enddo ! element,ip,grain loop (e,i,g)
crystallite_converged = storedConvergenceFlag
endif
endif ! jacobian calculation
endsubroutine
!********************************************************************
! update the internal state of the constitutive law
! and tell whether state has converged
!********************************************************************
function crystallite_updateState(&
g,& ! grain number
i,& ! integration point number
e & ! element number
)
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: rTol_crystalliteState
use constitutive, only: constitutive_dotState, &
constitutive_previousDotState, &
constitutive_sizeDotState, &
constitutive_subState0, &
constitutive_state, &
constitutive_relevantState, &
constitutive_microstructure
use debug, only: debugger, &
selectiveDebugger
use FEsolving, only: cycleCounter, theInc
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_updateState ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal), dimension(constitutive_sizeDotState(g,i,e)) :: residuum ! residuum from evolution of microstructure
integer(pInt) mySize
mySize = constitutive_sizeDotState(g,i,e)
! correct my dotState
constitutive_dotState(g,i,e)%p(1:mySize) = constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_statedamper &
+ constitutive_previousDotState(g,i,e)%p(1:mySize) * (1.0_pReal-crystallite_statedamper)
! calculate the residuum
residuum = constitutive_state(g,i,e)%p(1:mySize) - constitutive_subState0(g,i,e)%p(1:mySize) &
- constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_subdt(g,i,e)
! if NaN occured then return without changing the state
if (any(residuum/=residuum)) then
crystallite_updateState = .false. ! indicate state update failed
crystallite_onTrack(g,i,e) = .false. ! no need to calculate any further
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState encountered NaN',g,i,e
!$OMPEND CRITICAL (write2out)
endif
return
endif
! update the microstructure
constitutive_state(g,i,e)%p(1:mySize) = constitutive_state(g,i,e)%p(1:mySize) - residuum
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
g, i, e)
! setting flag to true if state is below relative tolerance, otherwise set it to false
crystallite_updateState = all( constitutive_state(g,i,e)%p(1:mySize) < constitutive_relevantState(g,i,e)%p(1:mySize) &
.or. abs(residuum) < rTol_crystalliteState*abs(constitutive_state(g,i,e)%p(1:mySize)))
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
if (crystallite_updateState) then
write(6,*) '::: updateState converged',g,i,e
else
write(6,*) '::: updateState did not converge',g,i,e
endif
write(6,*)
write(6,'(a,f6.1)') 'crystallite_statedamper',crystallite_statedamper
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'dotState',constitutive_dotState(g,i,e)%p(1:mySize)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'new state',constitutive_state(g,i,e)%p(1:mySize)
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'resid tolerance',abs(residuum/rTol_crystalliteState/constitutive_state(g,i,e)%p(1:mySize))
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
return
endfunction
!********************************************************************
! update the temperature of the grain
! and tell whether it has converged
!********************************************************************
function crystallite_updateTemperature(&
g,& ! grain number
i,& ! integration point number
e & ! element number
)
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: rTol_crystalliteTemperature
use constitutive, only: constitutive_dotTemperature
use debug, only: debugger, &
debug_cumDotTemperatureCalls, &
debug_cumDotTemperatureTicks
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_updateTemperature ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal) residuum ! residuum from evolution of temperature
integer(pLongInt) tick, &
tock, &
tickrate, &
maxticks
! calculate the residuum
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
residuum = crystallite_Temperature(g,i,e) - crystallite_subTemperature0(g,i,e) - &
crystallite_subdt(g,i,e) * &
constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),g,i,e)
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
debug_cumDotTemperatureCalls = debug_cumDotTemperatureCalls + 1_pInt
debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + tock-tick
if (tock < tick) debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + maxticks
! if NaN occured then return without changing the state
if (residuum/=residuum) then
crystallite_updateTemperature = .false. ! indicate update failed
!$OMP CRITICAL (write2out)
write(6,*) '::: updateTemperature encountered NaN',g,i,e
!$OMPEND CRITICAL (write2out)
return
endif
! update the microstructure
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - residuum
! setting flag to true if residuum is below relative tolerance (or zero Kelvin), otherwise set it to false
crystallite_updateTemperature = crystallite_Temperature(g,i,e) == 0.0_pReal .or. &
abs(residuum) < rTol_crystalliteTemperature*crystallite_Temperature(g,i,e)
return
endfunction
!***********************************************************************
!*** calculation of stress (P) with time integration ***
!*** based on a residuum in Lp and intermediate ***
!*** acceleration of the Newton-Raphson correction ***
!***********************************************************************
function crystallite_integrateStress(&
g,& ! grain number
i,& ! integration point number
e) ! element number
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: nStress, &
aTol_crystalliteStress, &
rTol_crystalliteStress, &
iJacoLpresiduum, &
relevantStrain
use debug, only: debugger, &
selectiveDebugger, &
debug_cumLpCalls, &
debug_cumLpTicks, &
debug_StressLoopDistribution
use constitutive, only: constitutive_homogenizedC, &
constitutive_LpAndItsTangent
use math, only: math_mul33x33, &
math_mul66x6, &
math_mul99x99, &
math_inv3x3, &
math_invert3x3, &
math_invert, &
math_det3x3, &
math_I3, &
math_identity2nd, &
math_Mandel66to3333, &
math_Mandel6to33, &
math_mandel33to6
implicit none
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_integrateStress ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
Fp_current, & ! plastic deformation gradient at start of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuum, & ! current residuum of plastic velocity gradient
residuum_old, & ! last residuum of plastic velocity gradient
A, &
B, &
BT, &
AB, &
BTA
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
real(pReal), dimension(9,9):: dLpdT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
dTdLp, & ! partial derivative of 2nd Piola-Kirchhoff stress
dRdLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
invdRdLp ! inverse of dRdLp
real(pReal), dimension(3,3,3,3):: C ! 4th rank elasticity tensor
real(pReal), dimension(6,6):: C_66 ! simplified 2nd rank elasticity tensor
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
det, & ! determinant
leapfrog, & ! acceleration factor for Newton-Raphson scheme
maxleap ! maximum acceleration factor
logical error ! flag indicating an error
integer(pInt) NiterationStress, & ! number of stress integrations
dummy, &
h, &
j, &
k, &
l, &
m, &
n, &
jacoCounter ! counter to check for Jacobian update
integer(pLongInt) tick, &
tock, &
tickrate, &
maxticks
! be pessimistic
crystallite_integrateStress = .false.
! feed local variables
Fg_new = crystallite_subF(:,:,g,i,e)
Fp_current = crystallite_subFp0(:,:,g,i,e)
Tstar_v = crystallite_Tstar_v(:,g,i,e)
Lpguess_old = crystallite_Lp(:,:,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
Lpguess = crystallite_Lp(:,:,g,i,e) ! ... and take it as first guess
! inversion of Fp_current...
invFp_current = math_inv3x3(Fp_current)
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress failed on invFp_current inversion',g,i,e
write(6,*)
write(6,'(a11,3(i3,x),/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
!$OMPEND CRITICAL (write2out)
endif
return
endif
A = math_mul33x33(transpose(invFp_current), math_mul33x33(transpose(Fg_new),math_mul33x33(Fg_new,invFp_current)))
! get elasticity tensor
C_66 = constitutive_homogenizedC(g,i,e)
! if (debugger) write(6,'(a,/,6(6(f10.4,x)/))') 'elasticity',C_66(1:6,:)/1e9
C = math_Mandel66to3333(C_66)
! start LpLoop with no acceleration
NiterationStress = 0_pInt
leapfrog = 1.0_pReal
maxleap = 1024.0_pReal
jacoCounter = 0_pInt
LpLoop: do
! increase loop counter
NiterationStress = NiterationStress + 1
! too many loops required ?
if (NiterationStress > nStress) then
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress reached loop limit at ',g,i,e
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
return
endif
B = math_I3 - crystallite_subdt(g,i,e)*Lpguess
BT = transpose(B)
AB = math_mul33x33(A,B)
BTA = math_mul33x33(BT,A)
! calculate 2nd Piola-Kirchhoff stress tensor
Tstar_v = 0.5_pReal*math_mul66x6(C_66,math_mandel33to6(math_mul33x33(BT,AB)-math_I3))
p_hydro = sum(Tstar_v(1:3))/3.0_pReal
forall(n=1:3) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
! calculate plastic velocity gradient and its tangent according to constitutive law
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
call constitutive_LpAndItsTangent(Lp_constitutive, dLpdT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
debug_cumLpTicks = debug_cumLpTicks + tock-tick
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress at ' ,g,i,e, ' ; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,3(3(f20.7,x)/))') 'Lp_constitutive', Lp_constitutive
write(6,'(a,/,3(3(f20.7,x)/))') 'Lpguess', Lpguess
!$OMPEND CRITICAL (write2out)
endif
! update current residuum
residuum = Lpguess - Lp_constitutive
! Check for convergence of loop
if (.not.(any(residuum/=residuum)) .and. & ! exclude any NaN in residuum
( maxval(abs(residuum)) < aTol_crystalliteStress .or. & ! below absolute tolerance .or.
( any(abs(crystallite_subdt(g,i,e)*Lpguess) > relevantStrain) .and. & ! worth checking? .and.
maxval(abs(residuum/Lpguess), abs(crystallite_subdt(g,i,e)*Lpguess) > relevantStrain) < rTol_crystalliteStress & ! below relative tolerance
) &
) &
) &
exit LpLoop
! NaN occured at regular speed?
if (any(residuum/=residuum) .and. leapfrog == 1.0) then
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress encountered NaN at ',g,i,e,' ; iteration ', NiterationStress
!$OMPEND CRITICAL (write2out)
endif
return
! something went wrong at accelerated speed?
elseif (leapfrog > 1.0_pReal .and. & ! at fast pace .and.
( sum(residuum*residuum) > sum(residuum_old*residuum_old) .or. & ! worse residuum .or.
sum(residuum*residuum_old) < 0.0_pReal .or. & ! residuum changed sign (overshoot) .or.
any(residuum/=residuum) & ! NaN occured
) &
) then
maxleap = 0.5_pReal * leapfrog ! limit next acceleration
leapfrog = 1.0_pReal ! grinding halt
jacoCounter = 0_pInt ! reset counter for Jacobian update (we want to do an update next time!)
! restore old residuum and Lp
Lpguess = Lpguess_old
residuum = residuum_old
! residuum got better
else
! calculate Jacobian for correction term
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
dTdLp = 0.0_pReal
forall (h=1:3,j=1:3,k=1:3,l=1:3,m=1:3) &
dTdLp(3*(h-1)+j,3*(k-1)+l) = dTdLp(3*(h-1)+j,3*(k-1)+l) + C(h,j,l,m)*AB(k,m)+C(h,j,m,l)*BTA(m,k)
dTdLp = -0.5_pReal*crystallite_subdt(g,i,e)*dTdLp
dRdLp = math_identity2nd(9) - math_mul99x99(dLpdT_constitutive,dTdLp)
invdRdLp = 0.0_pReal
call math_invert(9,dRdLp,invdRdLp,dummy,error) ! invert dR/dLp --> dLp/dR
if (error) then
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress failed on dR/dLp inversion at ',g,i,e,' ; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,9(9(f15.3,x)/))') 'dRdLp',dRdLp
write(6,'(a,/,9(9(f15.3,x)/))') 'dLpdT_constitutive',dLpdT_constitutive
write(6,'(a,/,3(3(f20.7,x)/))') 'Lp_constitutive',Lp_constitutive
write(6,'(a,/,3(3(f20.7,x)/))') 'Lpguess',Lpguess
!$OMPEND CRITICAL (write2out)
endif
return
endif
endif
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
! remember current residuum and Lpguess
residuum_old = residuum
Lpguess_old = Lpguess
! accelerate?
if (NiterationStress > 1 .and. leapfrog < maxleap) leapfrog = 2.0_pReal * leapfrog
endif
! leapfrog to updated Lp
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
Lpguess(k,l) = Lpguess(k,l) - leapfrog*invdRdLp(3*(k-1)+l,3*(m-1)+n)*residuum(m,n)
enddo LpLoop
! calculate new plastic and elastic deformation gradient
invFp_new = math_mul33x33(invFp_current,B)
invFp_new = invFp_new/math_det3x3(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
call math_invert3x3(invFp_new,Fp_new,det,error)
if (error) then
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress failed on invFp_new inversion at ',g,i,e,' ; iteration ', NiterationStress
write(6,*)
write(6,'(a11,3(i3,x),/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
!$OMPEND CRITICAL (write2out)
endif
return
endif
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
! add volumetric component to 2nd Piola-Kirchhoff stress
forall (n=1:3) Tstar_v(n) = Tstar_v(n) + p_hydro
! calculate 1st Piola-Kirchhoff stress
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_new,math_mul33x33(math_Mandel6to33(Tstar_v),transpose(invFp_new)))
! store local values in global variables
crystallite_Lp(:,:,g,i,e) = Lpguess
crystallite_Tstar_v(:,g,i,e) = Tstar_v
crystallite_Fp(:,:,g,i,e) = Fp_new
crystallite_Fe(:,:,g,i,e) = Fe_new
crystallite_invFp(:,:,g,i,e) = invFp_new
! set return flag to true
crystallite_integrateStress = .true.
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress converged at ',g,i,e,' ; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,3(3(f12.7,x)/))') 'P / MPa',crystallite_P(:,:,g,i,e)/1e6
write(6,'(a,/,3(3(f12.7,x)/))') 'Lp',crystallite_Lp(:,:,g,i,e)
write(6,'(a,/,3(3(f12.7,x)/))') 'Fp',crystallite_Fp(:,:,g,i,e)
!$OMP CRITICAL (write2out)
endif
!$OMP CRITICAL (distributionStress)
debug_StressLoopDistribution(NiterationStress) = debug_StressLoopDistribution(NiterationStress) + 1
!$OMPEND CRITICAL (distributionStress)
return
endfunction
!********************************************************************
! calculates orientations and misorientations (in case of single grain ips)
!********************************************************************
subroutine crystallite_orientations()
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use math, only: math_pDecomposition, &
math_RtoEuler, &
math_misorientation, &
inDeg
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use IO, only: IO_warning
use material, only: material_phase, &
homogenization_Ngrains, &
phase_constitution, &
phase_constitutionInstance
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
FE_NipNeighbors
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
constitutive_phenopowerlaw_structure
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
constitutive_dislotwin_structure
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
constitutive_nonlocal_structure
implicit none
!*** input variables ***!
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index
i, & ! integration point index
g, & ! grain index
n, & ! neighbor index
myPhase, & ! phase
myStructure, & ! lattice structure
neighboring_e, & ! element index of my neighbor
neighboring_i, & ! integration point index of my neighbor
neighboringPhase, & ! phase of my neighbor
neighboringStructure, & ! lattice structure of my neighbor
symmetryType ! type of crystal symmetry
real(pReal), dimension(3,3) :: U, R, & ! polar decomposition of Fe
netRotation ! net rotation between two orientations
logical error
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e))
! calculate orientation in terms of rotation matrix and euler angles
call math_pDecomposition(crystallite_Fe(:,:,g,i,e), U, R, error) ! polar decomposition of Fe
if (error) then
call IO_warning(650, e, i, g)
crystallite_R(:,:,g,i,e) = 0.0_pReal
crystallite_eulerangles(:,g,i,e) = (/400.0, 400.0, 400.0/) ! fake orientation
else
crystallite_R(:,:,g,i,e) = transpose(R)
crystallite_eulerangles(:,g,i,e) = math_RtoEuler(crystallite_R(:,:,g,i,e)) * inDeg
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (homogenization_Ngrains(mesh_element(3,e)) == 1_pInt) then ! if single grain ip
myPhase = material_phase(1,i,e) ! get my crystal structure
select case (phase_constitution(myPhase))
case (constitutive_phenopowerlaw_label)
myStructure = constitutive_phenopowerlaw_structure(phase_constitutionInstance(myPhase))
case (constitutive_dislotwin_label)
myStructure = constitutive_dislotwin_structure(phase_constitutionInstance(myPhase))
case (constitutive_nonlocal_label)
myStructure = constitutive_nonlocal_structure(phase_constitutionInstance(myPhase))
case default
myStructure = ''
end select
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's crystal structure
if (myPhase == neighboringPhase) then ! if my neighbor has same phase like me
select case (myStructure) ! get type of symmetry
case (1_pInt, 2_pInt) ! fcc and bcc:
symmetryType = 1_pInt ! -> cubic symmetry
case (3_pInt) ! hex:
symmetryType = 2_pInt ! -> hexagonal symmetry
case default
symmetryType = 0_pInt
end select
call math_misorientation( crystallite_misorientation(1:3,n,1,i,e), &
crystallite_misorientation(4,n,1,i,e), &
netRotation, &
crystallite_R(:,:,1,i,e), &
crystallite_R(:,:,1,neighboring_i,neighboring_e), &
symmetryType) ! calculate misorientation
else ! for neighbor with different phase
crystallite_misorientation(4,n,1,i,e) = 400.0_pReal ! set misorientation angle to 400
endif
else ! no existing neighbor
crystallite_misorientation(4,n,1,i,e) = 0.0_pReal ! set misorientation angle to zero
endif
enddo
endif
enddo
enddo
!$OMPEND PARALLEL DO
endsubroutine
!********************************************************************
! return results of particular grain
!********************************************************************
function crystallite_postResults(&
dt,& ! time increment
g,& ! grain number
i,& ! integration point number
e & ! element number
)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use material, only: material_phase, &
material_volume
use constitutive, only: constitutive_sizePostResults, &
constitutive_postResults
implicit none
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
real(pReal), intent(in):: dt ! time increment
!*** output variables ***!
real(pReal), dimension(1+crystallite_Nresults + 1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
!*** local variables ***!
real(pReal), dimension(3,3) :: U, R
integer(pInt) k,l,c
logical error
c = 0_pInt
crystallite_postResults(c+1) = crystallite_Nresults; c = c+1_pInt ! size of (hardwired) results
if (crystallite_Nresults >= 2) then
crystallite_postResults(c+1) = material_phase(g,i,e)
crystallite_postResults(c+2) = material_volume(g,i,e)
c = c+2_pInt
endif
if (crystallite_Nresults >= 5) then
crystallite_postResults(c+1:c+3) = crystallite_eulerangles(:,i,e,g) ! fake orientation
c = c+3_pInt
endif
if (crystallite_Nresults >= 14) then ! deformation gradient
forall (k=0:2,l=0:2) crystallite_postResults(c+1+k*3+l) = crystallite_partionedF(k+1,l+1,g,i,e)
c = c+9_pInt
endif
crystallite_postResults(c+1) = constitutive_sizePostResults(g,i,e); c = c+1_pInt ! size of constitutive results
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = &
constitutive_postResults(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_misorientation(:,:,g,i,e), dt, &
crystallite_subdt(g,i,e), g, i, e)
c = c + constitutive_sizePostResults(g,i,e)
return
endfunction
END MODULE
!##############################################################