DAMASK_EICMD/python/damask/_grid.py

942 lines
39 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
import multiprocessing as mp
from functools import partial
from os import path
import warnings
import numpy as np
import pandas as pd
import h5py
from scipy import ndimage, spatial
from vtk.util.numpy_support import vtk_to_numpy as vtk_to_np
from . import environment
from . import VTK
from . import util
from . import grid_filters
from . import Rotation
class Grid:
"""Geometry definition for grid solvers."""
def __init__(self,material,size,origin=[0.0,0.0,0.0],comments=[]):
"""
New grid definition from array of materials, size, and origin.
Parameters
----------
material : numpy.ndarray
Material index array (3D).
size : list or numpy.ndarray
Physical size of the grid in meter.
origin : list or numpy.ndarray, optional
Physical origin of the grid in meter.
comments : list of str, optional
Comment lines.
"""
self.material = material
self.size = size
self.origin = origin
self.comments = comments
def __repr__(self):
"""Basic information on grid definition."""
mat_min = np.nanmin(self.material)
mat_max = np.nanmax(self.material)
mat_N = self.N_materials
return util.srepr([
f'cells a b c: {util.srepr(self.cells, " x ")}',
f'size x y z: {util.srepr(self.size, " x ")}',
f'origin x y z: {util.srepr(self.origin," ")}',
f'# materials: {mat_N}' + ('' if mat_min == 0 and mat_max+1 == mat_N else
f' (min: {mat_min}, max: {mat_max})')
])
def __copy__(self):
"""Create deep copy."""
return copy.deepcopy(self)
copy = __copy__
def diff(self,other):
"""
Report property differences of self relative to other.
Parameters
----------
other : damask.Grid
Grid to compare self against.
"""
message = []
if np.any(other.cells != self.cells):
message.append(util.deemph(f'cells a b c: {util.srepr(other.cells," x ")}'))
message.append(util.emph( f'cells a b c: {util.srepr( self.cells," x ")}'))
if not np.allclose(other.size,self.size):
message.append(util.deemph(f'size x y z: {util.srepr(other.size," x ")}'))
message.append(util.emph( f'size x y z: {util.srepr( self.size," x ")}'))
if not np.allclose(other.origin,self.origin):
message.append(util.deemph(f'origin x y z: {util.srepr(other.origin," ")}'))
message.append(util.emph( f'origin x y z: {util.srepr( self.origin," ")}'))
if other.N_materials != self.N_materials:
message.append(util.deemph(f'# materials: {other.N_materials}'))
message.append(util.emph( f'# materials: { self.N_materials}'))
if np.nanmax(other.material) != np.nanmax(self.material):
message.append(util.deemph(f'max material: {np.nanmax(other.material)}'))
message.append(util.emph( f'max material: {np.nanmax( self.material)}'))
return util.return_message(message)
@property
def material(self):
"""Material indices."""
return self._material
@material.setter
def material(self,material):
if len(material.shape) != 3:
raise ValueError(f'invalid material shape {material.shape}')
elif material.dtype not in np.sctypes['float'] + np.sctypes['int']:
raise TypeError(f'invalid material data type {material.dtype}')
else:
self._material = np.copy(material)
if self.material.dtype in np.sctypes['float'] and \
np.all(self.material == self.material.astype(int).astype(float)):
self._material = self.material.astype(int)
@property
def size(self):
"""Physical size of grid in meter."""
return self._size
@size.setter
def size(self,size):
if len(size) != 3 or any(np.array(size) <= 0):
raise ValueError(f'invalid size {size}')
else:
self._size = np.array(size)
@property
def origin(self):
"""Coordinates of grid origin in meter."""
return self._origin
@origin.setter
def origin(self,origin):
if len(origin) != 3:
raise ValueError(f'invalid origin {origin}')
else:
self._origin = np.array(origin)
@property
def comments(self):
"""Comments, e.g. history of operations."""
return self._comments
@comments.setter
def comments(self,comments):
self._comments = [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]
@property
def cells(self):
"""Number of cells in x,y,z direction."""
return np.asarray(self.material.shape)
@property
def N_materials(self):
"""Number of (unique) material indices within grid."""
return np.unique(self.material).size
@staticmethod
def load(fname):
"""
Load from VTK rectilinear grid file.
Parameters
----------
fname : str or or pathlib.Path
Grid file to read. Valid extension is .vtr, which will be appended
if not given.
"""
v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr')
comments = v.get_comments()
cells = np.array(v.vtk_data.GetDimensions())-1
bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T
for i,c in enumerate([v.vtk_data.GetXCoordinates(),v.vtk_data.GetYCoordinates(),v.vtk_data.GetZCoordinates()]):
if not np.allclose(vtk_to_np(c),np.linspace(bbox[0][i],bbox[1][i],cells[i]+1)):
raise ValueError('regular grid spacing violated')
return Grid(material = v.get('material').reshape(cells,order='F'),
size = bbox[1] - bbox[0],
origin = bbox[0],
comments=comments)
@staticmethod
def load_ASCII(fname):
"""
Load from geom file.
Storing geometry files in ASCII format is deprecated.
This function will be removed in a future version of DAMASK.
Parameters
----------
fname : str, pathlib.Path, or file handle
Geometry file to read.
"""
warnings.warn('Support for ASCII-based geom format will be removed in DAMASK 3.1.0', DeprecationWarning)
try:
f = open(fname)
except TypeError:
f = fname
f.seek(0)
try:
header_length,keyword = f.readline().split()[:2]
header_length = int(header_length)
except ValueError:
header_length,keyword = (-1, 'invalid')
if not keyword.startswith('head') or header_length < 3:
raise TypeError('header length information missing or invalid')
comments = []
content = f.readlines()
for i,line in enumerate(content[:header_length]):
items = line.split('#')[0].lower().strip().split()
key = items[0] if items else ''
if key == 'grid':
cells = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
elif key == 'size':
size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
elif key == 'origin':
origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
else:
comments.append(line.strip())
material = np.empty(cells.prod()) # initialize as flat array
i = 0
for line in content[header_length:]:
items = line.split('#')[0].split()
if len(items) == 3:
if items[1].lower() == 'of':
items = np.ones(int(items[0]))*float(items[2])
elif items[1].lower() == 'to':
items = np.linspace(int(items[0]),int(items[2]),
abs(int(items[2])-int(items[0]))+1,dtype=float)
else: items = list(map(float,items))
else: items = list(map(float,items))
material[i:i+len(items)] = items
i += len(items)
if i != cells.prod():
raise TypeError(f'invalid file: expected {cells.prod()} entries, found {i}')
if not np.any(np.mod(material,1) != 0.0): # no float present
material = material.astype('int') - (1 if material.min() > 0 else 0)
return Grid(material.reshape(cells,order='F'),size,origin,comments)
@staticmethod
def load_DREAM3D(fname,base_group,point_data=None,material='FeatureIds'):
"""
Load from DREAM.3D file.
Parameters
----------
fname : str
Filename of the DREAM.3D file
base_group : str
Name of the group (folder) below 'DataContainers',
for example 'SyntheticVolumeDataContainer'.
point_data : str, optional
Name of the group (folder) containing the pointwise material data,
for example 'CellData'. Defaults to None, in which case points are consecutively numbered.
material : str, optional
Name of the dataset containing the material ID.
Defaults to 'FeatureIds'.
"""
root_dir ='DataContainers'
f = h5py.File(fname, 'r')
g = path.join(root_dir,base_group,'_SIMPL_GEOMETRY')
cells = f[path.join(g,'DIMENSIONS')][()]
size = f[path.join(g,'SPACING')][()] * cells
origin = f[path.join(g,'ORIGIN')][()]
ma = np.arange(cells.prod(),dtype=int) \
if point_data is None else \
np.reshape(f[path.join(root_dir,base_group,point_data,material)],cells.prod())
return Grid(ma.reshape(cells,order='F'),size,origin,util.execution_stamp('Grid','load_DREAM3D'))
@staticmethod
def from_table(table,coordinates,labels):
"""
Generate grid from ASCII table.
Parameters
----------
table : damask.Table
Table that contains material information.
coordinates : str
Label of the vector column containing the spatial coordinates.
Need to be ordered (1./x fast, 3./z slow).
labels : str or list of str
Label(s) of the columns containing the material definition.
Each unique combintation of values results in one material ID.
"""
cells,size,origin = grid_filters.cellsSizeOrigin_coordinates0_point(table.get(coordinates))
labels_ = [labels] if isinstance(labels,str) else labels
unique,unique_inverse = np.unique(np.hstack([table.get(l) for l in labels_]),return_inverse=True,axis=0)
ma = np.arange(cells.prod()) if len(unique) == cells.prod() else \
np.arange(unique.size)[np.argsort(pd.unique(unique_inverse))][unique_inverse]
return Grid(ma.reshape(cells,order='F'),size,origin,util.execution_stamp('Grid','from_table'))
@staticmethod
def _find_closest_seed(seeds, weights, point):
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
@staticmethod
def from_Laguerre_tessellation(cells,size,seeds,weights,material=None,periodic=True):
"""
Generate grid from Laguerre tessellation.
Parameters
----------
cells : int numpy.ndarray of shape (3)
Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3)
Physical size of the grid in meter.
seeds : numpy.ndarray of shape (:,3)
Position of the seed points in meter. All points need to lay within the box.
weights : numpy.ndarray of shape (seeds.shape[0])
Weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.
material : numpy.ndarray of shape (seeds.shape[0]), optional
Material ID of the seeds.
Defaults to None, in which case materials are consecutively numbered.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
if periodic:
weights_p = np.tile(weights,27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
coords = grid_filters.coordinates0_point(cells*3,size*3,-size).reshape(-1,3)
else:
weights_p = weights
seeds_p = seeds
coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3)
pool = mp.Pool(processes = int(environment.options['DAMASK_NUM_THREADS']))
result = pool.map_async(partial(Grid._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
pool.close()
pool.join()
material_ = np.array(result.get())
if periodic:
material_ = material_.reshape(cells*3)
material_ = material_[cells[0]:cells[0]*2,cells[1]:cells[1]*2,cells[2]:cells[2]*2]%seeds.shape[0]
else:
material_ = material_.reshape(cells)
return Grid(material = material_ if material is None else material[material_],
size = size,
comments = util.execution_stamp('Grid','from_Laguerre_tessellation'),
)
@staticmethod
def from_Voronoi_tessellation(cells,size,seeds,material=None,periodic=True):
"""
Generate grid from Voronoi tessellation.
Parameters
----------
cells : int numpy.ndarray of shape (3)
Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3)
Physical size of the grid in meter.
seeds : numpy.ndarray of shape (:,3)
Position of the seed points in meter. All points need to lay within the box.
material : numpy.ndarray of shape (seeds.shape[0]), optional
Material ID of the seeds.
Defaults to None, in which case materials are consecutively numbered.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,material_ = KDTree.query(coords)
return Grid(material = (material_ if material is None else material[material_]).reshape(cells),
size = size,
comments = util.execution_stamp('Grid','from_Voronoi_tessellation'),
)
_minimal_surface = \
{'Schwarz P': lambda x,y,z: np.cos(x) + np.cos(y) + np.cos(z),
'Double Primitive': lambda x,y,z: ( 0.5 * (np.cos(x)*np.cos(y) + np.cos(y)*np.cos(z) + np.cos(z)*np.cos(x))
+ 0.2 * (np.cos(2*x) + np.cos(2*y) + np.cos(2*z)) ),
'Schwarz D': lambda x,y,z: ( np.sin(x)*np.sin(y)*np.sin(z)
+ np.sin(x)*np.cos(y)*np.cos(z)
+ np.cos(x)*np.cos(y)*np.sin(z)
+ np.cos(x)*np.sin(y)*np.cos(z) ),
'Complementary D': lambda x,y,z: ( np.cos(3*x+y)*np.cos(z) - np.sin(3*x-y)*np.sin(z) + np.cos(x+3*y)*np.cos(z)
+ np.sin(x-3*y)*np.sin(z) + np.cos(x-y)*np.cos(3*z) - np.sin(x+y)*np.sin(3*z) ),
'Double Diamond': lambda x,y,z: 0.5 * (np.sin(x)*np.sin(y)
+ np.sin(y)*np.sin(z)
+ np.sin(z)*np.sin(x)
+ np.cos(x) * np.cos(y) * np.cos(z) ),
'Dprime': lambda x,y,z: 0.5 * ( np.cos(x)*np.cos(y)*np.cos(z)
+ np.cos(x)*np.sin(y)*np.sin(z)
+ np.sin(x)*np.cos(y)*np.sin(z)
+ np.sin(x)*np.sin(y)*np.cos(z)
- np.sin(2*x)*np.sin(2*y)
- np.sin(2*y)*np.sin(2*z)
- np.sin(2*z)*np.sin(2*x) ) - 0.2,
'Gyroid': lambda x,y,z: np.cos(x)*np.sin(y) + np.cos(y)*np.sin(z) + np.cos(z)*np.sin(x),
'Gprime': lambda x,y,z : ( np.sin(2*x)*np.cos(y)*np.sin(z)
+ np.sin(2*y)*np.cos(z)*np.sin(x)
+ np.sin(2*z)*np.cos(x)*np.sin(y) ) + 0.32,
'Karcher K': lambda x,y,z: ( 0.3 * ( np.cos(x) + np.cos(y) + np.cos(z)
+ np.cos(x)*np.cos(y) + np.cos(y)*np.cos(z) + np.cos(z)*np.cos(x) )
- 0.4 * ( np.cos(2*x) + np.cos(2*y) + np.cos(2*z) ) ) + 0.2,
'Lidinoid': lambda x,y,z: 0.5 * ( np.sin(2*x)*np.cos(y)*np.sin(z)
+ np.sin(2*y)*np.cos(z)*np.sin(x)
+ np.sin(2*z)*np.cos(x)*np.sin(y)
- np.cos(2*x)*np.cos(2*y)
- np.cos(2*y)*np.cos(2*z)
- np.cos(2*z)*np.cos(2*x) ) + 0.15,
'Neovius': lambda x,y,z: ( 3 * (np.cos(x)+np.cos(y)+np.cos(z))
+ 4 * np.cos(x)*np.cos(y)*np.cos(z) ),
'Fisher-Koch S': lambda x,y,z: ( np.cos(2*x)*np.sin( y)*np.cos( z)
+ np.cos( x)*np.cos(2*y)*np.sin( z)
+ np.sin( x)*np.cos( y)*np.cos(2*z) ),
}
@staticmethod
def from_minimal_surface(cells,size,surface,threshold=0.0,periods=1,materials=(0,1)):
"""
Generate grid from definition of triply periodic minimal surface.
Parameters
----------
cells : int numpy.ndarray of shape (3)
Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3)
Physical size of the grid in meter.
surface : str
Type of the minimal surface. See notes for details.
threshold : float, optional.
Threshold of the minimal surface. Defaults to 0.0.
periods : integer, optional.
Number of periods per unit cell. Defaults to 1.
materials : (int, int), optional
Material IDs. Defaults to (1,2).
Notes
-----
The following triply-periodic minimal surfaces are implemented:
- Schwarz P
- Double Primitive
- Schwarz D
- Complementary D
- Double Diamond
- Dprime
- Gyroid
- Gprime
- Karcher K
- Lidinoid
- Neovius
- Fisher-Koch S
References
----------
Sébastien B G Blanquer, Maike Werner, Markus Hannula, Shahriar Sharifi,
Guillaume P R Lajoinie, David Eglin, Jari Hyttinen, André A Poot, and Dirk W Grijpma
Surface curvature in triply-periodic minimal surface architectures as
a distinct design parameter in preparing advanced tissue engineering scaffolds
https://doi.org/10.1088/1758-5090/aa6553
Meinhard Wohlgemuth, Nataliya Yufa, James Hoffman, and Edwin L. Thomas
Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries
https://doi.org/10.1021/ma0019499
Meng-Ting Hsieh, Lorenzo Valdevit
Minisurf A minimal surface generator for finite element modeling and additive manufacturing
https://doi.org/10.1016/j.simpa.2020.100026
"""
x,y,z = np.meshgrid(periods*2.0*np.pi*(np.arange(cells[0])+0.5)/cells[0],
periods*2.0*np.pi*(np.arange(cells[1])+0.5)/cells[1],
periods*2.0*np.pi*(np.arange(cells[2])+0.5)/cells[2],
indexing='ij',sparse=True)
return Grid(material = np.where(threshold < Grid._minimal_surface[surface](x,y,z),materials[1],materials[0]),
size = size,
comments = util.execution_stamp('Grid','from_minimal_surface'),
)
def save(self,fname,compress=True):
"""
Save as VTK rectilinear grid file.
Parameters
----------
fname : str or pathlib.Path
Filename to write. Valid extension is .vtr, it will be appended if not given.
compress : bool, optional
Compress with zlib algorithm. Defaults to True.
"""
v = VTK.from_rectilinear_grid(self.cells,self.size,self.origin)
v.add(self.material.flatten(order='F'),'material')
v.add_comments(self.comments)
v.save(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr',parallel=False,compress=compress)
def save_ASCII(self,fname):
"""
Save as geom file.
Storing geometry files in ASCII format is deprecated.
This function will be removed in a future version of DAMASK.
Parameters
----------
fname : str or file handle
Geometry file to write with extension '.geom'.
compress : bool, optional
Compress geometry with 'x of y' and 'a to b'.
"""
warnings.warn('Support for ASCII-based geom format will be removed in DAMASK 3.1.0', DeprecationWarning)
header = [f'{len(self.comments)+4} header'] + self.comments \
+ ['grid a {} b {} c {}'.format(*self.cells),
'size x {} y {} z {}'.format(*self.size),
'origin x {} y {} z {}'.format(*self.origin),
'homogenization 1',
]
format_string = '%g' if self.material.dtype in np.sctypes['float'] else \
'%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.material)))))
np.savetxt(fname,
self.material.reshape([self.cells[0],np.prod(self.cells[1:])],order='F').T,
header='\n'.join(header), fmt=format_string, comments='')
def show(self):
"""Show on screen."""
VTK.from_rectilinear_grid(self.cells,self.size,self.origin).show()
def add_primitive(self,dimension,center,exponent,
fill=None,R=Rotation(),inverse=False,periodic=True):
"""
Insert a primitive geometric object at a given position.
Parameters
----------
dimension : int or float numpy.ndarray of shape (3)
Dimension (diameter/side length) of the primitive. If given as
integers, cell centers are addressed.
If given as floats, coordinates are addressed.
center : int or float numpy.ndarray of shape (3)
Center of the primitive. If given as integers, cell centers are addressed.
If given as floats, coordinates in space are addressed.
exponent : numpy.ndarray of shape (3) or float
Exponents for the three axes.
0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1)
1 gives sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1)
fill : int, optional
Fill value for primitive. Defaults to material.max()+1.
R : damask.Rotation, optional
Rotation of primitive. Defaults to no rotation.
inverse : Boolean, optional
Retain original materials within primitive and fill outside.
Defaults to False.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
# radius and center
r = np.array(dimension)/2.0*self.size/self.cells if np.array(dimension).dtype in np.sctypes['int'] else \
np.array(dimension)/2.0
c = (np.array(center) + .5)*self.size/self.cells if np.array(center).dtype in np.sctypes['int'] else \
(np.array(center) - self.origin)
coords = grid_filters.coordinates0_point(self.cells,self.size,
-(0.5*(self.size + (self.size/self.cells
if np.array(center).dtype in np.sctypes['int'] else
0)) if periodic else c))
coords_rot = R.broadcast_to(tuple(self.cells))@coords
with np.errstate(all='ignore'):
mask = np.sum(np.power(coords_rot/r,2.0**np.array(exponent)),axis=-1) > 1.0
if periodic: # translate back to center
mask = np.roll(mask,((c/self.size-0.5)*self.cells).round().astype(int),(0,1,2))
return Grid(material = np.where(np.logical_not(mask) if inverse else mask,
self.material,
np.nanmax(self.material)+1 if fill is None else fill),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','add_primitive')],
)
def mirror(self,directions,reflect=False):
"""
Mirror grid along given directions.
Parameters
----------
directions : iterable containing str
Direction(s) along which the grid is mirrored.
Valid entries are 'x', 'y', 'z'.
reflect : bool, optional
Reflect (include) outermost layers. Defaults to False.
"""
valid = ['x','y','z']
if not set(directions).issubset(valid):
raise ValueError(f'invalid direction {set(directions).difference(valid)} specified')
limits = [None,None] if reflect else [-2,0]
mat = self.material.copy()
if 'x' in directions:
mat = np.concatenate([mat,mat[limits[0]:limits[1]:-1,:,:]],0)
if 'y' in directions:
mat = np.concatenate([mat,mat[:,limits[0]:limits[1]:-1,:]],1)
if 'z' in directions:
mat = np.concatenate([mat,mat[:,:,limits[0]:limits[1]:-1]],2)
return Grid(material = mat,
size = self.size/self.cells*np.asarray(mat.shape),
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','mirror')],
)
def flip(self,directions):
"""
Flip grid along given directions.
Parameters
----------
directions : iterable containing str
Direction(s) along which the grid is flipped.
Valid entries are 'x', 'y', 'z'.
"""
valid = ['x','y','z']
if not set(directions).issubset(valid):
raise ValueError(f'invalid direction {set(directions).difference(valid)} specified')
mat = np.flip(self.material, (valid.index(d) for d in directions if d in valid))
return Grid(material = mat,
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','flip')],
)
def scale(self,cells,periodic=True):
"""
Scale grid to new cells.
Parameters
----------
cells : numpy.ndarray of shape (3)
Number of cells in x,y,z direction.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
return Grid(material = ndimage.interpolation.zoom(
self.material,
cells/self.cells,
output=self.material.dtype,
order=0,
mode=('wrap' if periodic else 'nearest'),
prefilter=False
),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','scale')],
)
def clean(self,stencil=3,selection=None,periodic=True):
"""
Smooth grid by selecting most frequent material index within given stencil at each location.
Parameters
----------
stencil : int, optional
Size of smoothing stencil.
selection : list, optional
Field values that can be altered. Defaults to all.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
def mostFrequent(arr,selection=None):
me = arr[arr.size//2]
if selection is None or me in selection:
unique, inverse = np.unique(arr, return_inverse=True)
return unique[np.argmax(np.bincount(inverse))]
else:
return me
return Grid(material = ndimage.filters.generic_filter(
self.material,
mostFrequent,
size=(stencil if selection is None else stencil//2*2+1,)*3,
mode=('wrap' if periodic else 'nearest'),
extra_keywords=dict(selection=selection),
).astype(self.material.dtype),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','clean')],
)
def renumber(self):
"""Renumber sorted material indices as 0,...,N-1."""
_,renumbered = np.unique(self.material,return_inverse=True)
return Grid(material = renumbered.reshape(self.cells),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','renumber')],
)
def rotate(self,R,fill=None):
"""
Rotate grid (pad if required).
Parameters
----------
R : damask.Rotation
Rotation to apply to the grid.
fill : int or float, optional
Material index to fill the corners. Defaults to material.max() + 1.
"""
if fill is None: fill = np.nanmax(self.material) + 1
dtype = float if np.isnan(fill) or int(fill) != fill or self.material.dtype==np.float else int
Eulers = R.as_Euler_angles(degrees=True)
material_in = self.material.copy()
# These rotations are always applied in the reference coordinate system, i.e. (z,x,z) not (z,x',z'')
# see https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
for angle,axes in zip(Eulers[::-1], [(0,1),(1,2),(0,1)]):
material_out = ndimage.rotate(material_in,angle,axes,order=0,
prefilter=False,output=dtype,cval=fill)
if np.prod(material_in.shape) == np.prod(material_out.shape):
# avoid scipy interpolation errors for rotations close to multiples of 90°
material_in = np.rot90(material_in,k=np.rint(angle/90.).astype(int),axes=axes)
else:
material_in = material_out
origin = self.origin-(np.asarray(material_in.shape)-self.cells)*.5 * self.size/self.cells
return Grid(material = material_in,
size = self.size/self.cells*np.asarray(material_in.shape),
origin = origin,
comments = self.comments+[util.execution_stamp('Grid','rotate')],
)
def canvas(self,cells=None,offset=None,fill=None):
"""
Crop or enlarge/pad grid.
Parameters
----------
cells : numpy.ndarray of shape (3)
Number of cells x,y,z direction.
offset : numpy.ndarray of shape (3)
Offset (measured in cells) from old to new grid [0,0,0].
fill : int or float, optional
Material index to fill the background. Defaults to material.max() + 1.
"""
if offset is None: offset = 0
if fill is None: fill = np.nanmax(self.material) + 1
dtype = float if int(fill) != fill or self.material.dtype in np.sctypes['float'] else int
canvas = np.full(self.cells if cells is None else cells,fill,dtype)
LL = np.clip( offset, 0,np.minimum(self.cells, cells+offset))
UR = np.clip( offset+cells, 0,np.minimum(self.cells, cells+offset))
ll = np.clip(-offset, 0,np.minimum( cells,self.cells-offset))
ur = np.clip(-offset+self.cells,0,np.minimum( cells,self.cells-offset))
canvas[ll[0]:ur[0],ll[1]:ur[1],ll[2]:ur[2]] = self.material[LL[0]:UR[0],LL[1]:UR[1],LL[2]:UR[2]]
return Grid(material = canvas,
size = self.size/self.cells*np.asarray(canvas.shape),
origin = self.origin+offset*self.size/self.cells,
comments = self.comments+[util.execution_stamp('Grid','canvas')],
)
def substitute(self,from_material,to_material):
"""
Substitute material indices.
Parameters
----------
from_material : iterable of ints
Material indices to be substituted.
to_material : iterable of ints
New material indices.
"""
def mp(entry,mapper):
return mapper[entry] if entry in mapper else entry
mp = np.vectorize(mp)
mapper = dict(zip(from_material,to_material))
return Grid(material = mp(self.material,mapper).reshape(self.cells),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','substitute')],
)
def sort(self):
"""Sort material indices such that min(material) is located at (0,0,0)."""
a = self.material.flatten(order='F')
from_ma = pd.unique(a)
sort_idx = np.argsort(from_ma)
ma = np.unique(a)[sort_idx][np.searchsorted(from_ma,a,sorter = sort_idx)]
return Grid(material = ma.reshape(self.cells,order='F'),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','sort')],
)
def vicinity_offset(self,vicinity=1,offset=None,trigger=[],periodic=True):
"""
Offset material index of points in the vicinity of xxx.
Different from themselves (or listed as triggers) within a given (cubic) vicinity,
i.e. within the region close to a grain/phase boundary.
ToDo: use include/exclude as in seeds.from_grid
Parameters
----------
vicinity : int, optional
Voxel distance checked for presence of other materials.
Defaults to 1.
offset : int, optional
Offset (positive or negative) to tag material indices,
defaults to material.max()+1.
trigger : list of ints, optional
List of material indices that trigger a change.
Defaults to [], meaning that any different neighbor triggers a change.
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
"""
def tainted_neighborhood(stencil,trigger):
me = stencil[stencil.shape[0]//2]
return np.any(stencil != me
if len(trigger) == 0 else
np.in1d(stencil,np.array(list(set(trigger) - {me}))))
offset_ = np.nanmax(self.material)+1 if offset is None else offset
mask = ndimage.filters.generic_filter(self.material,
tainted_neighborhood,
size=1+2*vicinity,
mode='wrap' if periodic else 'nearest',
extra_keywords={'trigger':trigger})
return Grid(material = np.where(mask, self.material + offset_,self.material),
size = self.size,
origin = self.origin,
comments = self.comments+[util.execution_stamp('Grid','vicinity_offset')],
)
def get_grain_boundaries(self,periodic=True,directions='xyz'):
"""
Create VTK unstructured grid containing grain boundaries.
Parameters
----------
periodic : Boolean, optional
Assume grid to be periodic. Defaults to True.
directions : iterable containing str, optional
Direction(s) along which the boundaries are determined.
Valid entries are 'x', 'y', 'z'. Defaults to 'xyz'.
"""
valid = ['x','y','z']
if not set(directions).issubset(valid):
raise ValueError(f'invalid direction {set(directions).difference(valid)} specified')
o = [[0, self.cells[0]+1, np.prod(self.cells[:2]+1)+self.cells[0]+1, np.prod(self.cells[:2]+1)],
[0, np.prod(self.cells[:2]+1), np.prod(self.cells[:2]+1)+1, 1],
[0, 1, self.cells[0]+1+1, self.cells[0]+1]] # offset for connectivity
connectivity = []
for i,d in enumerate(['x','y','z']):
if d not in directions: continue
mask = self.material != np.roll(self.material,1,i)
for j in [0,1,2]:
mask = np.concatenate((mask,np.take(mask,[0],j)*(i==j)),j)
if i == 0 and not periodic: mask[0,:,:] = mask[-1,:,:] = False
if i == 1 and not periodic: mask[:,0,:] = mask[:,-1,:] = False
if i == 2 and not periodic: mask[:,:,0] = mask[:,:,-1] = False
base_nodes = np.argwhere(mask.flatten(order='F')).reshape(-1,1)
connectivity.append(np.block([base_nodes + o[i][k] for k in range(4)]))
coords = grid_filters.coordinates0_node(self.cells,self.size,self.origin).reshape(-1,3,order='F')
return VTK.from_unstructured_grid(coords,np.vstack(connectivity),'QUAD')