DAMASK_EICMD/src/plastic_nonlocal.f90

4027 lines
228 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for plasticity including dislocation flux
!--------------------------------------------------------------------------------------------------
module plastic_nonlocal
use prec, only: &
pReal, &
pInt
implicit none
private
character(len=22), dimension(11), parameter, private :: &
BASICSTATES = ['rhoSglEdgePosMobile ', &
'rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ', &
'rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ', &
'rhoSglEdgeNegImmobile ', &
'rhoSglScrewPosImmobile', &
'rhoSglScrewNegImmobile', &
'rhoDipEdge ', &
'rhoDipScrew ', &
'accumulatedshear ' ] !< list of "basic" microstructural state variables that are independent from other state variables
character(len=16), dimension(3), parameter, private :: &
DEPENDENTSTATES = ['rhoForest ', &
'tauThreshold ', &
'tauBack ' ] !< list of microstructural state variables that depend on other state variables
character(len=20), dimension(6), parameter, private :: &
OTHERSTATES = ['velocityEdgePos ', &
'velocityEdgeNeg ', &
'velocityScrewPos ', &
'velocityScrewNeg ', &
'maxDipoleHeightEdge ', &
'maxDipoleHeightScrew' ] !< list of other dependent state variables that are not updated by microstructure
real(pReal), parameter, private :: &
KB = 1.38e-23_pReal !< Physical parameter, Boltzmann constant in J/Kelvin
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_nonlocal_sizeDotState, & !< number of dotStates = number of basic state variables
plastic_nonlocal_sizeDependentState, & !< number of dependent state variables
plastic_nonlocal_sizeState, & !< total number of state variables
plastic_nonlocal_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_nonlocal_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_nonlocal_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_nonlocal_Noutput !< number of outputs per instance of this plasticity
integer(pInt), dimension(:,:), allocatable, private :: &
iGamma, & !< state indices for accumulated shear
iRhoF, & !< state indices for forest density
iTauF, & !< state indices for critical resolved shear stress
iTauB !< state indices for backstress
integer(pInt), dimension(:,:,:), allocatable, private :: &
iRhoU, & !< state indices for unblocked density
iRhoB, & !< state indices for blocked density
iRhoD, & !< state indices for dipole density
iV, & !< state indices for dislcation velocities
iD !< state indices for stable dipole height
integer(pInt), dimension(:), allocatable, public, protected :: &
totalNslip !< total number of active slip systems for each instance
integer(pInt), dimension(:,:), allocatable, private :: &
Nslip, & !< number of active slip systems for each family and instance
slipFamily, & !< lookup table relating active slip system to slip family for each instance
slipSystemLattice, & !< lookup table relating active slip system index to lattice slip system index for each instance
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
real(pReal), dimension(:), allocatable, private :: &
atomicVolume, & !< atomic volume
Dsd0, & !< prefactor for self-diffusion coefficient
selfDiffusionEnergy, & !< activation enthalpy for diffusion
aTolRho, & !< absolute tolerance for dislocation density in state integration
aTolShear, & !< absolute tolerance for accumulated shear in state integration
significantRho, & !< density considered significant
significantN, & !< number of dislocations considered significant
cutoffRadius, & !< cutoff radius for dislocation stress
doublekinkwidth, & !< width of a doubkle kink in multiples of the burgers vector length b
solidSolutionEnergy, & !< activation energy for solid solution in J
solidSolutionSize, & !< solid solution obstacle size in multiples of the burgers vector length
solidSolutionConcentration, & !< concentration of solid solution in atomic parts
pParam, & !< parameter for kinetic law (Kocks,Argon,Ashby)
qParam, & !< parameter for kinetic law (Kocks,Argon,Ashby)
viscosity, & !< viscosity for dislocation glide in Pa s
fattack, & !< attack frequency in Hz
rhoSglScatter, & !< standard deviation of scatter in initial dislocation density
surfaceTransmissivity, & !< transmissivity at free surface
grainboundaryTransmissivity, & !< transmissivity at grain boundary (identified by different texture)
CFLfactor, & !< safety factor for CFL flux condition
fEdgeMultiplication, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
rhoSglRandom, &
rhoSglRandomBinning, &
linetensionEffect, &
edgeJogFactor
real(pReal), dimension(:,:), allocatable, private :: &
rhoSglEdgePos0, & !< initial edge_pos dislocation density per slip system for each family and instance
rhoSglEdgeNeg0, & !< initial edge_neg dislocation density per slip system for each family and instance
rhoSglScrewPos0, & !< initial screw_pos dislocation density per slip system for each family and instance
rhoSglScrewNeg0, & !< initial screw_neg dislocation density per slip system for each family and instance
rhoDipEdge0, & !< initial edge dipole dislocation density per slip system for each family and instance
rhoDipScrew0, & !< initial screw dipole dislocation density per slip system for each family and instance
lambda0PerSlipFamily, & !< mean free path prefactor for each family and instance
lambda0, & !< mean free path prefactor for each slip system and instance
burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each family and instance
burgers, & !< absolute length of burgers vector [m] for each slip system and instance
interactionSlipSlip !< coefficients for slip-slip interaction for each interaction type and instance
real(pReal), dimension(:,:,:), allocatable, private :: &
minDipoleHeightPerSlipFamily, & !< minimum stable edge/screw dipole height for each family and instance
minDipoleHeight, & !< minimum stable edge/screw dipole height for each slip system and instance
peierlsStressPerSlipFamily, & !< Peierls stress (edge and screw)
peierlsStress, & !< Peierls stress (edge and screw)
forestProjectionEdge, & !< matrix of forest projections of edge dislocations for each instance
forestProjectionScrew, & !< matrix of forest projections of screw dislocations for each instance
interactionMatrixSlipSlip !< interaction matrix of the different slip systems for each instance
real(pReal), dimension(:,:,:,:), allocatable, private :: &
lattice2slip, & !< orthogonal transformation matrix from lattice coordinate system to slip coordinate system (passive rotation !!!)
rhoDotEdgeJogsOutput, &
sourceProbability
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
rhoDotFluxOutput, &
rhoDotMultiplicationOutput, &
rhoDotSingle2DipoleGlideOutput, &
rhoDotAthermalAnnihilationOutput, &
rhoDotThermalAnnihilationOutput, &
nonSchmidProjection !< combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
compatibility !< slip system compatibility between me and my neighbors
real(pReal), dimension(:,:), allocatable, private :: &
nonSchmidCoeff
logical, dimension(:), allocatable, private :: &
shortRangeStressCorrection, & !< flag indicating the use of the short range stress correction by a excess density gradient term
probabilisticMultiplication
enum, bind(c)
enumerator :: undefined_ID, &
rho_ID, &
delta_ID, &
rho_edge_ID, &
rho_screw_ID, &
rho_sgl_ID, &
delta_sgl_ID, &
rho_sgl_edge_ID, &
rho_sgl_edge_pos_ID, &
rho_sgl_edge_neg_ID, &
rho_sgl_screw_ID, &
rho_sgl_screw_pos_ID, &
rho_sgl_screw_neg_ID, &
rho_sgl_mobile_ID, &
rho_sgl_edge_mobile_ID, &
rho_sgl_edge_pos_mobile_ID, &
rho_sgl_edge_neg_mobile_ID, &
rho_sgl_screw_mobile_ID, &
rho_sgl_screw_pos_mobile_ID, &
rho_sgl_screw_neg_mobile_ID, &
rho_sgl_immobile_ID, &
rho_sgl_edge_immobile_ID, &
rho_sgl_edge_pos_immobile_ID, &
rho_sgl_edge_neg_immobile_ID, &
rho_sgl_screw_immobile_ID, &
rho_sgl_screw_pos_immobile_ID, &
rho_sgl_screw_neg_immobile_ID, &
rho_dip_ID, &
delta_dip_ID, &
rho_dip_edge_ID, &
rho_dip_screw_ID, &
excess_rho_ID, &
excess_rho_edge_ID, &
excess_rho_screw_ID, &
rho_forest_ID, &
shearrate_ID, &
resolvedstress_ID, &
resolvedstress_external_ID, &
resolvedstress_back_ID, &
resistance_ID, &
rho_dot_ID, &
rho_dot_sgl_ID, &
rho_dot_sgl_mobile_ID, &
rho_dot_dip_ID, &
rho_dot_gen_ID, &
rho_dot_gen_edge_ID, &
rho_dot_gen_screw_ID, &
rho_dot_sgl2dip_ID, &
rho_dot_sgl2dip_edge_ID, &
rho_dot_sgl2dip_screw_ID, &
rho_dot_ann_ath_ID, &
rho_dot_ann_the_ID, &
rho_dot_ann_the_edge_ID, &
rho_dot_ann_the_screw_ID, &
rho_dot_edgejogs_ID, &
rho_dot_flux_ID, &
rho_dot_flux_mobile_ID, &
rho_dot_flux_edge_ID, &
rho_dot_flux_screw_ID, &
velocity_edge_pos_ID, &
velocity_edge_neg_ID, &
velocity_screw_pos_ID, &
velocity_screw_neg_ID, &
slipdirectionx_ID, &
slipdirectiony_ID, &
slipdirectionz_ID, &
slipnormalx_ID, &
slipnormaly_ID, &
slipnormalz_ID, &
fluxdensity_edge_posx_ID, &
fluxdensity_edge_posy_ID, &
fluxdensity_edge_posz_ID, &
fluxdensity_edge_negx_ID, &
fluxdensity_edge_negy_ID, &
fluxdensity_edge_negz_ID, &
fluxdensity_screw_posx_ID, &
fluxdensity_screw_posy_ID, &
fluxdensity_screw_posz_ID, &
fluxdensity_screw_negx_ID, &
fluxdensity_screw_negy_ID, &
fluxdensity_screw_negz_ID, &
maximumdipoleheight_edge_ID, &
maximumdipoleheight_screw_ID, &
accumulatedshear_ID, &
dislocationstress_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_nonlocal_outputID !< ID of each post result output
public :: &
plastic_nonlocal_init, &
plastic_nonlocal_stateInit, &
plastic_nonlocal_aTolState, &
plastic_nonlocal_microstructure, &
plastic_nonlocal_LpAndItsTangent, &
plastic_nonlocal_dotState, &
plastic_nonlocal_deltaState, &
plastic_nonlocal_updateCompatibility, &
plastic_nonlocal_postResults
private :: &
plastic_nonlocal_kinetics, &
plastic_nonlocal_dislocationstress
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, &
math_Voigt66to3333, &
math_mul3x3, &
math_transpose33
use IO, only: IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use material, only: phase_plasticity, &
homogenization_maxNgrains, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_NONLOCAL_label, &
PLASTICITY_NONLOCAL_ID, &
plasticState, &
MATERIAL_partPhase ,&
material_phase
use lattice
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
!*** local variables
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: phase, &
maxNinstances, &
maxTotalNslip, &
f, & ! index of my slip family
instance, & ! index of my instance of this plasticity
l, &
ns, & ! short notation for total number of active slip systems for the current instance
o, & ! index of my output
s, & ! index of my slip system
s1, & ! index of my slip system
s2, & ! index of my slip system
it, & ! index of my interaction type
t, & ! index of dislocation type
c, & ! index of dislocation character
Nchunks_SlipSlip = 0_pInt, &
Nchunks_SlipFamilies = 0_pInt, &
Nchunks_nonSchmid = 0_pInt, &
mySize = 0_pInt ! to suppress warnings, safe as init is called only once
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt) :: sizeState, sizeDotState,sizeDependentState, sizeDeltaState
integer(pInt) :: NofMyPhase
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_NONLOCAL_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstances = int(count(phase_plasticity == PLASTICITY_NONLOCAL_ID),pInt)
if (maxNinstances == 0) return ! we don't have to do anything if there's no instance for this constitutive law
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstances
!*** memory allocation for global variables
allocate(plastic_nonlocal_sizeDotState(maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_sizeDependentState(maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_sizeState(maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_sizePostResults(maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_sizePostResult(maxval(phase_Noutput), maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_Noutput(maxNinstances), source=0_pInt)
allocate(plastic_nonlocal_output(maxval(phase_Noutput), maxNinstances))
plastic_nonlocal_output = ''
allocate(plastic_nonlocal_outputID(maxval(phase_Noutput), maxNinstances), source=undefined_ID)
allocate(Nslip(lattice_maxNslipFamily,maxNinstances), source=0_pInt)
allocate(slipFamily(lattice_maxNslip,maxNinstances), source=0_pInt)
allocate(slipSystemLattice(lattice_maxNslip,maxNinstances), source=0_pInt)
allocate(totalNslip(maxNinstances), source=0_pInt)
allocate(atomicVolume(maxNinstances), source=0.0_pReal)
allocate(Dsd0(maxNinstances), source=-1.0_pReal)
allocate(selfDiffusionEnergy(maxNinstances), source=0.0_pReal)
allocate(aTolRho(maxNinstances), source=0.0_pReal)
allocate(aTolShear(maxNinstances), source=0.0_pReal)
allocate(significantRho(maxNinstances), source=0.0_pReal)
allocate(significantN(maxNinstances), source=0.0_pReal)
allocate(cutoffRadius(maxNinstances), source=-1.0_pReal)
allocate(doublekinkwidth(maxNinstances), source=0.0_pReal)
allocate(solidSolutionEnergy(maxNinstances), source=0.0_pReal)
allocate(solidSolutionSize(maxNinstances), source=0.0_pReal)
allocate(solidSolutionConcentration(maxNinstances), source=0.0_pReal)
allocate(pParam(maxNinstances), source=1.0_pReal)
allocate(qParam(maxNinstances), source=1.0_pReal)
allocate(viscosity(maxNinstances), source=0.0_pReal)
allocate(fattack(maxNinstances), source=0.0_pReal)
allocate(rhoSglScatter(maxNinstances), source=0.0_pReal)
allocate(rhoSglRandom(maxNinstances), source=0.0_pReal)
allocate(rhoSglRandomBinning(maxNinstances), source=1.0_pReal)
allocate(surfaceTransmissivity(maxNinstances), source=1.0_pReal)
allocate(grainboundaryTransmissivity(maxNinstances), source=-1.0_pReal)
allocate(CFLfactor(maxNinstances), source=2.0_pReal)
allocate(fEdgeMultiplication(maxNinstances), source=0.0_pReal)
allocate(linetensionEffect(maxNinstances), source=0.0_pReal)
allocate(edgeJogFactor(maxNinstances), source=1.0_pReal)
allocate(shortRangeStressCorrection(maxNinstances), source=.false.)
allocate(probabilisticMultiplication(maxNinstances), source=.false.)
allocate(rhoSglEdgePos0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(rhoSglEdgeNeg0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(rhoSglScrewPos0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(rhoSglScrewNeg0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(rhoDipEdge0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(rhoDipScrew0(lattice_maxNslipFamily,maxNinstances), source=-1.0_pReal)
allocate(burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstances), source=0.0_pReal)
allocate(lambda0PerSlipFamily(lattice_maxNslipFamily,maxNinstances), source=0.0_pReal)
allocate(interactionSlipSlip(lattice_maxNinteraction,maxNinstances), source=0.0_pReal)
allocate(minDipoleHeightPerSlipFamily(lattice_maxNslipFamily,2,maxNinstances), source=-1.0_pReal)
allocate(peierlsStressPerSlipFamily(lattice_maxNslipFamily,2,maxNinstances), source=0.0_pReal)
allocate(nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstances), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through phases of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase
phase = phase + 1_pInt ! advance phase section counter
if (phase_plasticity(phase) == PLASTICITY_NONLOCAL_ID) then
Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt)
Nchunks_SlipSlip = maxval(lattice_InteractionSlipSlip(:,:,phase))
Nchunks_nonSchmid = lattice_NnonSchmid(phase)
endif
cycle
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_NONLOCAL_ID) then ! one of my phases. do not short-circuit here (.and. with next if statement). It's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('rho')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('delta')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = delta_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('delta_sgl')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = delta_sgl_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_pos')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_pos_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_neg')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_neg_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_pos')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_pos_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_neg')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_neg_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_pos_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_pos_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_neg_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_neg_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_pos_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_pos_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_neg_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_neg_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_pos_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_pos_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_edge_neg_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_edge_neg_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_pos_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_pos_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_sgl_screw_neg_immobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_sgl_screw_neg_immobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dip')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dip_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('delta_dip')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = delta_dip_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dip_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dip_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dip_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dip_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('excess_rho')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = excess_rho_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('excess_rho_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = excess_rho_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('excess_rho_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = excess_rho_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_forest')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_forest_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('shearrate')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = shearrate_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('resolvedstress')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = resolvedstress_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('resolvedstress_external')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = resolvedstress_external_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('resolvedstress_back')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = resolvedstress_back_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('resistance')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = resistance_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_sgl')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_sgl_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_sgl_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_sgl_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_dip')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_dip_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_gen')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_gen_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_gen_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_gen_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_gen_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_gen_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_sgl2dip')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_sgl2dip_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_sgl2dip_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_sgl2dip_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_sgl2dip_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_sgl2dip_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_ann_ath')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_ann_ath_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_ann_the')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_ann_the_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_ann_the_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_ann_the_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_ann_the_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_ann_the_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_edgejogs')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_edgejogs_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_flux')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_flux_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_flux_mobile')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_flux_mobile_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_flux_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_flux_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('rho_dot_flux_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = rho_dot_flux_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('velocity_edge_pos')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = velocity_edge_pos_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('velocity_edge_neg')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = velocity_edge_neg_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('velocity_screw_pos')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = velocity_screw_pos_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('velocity_screw_neg')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = velocity_screw_neg_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipdirection.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipdirectionx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipdirection.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipdirectiony_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipdirection.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipdirectionz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipnormal.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipnormalx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipnormal.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipnormaly_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('slipnormal.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = slipnormalz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_pos.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_posx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_pos.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_posy_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_pos.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_posz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_neg.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_negx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_neg.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_negy_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_edge_neg.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_edge_negz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_pos.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_posx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_pos.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_posy_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_pos.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_posz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_neg.x')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_negx_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_neg.y')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_negy_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('fluxdensity_screw_neg.z')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = fluxdensity_screw_negz_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('maximumdipoleheight_edge')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = maximumdipoleheight_edge_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('maximumdipoleheight_screw')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = maximumdipoleheight_screw_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('accumulatedshear','accumulated_shear')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = accumulatedshear_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('dislocationstress')
plastic_nonlocal_Noutput(instance) = plastic_nonlocal_Noutput(instance) + 1_pInt
plastic_nonlocal_outputID(plastic_nonlocal_Noutput(instance),instance) = dislocationstress_ID
plastic_nonlocal_output(plastic_nonlocal_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
case ('nslip')
if (chunkPos(1) < 1_pInt + Nchunks_SlipFamilies) &
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_NONLOCAL_LABEL//')')
Nchunks_SlipFamilies = chunkPos(1) - 1_pInt
do f = 1_pInt, Nchunks_SlipFamilies
Nslip(f,instance) = IO_intValue(line,chunkPos,1_pInt+f)
enddo
case ('rhosgledgepos0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglEdgePos0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('rhosgledgeneg0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglEdgeNeg0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('rhosglscrewpos0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglScrewPos0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('rhosglscrewneg0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglScrewNeg0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('rhodipedge0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoDipEdge0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('rhodipscrew0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoDipScrew0(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('lambda0')
do f = 1_pInt, Nchunks_SlipFamilies
lambda0PerSlipFamily(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case ('burgers')
do f = 1_pInt, Nchunks_SlipFamilies
burgersPerSlipFamily(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('cutoffradius','r')
cutoffRadius(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('minimumdipoleheightedge','ddipminedge')
do f = 1_pInt, Nchunks_SlipFamilies
minDipoleHeightPerSlipFamily(f,1_pInt,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('minimumdipoleheightscrew','ddipminscrew')
do f = 1_pInt, Nchunks_SlipFamilies
minDipoleHeightPerSlipFamily(f,2_pInt,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('atomicvolume')
atomicVolume(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('selfdiffusionprefactor','dsd0')
Dsd0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('selfdiffusionenergy','qsd')
selfDiffusionEnergy(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('atol_rho','atol_density','absolutetolerancedensity','absolutetolerance_density')
aTolRho(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('atol_shear','atol_plasticshear','atol_accumulatedshear','absolutetoleranceshear','absolutetolerance_shear')
aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('significantrho','significant_rho','significantdensity','significant_density')
significantRho(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('significantn','significant_n','significantdislocations','significant_dislcations')
significantN(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('interaction_slipslip')
if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) &
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_NONLOCAL_LABEL//')')
do it = 1_pInt,Nchunks_SlipSlip
interactionSlipSlip(it,instance) = IO_floatValue(line,chunkPos,1_pInt+it)
enddo
case('linetension','linetensioneffect','linetension_effect')
linetensionEffect(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('edgejog','edgejogs','edgejogeffect','edgejog_effect')
edgeJogFactor(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('peierlsstressedge','peierlsstress_edge')
do f = 1_pInt, Nchunks_SlipFamilies
peierlsStressPerSlipFamily(f,1_pInt,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('peierlsstressscrew','peierlsstress_screw')
do f = 1_pInt, Nchunks_SlipFamilies
peierlsStressPerSlipFamily(f,2_pInt,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('doublekinkwidth')
doublekinkwidth(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('solidsolutionenergy')
solidSolutionEnergy(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('solidsolutionsize')
solidSolutionSize(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('solidsolutionconcentration')
solidSolutionConcentration(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('p')
pParam(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('q')
qParam(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('viscosity','glideviscosity')
viscosity(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('attackfrequency','fattack')
fattack(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('rhosglscatter')
rhoSglScatter(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('rhosglrandom')
rhoSglRandom(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('rhosglrandombinning')
rhoSglRandomBinning(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('surfacetransmissivity')
surfaceTransmissivity(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('grainboundarytransmissivity')
grainboundaryTransmissivity(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('cflfactor')
CFLfactor(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('fedgemultiplication','edgemultiplicationfactor','edgemultiplication')
fEdgeMultiplication(instance) = IO_floatValue(line,chunkPos,2_pInt)
case('shortrangestresscorrection')
shortRangeStressCorrection(instance) = IO_floatValue(line,chunkPos,2_pInt) > 0.0_pReal
case ('nonschmid_coefficients')
if (chunkPos(1) < 1_pInt + Nchunks_nonSchmid) &
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_NONLOCAL_label//')')
do f = 1_pInt,Nchunks_nonSchmid
nonSchmidCoeff(f,instance) = IO_floatValue(line,chunkPos,1_pInt+f)
enddo
case('probabilisticmultiplication','randomsources','randommultiplication','discretesources')
probabilisticMultiplication(instance) = IO_floatValue(line,chunkPos,2_pInt) > 0.0_pReal
end select
endif; endif
enddo parsingFile
sanityChecks: do phase = 1_pInt, size(phase_plasticity)
myPhase: if (phase_plasticity(phase) == PLASTICITY_NONLOCAL_ID) then
instance = phase_plasticityInstance(phase)
if (sum(Nslip(:,instance)) <= 0_pInt) &
call IO_error(211_pInt,ext_msg='Nslip ('//PLASTICITY_NONLOCAL_label//')')
do o = 1_pInt,maxval(phase_Noutput)
if(len(plastic_nonlocal_output(o,instance)) > 64_pInt) &
call IO_error(666_pInt)
enddo
do f = 1_pInt,lattice_maxNslipFamily
if (Nslip(f,instance) > 0_pInt) then
if (rhoSglEdgePos0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglEdgePos0 ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglEdgeNeg0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglEdgeNeg0 ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglScrewPos0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScrewPos0 ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglScrewNeg0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScrewNeg0 ('//PLASTICITY_NONLOCAL_label//')')
if (rhoDipEdge0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoDipEdge0 ('//PLASTICITY_NONLOCAL_label//')')
if (rhoDipScrew0(f,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoDipScrew0 ('//PLASTICITY_NONLOCAL_label//')')
if (burgersPerSlipFamily(f,instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='Burgers ('//PLASTICITY_NONLOCAL_label//')')
if (lambda0PerSlipFamily(f,instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='lambda0 ('//PLASTICITY_NONLOCAL_label//')')
if (minDipoleHeightPerSlipFamily(f,1,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightEdge ('//PLASTICITY_NONLOCAL_label//')')
if (minDipoleHeightPerSlipFamily(f,2,instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightScrew ('//PLASTICITY_NONLOCAL_label//')')
if (peierlsStressPerSlipFamily(f,1,instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressEdge ('//PLASTICITY_NONLOCAL_label//')')
if (peierlsStressPerSlipFamily(f,2,instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressScrew ('//PLASTICITY_NONLOCAL_label//')')
endif
enddo
if (any(interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,phase)),instance) < 0.0_pReal)) &
call IO_error(211_pInt,ext_msg='interaction_SlipSlip ('//PLASTICITY_NONLOCAL_label//')')
if (linetensionEffect(instance) < 0.0_pReal .or. linetensionEffect(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='linetension ('//PLASTICITY_NONLOCAL_label//')')
if (edgeJogFactor(instance) < 0.0_pReal .or. edgeJogFactor(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgejog ('//PLASTICITY_NONLOCAL_label//')')
if (cutoffRadius(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='r ('//PLASTICITY_NONLOCAL_label//')')
if (atomicVolume(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='atomicVolume ('//PLASTICITY_NONLOCAL_label//')')
if (Dsd0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='selfDiffusionPrefactor ('//PLASTICITY_NONLOCAL_label//')')
if (selfDiffusionEnergy(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='selfDiffusionEnergy ('//PLASTICITY_NONLOCAL_label//')')
if (aTolRho(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='aTol_rho ('//PLASTICITY_NONLOCAL_label//')')
if (aTolShear(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='aTol_shear ('//PLASTICITY_NONLOCAL_label//')')
if (significantRho(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='significantRho ('//PLASTICITY_NONLOCAL_label//')')
if (significantN(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='significantN ('//PLASTICITY_NONLOCAL_label//')')
if (doublekinkwidth(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='doublekinkwidth ('//PLASTICITY_NONLOCAL_label//')')
if (solidSolutionEnergy(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionEnergy ('//PLASTICITY_NONLOCAL_label//')')
if (solidSolutionSize(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionSize ('//PLASTICITY_NONLOCAL_label//')')
if (solidSolutionConcentration(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionConcentration ('//PLASTICITY_NONLOCAL_label//')')
if (pParam(instance) <= 0.0_pReal .or. pParam(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='p ('//PLASTICITY_NONLOCAL_label//')')
if (qParam(instance) < 1.0_pReal .or. qParam(instance) > 2.0_pReal) &
call IO_error(211_pInt,ext_msg='q ('//PLASTICITY_NONLOCAL_label//')')
if (viscosity(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='viscosity ('//PLASTICITY_NONLOCAL_label//')')
if (fattack(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='attackFrequency ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglScatter(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScatter ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglRandom(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglRandom ('//PLASTICITY_NONLOCAL_label//')')
if (rhoSglRandomBinning(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglRandomBinning ('//PLASTICITY_NONLOCAL_label//')')
if (surfaceTransmissivity(instance) < 0.0_pReal .or. surfaceTransmissivity(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='surfaceTransmissivity ('//PLASTICITY_NONLOCAL_label//')')
if (grainboundaryTransmissivity(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='grainboundaryTransmissivity ('//PLASTICITY_NONLOCAL_label//')')
if (CFLfactor(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='CFLfactor ('//PLASTICITY_NONLOCAL_label//')')
if (fEdgeMultiplication(instance) < 0.0_pReal .or. fEdgeMultiplication(instance) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgemultiplicationfactor ('//PLASTICITY_NONLOCAL_label//')')
!*** determine total number of active slip systems
Nslip(1:lattice_maxNslipFamily,instance) = min(lattice_NslipSystem(1:lattice_maxNslipFamily,phase), &
Nslip(1:lattice_maxNslipFamily,instance) ) ! we can't use more slip systems per family than specified in lattice
totalNslip(instance) = sum(Nslip(1:lattice_maxNslipFamily,instance))
endif myPhase
enddo sanityChecks
!*** allocation of variables whose size depends on the total number of active slip systems
maxTotalNslip = maxval(totalNslip)
allocate(iRhoU(maxTotalNslip,4,maxNinstances), source=0_pInt)
allocate(iRhoB(maxTotalNslip,4,maxNinstances), source=0_pInt)
allocate(iRhoD(maxTotalNslip,2,maxNinstances), source=0_pInt)
allocate(iV(maxTotalNslip,4,maxNinstances), source=0_pInt)
allocate(iD(maxTotalNslip,2,maxNinstances), source=0_pInt)
allocate(iGamma(maxTotalNslip,maxNinstances), source=0_pInt)
allocate(iRhoF(maxTotalNslip,maxNinstances), source=0_pInt)
allocate(iTauF(maxTotalNslip,maxNinstances), source=0_pInt)
allocate(iTauB(maxTotalNslip,maxNinstances), source=0_pInt)
allocate(burgers(maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(lambda0(maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(minDipoleHeight(maxTotalNslip,2,maxNinstances), source=-1.0_pReal)
allocate(forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(forestProjectionScrew(maxTotalNslip,maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(interactionMatrixSlipSlip(maxTotalNslip,maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(lattice2slip(1:3, 1:3, maxTotalNslip,maxNinstances), source=0.0_pReal)
allocate(sourceProbability(maxTotalNslip,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=2.0_pReal)
allocate(rhoDotFluxOutput(maxTotalNslip,8,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(rhoDotMultiplicationOutput(maxTotalNslip,2,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(rhoDotSingle2DipoleGlideOutput(maxTotalNslip,2,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(rhoDotAthermalAnnihilationOutput(maxTotalNslip,2,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(rhoDotThermalAnnihilationOutput(maxTotalNslip,2,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(rhoDotEdgeJogsOutput(maxTotalNslip,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(compatibility(2,maxTotalNslip,maxTotalNslip,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), &
source=0.0_pReal)
allocate(peierlsStress(maxTotalNslip,2,maxNinstances), source=0.0_pReal)
allocate(colinearSystem(maxTotalNslip,maxNinstances), source=0_pInt)
allocate(nonSchmidProjection(3,3,4,maxTotalNslip,maxNinstances), source=0.0_pReal)
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
NofMyPhase=count(material_phase==phase)
myPhase2: if (phase_plasticity(phase) == PLASTICITY_NONLOCAL_ID) then
instance = phase_plasticityInstance(phase)
!*** Inverse lookup of my slip system family and the slip system in lattice
l = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily
do s = 1_pInt,Nslip(f,instance)
l = l + 1_pInt
slipFamily(l,instance) = f
slipSystemLattice(l,instance) = sum(lattice_NslipSystem(1:f-1_pInt, phase)) + s
enddo; enddo
!*** determine size of state array
ns = totalNslip(instance)
sizeDotState = int(size(BASICSTATES),pInt) * ns
sizeDependentState = int(size(DEPENDENTSTATES),pInt) * ns
sizeState = sizeDotState + sizeDependentState &
+ int(size(OTHERSTATES),pInt) * ns
sizeDeltaState = sizeDotState
!*** determine indices to state array
l = 0_pInt
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoU(s,t,instance) = l
enddo
enddo
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoB(s,t,instance) = l
enddo
enddo
do c = 1_pInt,2_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoD(s,c,instance) = l
enddo
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iGamma(s,instance) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iRhoF(s,instance) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iTauF(s,instance) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iTauB(s,instance) = l
enddo
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iV(s,t,instance) = l
enddo
enddo
do c = 1_pInt,2_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iD(s,c,instance) = l
enddo
enddo
if (iD(ns,2,instance) /= sizeState) & ! check if last index is equal to size of state
call IO_error(0_pInt, ext_msg = 'state indices not properly set ('//PLASTICITY_NONLOCAL_label//')')
!*** determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_nonlocal_Noutput(instance)
select case(plastic_nonlocal_outputID(o,instance))
case( rho_ID, &
delta_ID, &
rho_edge_ID, &
rho_screw_ID, &
rho_sgl_ID, &
delta_sgl_ID, &
rho_sgl_edge_ID, &
rho_sgl_edge_pos_ID, &
rho_sgl_edge_neg_ID, &
rho_sgl_screw_ID, &
rho_sgl_screw_pos_ID, &
rho_sgl_screw_neg_ID, &
rho_sgl_mobile_ID, &
rho_sgl_edge_mobile_ID, &
rho_sgl_edge_pos_mobile_ID, &
rho_sgl_edge_neg_mobile_ID, &
rho_sgl_screw_mobile_ID, &
rho_sgl_screw_pos_mobile_ID, &
rho_sgl_screw_neg_mobile_ID, &
rho_sgl_immobile_ID, &
rho_sgl_edge_immobile_ID, &
rho_sgl_edge_pos_immobile_ID, &
rho_sgl_edge_neg_immobile_ID, &
rho_sgl_screw_immobile_ID, &
rho_sgl_screw_pos_immobile_ID, &
rho_sgl_screw_neg_immobile_ID, &
rho_dip_ID, &
delta_dip_ID, &
rho_dip_edge_ID, &
rho_dip_screw_ID, &
excess_rho_ID, &
excess_rho_edge_ID, &
excess_rho_screw_ID, &
rho_forest_ID, &
shearrate_ID, &
resolvedstress_ID, &
resolvedstress_external_ID, &
resolvedstress_back_ID, &
resistance_ID, &
rho_dot_ID, &
rho_dot_sgl_ID, &
rho_dot_sgl_mobile_ID, &
rho_dot_dip_ID, &
rho_dot_gen_ID, &
rho_dot_gen_edge_ID, &
rho_dot_gen_screw_ID, &
rho_dot_sgl2dip_ID, &
rho_dot_sgl2dip_edge_ID, &
rho_dot_sgl2dip_screw_ID, &
rho_dot_ann_ath_ID, &
rho_dot_ann_the_ID, &
rho_dot_ann_the_edge_ID, &
rho_dot_ann_the_screw_ID, &
rho_dot_edgejogs_ID, &
rho_dot_flux_ID, &
rho_dot_flux_mobile_ID, &
rho_dot_flux_edge_ID, &
rho_dot_flux_screw_ID, &
velocity_edge_pos_ID, &
velocity_edge_neg_ID, &
velocity_screw_pos_ID, &
velocity_screw_neg_ID, &
slipdirectionx_ID, &
slipdirectiony_ID, &
slipdirectionz_ID, &
slipnormalx_ID, &
slipnormaly_ID, &
slipnormalz_ID, &
fluxdensity_edge_posx_ID, &
fluxdensity_edge_posy_ID, &
fluxdensity_edge_posz_ID, &
fluxdensity_edge_negx_ID, &
fluxdensity_edge_negy_ID, &
fluxdensity_edge_negz_ID, &
fluxdensity_screw_posx_ID, &
fluxdensity_screw_posy_ID, &
fluxdensity_screw_posz_ID, &
fluxdensity_screw_negx_ID, &
fluxdensity_screw_negy_ID, &
fluxdensity_screw_negz_ID, &
maximumdipoleheight_edge_ID, &
maximumdipoleheight_screw_ID, &
accumulatedshear_ID )
mySize = totalNslip(instance)
case(dislocationstress_ID)
mySize = 6_pInt
case default
end select
if (mySize > 0_pInt) then ! any meaningful output found
plastic_nonlocal_sizePostResult(o,instance) = mySize
plastic_nonlocal_sizePostResults(instance) = plastic_nonlocal_sizePostResults(instance) + mySize
endif
enddo outputsLoop
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_nonlocal_sizePostResults(instance)
plasticState(phase)%nonlocal = .true.
plasticState(phase)%nSlip = totalNslip(instance)
plasticState(phase)%nTwin = 0_pInt
plasticState(phase)%nTrans= 0_pInt
allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => &
plasticState(phase)%dotState(iGamma(1,instance):iGamma(ns,instance),1:NofMyPhase)
plasticState(phase)%accumulatedSlip => &
plasticState(phase)%state (iGamma(1,instance):iGamma(ns,instance),1:NofMyPhase)
do s1 = 1_pInt,ns
f = slipFamily(s1,instance)
!*** burgers vector, mean free path prefactor and minimum dipole distance for each slip system
burgers(s1,instance) = burgersPerSlipFamily(f,instance)
lambda0(s1,instance) = lambda0PerSlipFamily(f,instance)
minDipoleHeight(s1,1:2,instance) = minDipoleHeightPerSlipFamily(f,1:2,instance)
peierlsStress(s1,1:2,instance) = peierlsStressPerSlipFamily(f,1:2,instance)
do s2 = 1_pInt,ns
!*** calculation of forest projections for edge and screw dislocations. s2 acts as forest for s1
forestProjectionEdge(s1,s2,instance) &
= abs(math_mul3x3(lattice_sn(1:3,slipSystemLattice(s1,instance),phase), &
lattice_st(1:3,slipSystemLattice(s2,instance),phase))) ! forest projection of edge dislocations is the projection of (t = b x n) onto the slip normal of the respective slip plane
forestProjectionScrew(s1,s2,instance) &
= abs(math_mul3x3(lattice_sn(1:3,slipSystemLattice(s1,instance),phase), &
lattice_sd(1:3,slipSystemLattice(s2,instance),phase))) ! forest projection of screw dislocations is the projection of b onto the slip normal of the respective splip plane
!*** calculation of interaction matrices
interactionMatrixSlipSlip(s1,s2,instance) &
= interactionSlipSlip(lattice_interactionSlipSlip(slipSystemLattice(s1,instance), &
slipSystemLattice(s2,instance), &
phase), instance)
!*** colinear slip system (only makes sense for fcc like it is defined here)
if (lattice_interactionSlipSlip(slipSystemLattice(s1,instance), &
slipSystemLattice(s2,instance), &
phase) == 3_pInt) then
colinearSystem(s1,instance) = s2
endif
enddo
!*** rotation matrix from lattice configuration to slip system
lattice2slip(1:3,1:3,s1,instance) &
= math_transpose33( reshape([ lattice_sd(1:3, slipSystemLattice(s1,instance), phase), &
-lattice_st(1:3, slipSystemLattice(s1,instance), phase), &
lattice_sn(1:3, slipSystemLattice(s1,instance), phase)], [3,3]))
enddo
!*** combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
!* four types t:
!* 1) positive screw at positive resolved stress
!* 2) positive screw at negative resolved stress
!* 3) negative screw at positive resolved stress
!* 4) negative screw at negative resolved stress
do s = 1_pInt,ns
do l = 1_pInt,lattice_NnonSchmid(phase)
nonSchmidProjection(1:3,1:3,1,s,instance) = nonSchmidProjection(1:3,1:3,1,s,instance) &
+ nonSchmidCoeff(l,instance) * lattice_Sslip(1:3,1:3,2*l,slipSystemLattice(s,instance),phase)
nonSchmidProjection(1:3,1:3,2,s,instance) = nonSchmidProjection(1:3,1:3,2,s,instance) &
+ nonSchmidCoeff(l,instance) * lattice_Sslip(1:3,1:3,2*l+1,slipSystemLattice(s,instance),phase)
enddo
nonSchmidProjection(1:3,1:3,3,s,instance) = -nonSchmidProjection(1:3,1:3,2,s,instance)
nonSchmidProjection(1:3,1:3,4,s,instance) = -nonSchmidProjection(1:3,1:3,1,s,instance)
forall (t = 1:4) &
nonSchmidProjection(1:3,1:3,t,s,instance) = nonSchmidProjection(1:3,1:3,t,s,instance) &
+ lattice_Sslip(1:3,1:3,1,slipSystemLattice(s,instance),phase)
enddo
call plastic_nonlocal_aTolState(phase,instance)
endif myPhase2
enddo initializeInstances
end subroutine plastic_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial microstructural state for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_stateInit()
use IO, only: IO_error
use lattice, only: lattice_maxNslipFamily
use math, only: math_sampleGaussVar
use mesh, only: mesh_ipVolume, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
use material, only: material_phase, &
phase_plasticityInstance, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticity ,&
PLASTICITY_NONLOCAL_ID
implicit none
integer(pInt) :: e, &
i, &
ns, & ! short notation for total number of active slip systems
f, & ! index of lattice family
from, &
upto, &
s, & ! index of slip system
t, &
j, &
instance, &
maxNinstances
real(pReal), dimension(2) :: noise
real(pReal), dimension(4) :: rnd
real(pReal) meanDensity, &
totalVolume, &
densityBinning, &
minimumIpVolume
maxNinstances = int(count(phase_plasticity == PLASTICITY_NONLOCAL_ID),pInt)
do instance = 1_pInt,maxNinstances
ns = totalNslip(instance)
! randomly distribute dislocation segments on random slip system and of random type in the volume
if (rhoSglRandom(instance) > 0.0_pReal) then
! get the total volume of the instance
minimumIpVolume = huge(1.0_pReal)
totalVolume = 0.0_pReal
do e = 1_pInt,mesh_NcpElems
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (PLASTICITY_NONLOCAL_ID == phase_plasticity(material_phase(1,i,e)) &
.and. instance == phase_plasticityInstance(material_phase(1,i,e))) then
totalVolume = totalVolume + mesh_ipVolume(i,e)
minimumIpVolume = min(minimumIpVolume, mesh_ipVolume(i,e))
endif
enddo
enddo
densityBinning = rhoSglRandomBinning(instance) / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
! subsequently fill random ips with dislocation segments until we reach the desired overall density
meanDensity = 0.0_pReal
do while(meanDensity < rhoSglRandom(instance))
call random_number(rnd)
e = nint(rnd(1)*real(mesh_NcpElems,pReal)+0.5_pReal,pInt)
i = nint(rnd(2)*real(FE_Nips(FE_geomtype(mesh_element(2,e))),pReal)+0.5_pReal,pInt)
if (PLASTICITY_NONLOCAL_ID == phase_plasticity(material_phase(1,i,e)) &
.and. instance == phase_plasticityInstance(material_phase(1,i,e))) then
s = nint(rnd(3)*real(ns,pReal)+0.5_pReal,pInt)
t = nint(rnd(4)*4.0_pReal+0.5_pReal,pInt)
meanDensity = meanDensity + densityBinning * mesh_ipVolume(i,e) / totalVolume
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,t,instance),phaseAt(1,i,e)) = &
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,t,instance),phaseAt(1,i,e)) &
+ densityBinning
endif
enddo
! homogeneous distribution of density with some noise
else
do e = 1_pInt,mesh_NcpElems
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (PLASTICITY_NONLOCAL_ID == phase_plasticity(material_phase(1,i,e)) &
.and. instance == phase_plasticityInstance(material_phase(1,i,e))) then
do f = 1_pInt,lattice_maxNslipFamily
from = 1_pInt + sum(Nslip(1:f-1_pInt,instance))
upto = sum(Nslip(1:f,instance))
do s = from,upto
do j = 1_pInt,2_pInt
noise(j) = math_sampleGaussVar(0.0_pReal, rhoSglScatter(instance))
enddo
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,1,instance),phasememberAt(1,i,e)) = &
rhoSglEdgePos0(f,instance) + noise(1)
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,2,instance),phasememberAt(1,i,e)) = &
rhoSglEdgeNeg0(f,instance) + noise(1)
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,3,instance),phasememberAt(1,i,e)) = &
rhoSglScrewPos0(f,instance) + noise(2)
plasticState(phaseAt(1,i,e))%state0(iRhoU(s,4,instance),phasememberAt(1,i,e)) = &
rhoSglScrewNeg0(f,instance) + noise(2)
enddo
plasticState(phaseAt(1,i,e))%state0(iRhoD(from:upto,1,instance),phasememberAt(1,i,e)) = &
rhoDipEdge0(f,instance)
plasticState(phaseAt(1,i,e))%state0(iRhoD(from:upto,2,instance),phasememberAt(1,i,e)) = &
rhoDipScrew0(f,instance)
enddo
endif
enddo
enddo
endif
enddo
end subroutine plastic_nonlocal_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_aTolState(ph,instance)
use material, only: &
plasticState
implicit none
integer(pInt), intent(in) :: &
instance, & !< number specifying the instance of the plasticity
ph
integer(pInt) :: &
ns, &
t, c
ns = totalNslip(instance)
forall (t = 1_pInt:4_pInt)
plasticState(ph)%aTolState(iRhoU(1:ns,t,instance)) = aTolRho(instance)
plasticState(ph)%aTolState(iRhoB(1:ns,t,instance)) = aTolRho(instance)
end forall
forall (c = 1_pInt:2_pInt) &
plasticState(ph)%aTolState(iRhoD(1:ns,c,instance)) = aTolRho(instance)
plasticState(ph)%aTolState(iGamma(1:ns,instance)) = aTolShear(instance)
end subroutine plastic_nonlocal_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_microstructure(Fe, Fp, ip, el)
use prec, only: &
dEq0
use IO, only: &
IO_error
use math, only: &
pi, &
math_mul33x3, &
math_mul3x3, &
math_inv33, &
math_transpose33
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelExtensive, &
debug_levelSelective, &
debug_i, &
debug_e
use mesh, only: &
mesh_element, &
mesh_ipNeighborhood, &
mesh_ipCoordinates, &
mesh_ipVolume, &
mesh_ipAreaNormal, &
mesh_ipArea, &
FE_NipNeighbors, &
mesh_maxNipNeighbors, &
FE_geomtype, &
FE_celltype
use material, only: &
material_phase, &
phase_localPlasticity, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
use lattice, only: &
lattice_sd, &
lattice_st, &
lattice_mu, &
lattice_nu, &
lattice_structure, &
LATTICE_bcc_ID, &
LATTICE_fcc_ID
implicit none
integer(pInt), intent(in) :: ip, & ! current integration point
el ! current element
real(pReal), dimension(3,3), intent(in) :: &
Fe, & ! elastic deformation gradient
Fp ! elastic deformation gradient
integer(pInt) :: &
ph, & !< phase
of, & !< offset
np, & !< neighbor phase
no !< nieghbor offset
integer(pInt) neighbor_el, & ! element number of neighboring material point
neighbor_ip, & ! integration point of neighboring material point
instance, & ! my instance of this plasticity
neighbor_instance, & ! instance of this plasticity of neighboring material point
neighbor_phase, &
ns, & ! total number of active slip systems at my material point
neighbor_ns, & ! total number of active slip systems at neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
n, &
nRealNeighbors ! number of really existing neighbors
integer(pInt), dimension(2) :: neighbors
real(pReal) FVsize, &
correction, &
myRhoForest
real(pReal), dimension(2) :: rhoExcessGradient, &
rhoExcessGradient_over_rho, &
rhoTotal
real(pReal), dimension(3) :: rhoExcessDifferences, &
normal_latticeConf
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
rhoForest, & ! forest dislocation density
tauBack, & ! back stress from pileup on same slip system
tauThreshold ! threshold shear stress
real(pReal), dimension(3,3) :: invFe, & ! inverse of elastic deformation gradient
invFp, & ! inverse of plastic deformation gradient
connections, &
invConnections
real(pReal), dimension(3,mesh_maxNipNeighbors) :: &
connection_latticeConf
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
rhoExcess
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),2) :: &
rhoDip ! dipole dislocation density (edge, screw)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))), &
totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
myInteractionMatrix ! corrected slip interaction matrix
real(pReal), dimension(2,maxval(totalNslip),mesh_maxNipNeighbors) :: &
neighbor_rhoExcess, & ! excess density at neighboring material point
neighbor_rhoTotal ! total density at neighboring material point
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),2) :: &
m ! direction of dislocation motion
ph = phaseAt(1,ip,el)
of = phasememberAt(1,ip,el)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(plasticState(ph)%state(iRhoU(s,t,instance),of), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = plasticState(ph)%state(iRhoB(s,t,instance),of)
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoDip(s,c) = max(plasticState(ph)%state(iRhoD(s,c,instance),of), 0.0_pReal) ! ensure positive dipole densities
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoSgl) < significantRho(instance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoDip) < significantRho(instance)) &
rhoDip = 0.0_pReal
!*** calculate the forest dislocation density
!*** (= projection of screw and edge dislocations)
forall (s = 1_pInt:ns) &
rhoForest(s) = dot_product((sum(abs(rhoSgl(1:ns,[1,2,5,6])),2) + rhoDip(1:ns,1)), &
forestProjectionEdge(s,1:ns,instance)) &
+ dot_product((sum(abs(rhoSgl(1:ns,[3,4,7,8])),2) + rhoDip(1:ns,2)), &
forestProjectionScrew(s,1:ns,instance))
!*** calculate the threshold shear stress for dislocation slip
!*** coefficients are corrected for the line tension effect
!*** (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
myInteractionMatrix = 0.0_pReal
myInteractionMatrix(1:ns,1:ns) = interactionMatrixSlipSlip(1:ns,1:ns,instance)
if (lattice_structure(ph) == LATTICE_bcc_ID .or. lattice_structure(ph) == LATTICE_fcc_ID) then ! only fcc and bcc
do s = 1_pInt,ns
myRhoForest = max(rhoForest(s),significantRho(instance))
correction = ( 1.0_pReal - linetensionEffect(instance) &
+ linetensionEffect(instance) &
* log(0.35_pReal * burgers(s,instance) * sqrt(myRhoForest)) &
/ log(0.35_pReal * burgers(s,instance) * 1e6_pReal)) ** 2.0_pReal
myInteractionMatrix(s,1:ns) = correction * myInteractionMatrix(s,1:ns)
enddo
endif
forall (s = 1_pInt:ns) &
tauThreshold(s) = lattice_mu(ph) * burgers(s,instance) &
* sqrt(dot_product((sum(abs(rhoSgl),2) + sum(abs(rhoDip),2)), myInteractionMatrix(s,1:ns)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
tauBack = 0.0_pReal
if (.not. phase_localPlasticity(ph) .and. shortRangeStressCorrection(instance)) then
invFe = math_inv33(Fe)
invFp = math_inv33(Fp)
rhoExcess(1,1:ns) = rhoSgl(1:ns,1) - rhoSgl(1:ns,2)
rhoExcess(2,1:ns) = rhoSgl(1:ns,3) - rhoSgl(1:ns,4)
FVsize = mesh_ipVolume(ip,el) ** (1.0_pReal/3.0_pReal)
!* loop through my neighborhood and get the connection vectors (in lattice frame) and the excess densities
nRealNeighbors = 0_pInt
neighbor_rhoTotal = 0.0_pReal
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))
neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
np = phaseAt(1,neighbor_ip,neighbor_el)
no = phasememberAt(1,neighbor_ip,neighbor_el)
if (neighbor_el > 0 .and. neighbor_ip > 0) then
neighbor_phase = material_phase(1,neighbor_ip,neighbor_el)
neighbor_instance = phase_plasticityInstance(neighbor_phase)
neighbor_ns = totalNslip(neighbor_instance)
if (.not. phase_localPlasticity(neighbor_phase) &
.and. neighbor_instance == instance) then ! same instance should be same structure
if (neighbor_ns == ns) then
nRealNeighbors = nRealNeighbors + 1_pInt
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
neighbor_rhoExcess(c,s,n) = &
max(plasticState(np)%state(iRhoU(s,2*c-1,neighbor_instance),no), 0.0_pReal) & ! positive mobiles
- max(plasticState(np)%state(iRhoU(s,2*c,neighbor_instance), no), 0.0_pReal) ! negative mobiles
neighbor_rhoTotal(c,s,n) = &
max(plasticState(np)%state(iRhoU(s,2*c-1,neighbor_instance),no), 0.0_pReal) & ! positive mobiles
+ max(plasticState(np)%state(iRhoU(s,2*c,neighbor_instance), no), 0.0_pReal) & ! negative mobiles
+ abs(plasticState(np)%state(iRhoB(s,2*c-1,neighbor_instance),no)) & ! positive deads
+ abs(plasticState(np)%state(iRhoB(s,2*c,neighbor_instance), no)) & ! negative deads
+ max(plasticState(np)%state(iRhoD(s,c,neighbor_instance), no), 0.0_pReal) ! dipoles
endforall
connection_latticeConf(1:3,n) = &
math_mul33x3(invFe, mesh_ipCoordinates(1:3,neighbor_ip,neighbor_el) &
- mesh_ipCoordinates(1:3,ip,el))
normal_latticeConf = math_mul33x3(math_transpose33(invFp), mesh_ipAreaNormal(1:3,n,ip,el))
if (math_mul3x3(normal_latticeConf,connection_latticeConf(1:3,n)) < 0.0_pReal) then ! neighboring connection points in opposite direction to face normal: must be periodic image
connection_latticeConf(1:3,n) = normal_latticeConf * mesh_ipVolume(ip,el) &
/ mesh_ipArea(n,ip,el) ! instead take the surface normal scaled with the diameter of the cell
endif
else
! different number of active slip systems
call IO_error(-1_pInt,ext_msg='different number of active slip systems in neighboring IPs of same crystal structure')
endif
else
! local neighbor or different lattice structure or different constitution instance -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighbor_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
else
! free surface -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighbor_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
enddo
!* loop through the slip systems and calculate the dislocation gradient by
!* 1. interpolation of the excess density in the neighorhood
!* 2. interpolation of the dead dislocation density in the central volume
m(1:3,1:ns,1) = lattice_sd(1:3,slipSystemLattice(1:ns,instance),ph)
m(1:3,1:ns,2) = -lattice_st(1:3,slipSystemLattice(1:ns,instance),ph)
do s = 1_pInt,ns
!* gradient from interpolation of neighboring excess density
do c = 1_pInt,2_pInt
do dir = 1_pInt,3_pInt
neighbors(1) = 2_pInt * dir - 1_pInt
neighbors(2) = 2_pInt * dir
connections(dir,1:3) = connection_latticeConf(1:3,neighbors(1)) &
- connection_latticeConf(1:3,neighbors(2))
rhoExcessDifferences(dir) = neighbor_rhoExcess(c,s,neighbors(1)) &
- neighbor_rhoExcess(c,s,neighbors(2))
enddo
invConnections = math_inv33(connections)
if (all(dEq0(invConnections))) &
call IO_error(-1_pInt,ext_msg='back stress calculation: inversion error')
rhoExcessGradient(c) = math_mul3x3(m(1:3,s,c), &
math_mul33x3(invConnections,rhoExcessDifferences))
enddo
!* plus gradient from deads
do t = 1_pInt,4_pInt
c = (t - 1_pInt) / 2_pInt + 1_pInt
rhoExcessGradient(c) = rhoExcessGradient(c) + rhoSgl(s,t+4_pInt) / FVsize
enddo
!* normalized with the total density
rhoExcessGradient_over_rho = 0.0_pReal
forall (c = 1_pInt:2_pInt) &
rhoTotal(c) = (sum(abs(rhoSgl(s,[2*c-1,2*c,2*c+3,2*c+4]))) + rhoDip(s,c) &
+ sum(neighbor_rhoTotal(c,s,:))) / real(1_pInt + nRealNeighbors,pReal)
forall (c = 1_pInt:2_pInt, rhoTotal(c) > 0.0_pReal) &
rhoExcessGradient_over_rho(c) = rhoExcessGradient(c) / rhoTotal(c)
!* gives the local stress correction when multiplied with a factor
tauBack(s) = - lattice_mu(ph) * burgers(s,instance) / (2.0_pReal * pi) &
* (rhoExcessGradient_over_rho(1) / (1.0_pReal - lattice_nu(ph)) &
+ rhoExcessGradient_over_rho(2))
enddo
endif
!*** set dependent states
plasticState(ph)%state(iRhoF(1:ns,instance),of) = rhoForest
plasticState(ph)%state(iTauF(1:ns,instance),of) = tauThreshold
plasticState(ph)%state(iTauB(1:ns,instance),of) = tauBack
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_microstructure at el ip ',el,ip
write(6,'(a,/,12x,12(e10.3,1x))') '<< CONST >> rhoForest', rhoForest
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold/1e6
write(6,'(a,/,12x,12(f10.5,1x),/)') '<< CONST >> tauBack / MPa', tauBack/1e6
endif
#endif
end subroutine plastic_nonlocal_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief calculates kinetics
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, &
tauThreshold, c, Temperature, ip, el)
use debug, only: debug_level, &
debug_constitutive, &
debug_levelExtensive, &
debug_levelSelective, &
debug_i, &
debug_e
use material, only: material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: ip, & !< current integration point
el, & !< current element number
c !< dislocation character (1:edge, 2:screw)
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))), &
intent(in) :: tau, & !< resolved external shear stress (without non Schmid effects)
tauNS, & !< resolved external shear stress (including non Schmid effects)
tauThreshold !< threshold shear stress
!*** output variables
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))), &
intent(out) :: v, & !< velocity
dv_dtau, & !< velocity derivative with respect to resolved shear stress (without non Schmid contributions)
dv_dtauNS !< velocity derivative with respect to resolved shear stress (including non Schmid contributions)
!*** local variables
integer(pInt) :: instance, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
s !< index of my current slip system
real(pReal) tauRel_P, &
tauRel_S, &
tauEff, & !< effective shear stress
tPeierls, & !< waiting time in front of a peierls barriers
tSolidSolution, & !< waiting time in front of a solid solution obstacle
vViscous, & !< viscous glide velocity
dtPeierls_dtau, & !< derivative with respect to resolved shear stress
dtSolidSolution_dtau, & !< derivative with respect to resolved shear stress
meanfreepath_S, & !< mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & !< mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & !< depth of activated area
jumpWidth_S, & !< depth of activated area
activationLength_P, & !< length of activated dislocation line
activationLength_S, & !< length of activated dislocation line
activationVolume_P, & !< volume that needs to be activated to overcome barrier
activationVolume_S, & !< volume that needs to be activated to overcome barrier
activationEnergy_P, & !< energy that is needed to overcome barrier
activationEnergy_S, & !< energy that is needed to overcome barrier
criticalStress_P, & !< maximum obstacle strength
criticalStress_S, & !< maximum obstacle strength
mobility !< dislocation mobility
instance = phase_plasticityInstance(material_phase(1_pInt,ip,el))
ns = totalNslip(instance)
v = 0.0_pReal
dv_dtau = 0.0_pReal
dv_dtauNS = 0.0_pReal
if (Temperature > 0.0_pReal) then
do s = 1_pInt,ns
if (abs(tau(s)) > tauThreshold(s)) then
!* Peierls contribution
!* Effective stress includes non Schmid constributions
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s)) ! ensure that the effective stress is positive
meanfreepath_P = burgers(s,instance)
jumpWidth_P = burgers(s,instance)
activationLength_P = doublekinkwidth(instance) * burgers(s,instance)
activationVolume_P = activationLength_P * jumpWidth_P * burgers(s,instance)
criticalStress_P = peierlsStress(s,c,instance)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P) ! ensure that the activation probability cannot become greater than one
tPeierls = 1.0_pReal / fattack(instance) &
* exp(activationEnergy_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**pParam(instance))**qParam(instance))
if (tauEff < criticalStress_P) then
dtPeierls_dtau = tPeierls * pParam(instance) * qParam(instance) * activationVolume_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**pParam(instance))**(qParam(instance)-1.0_pReal) &
* tauRel_P**(pParam(instance)-1.0_pReal)
else
dtPeierls_dtau = 0.0_pReal
endif
!* Contribution from solid solution strengthening
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = abs(tau(s)) - tauThreshold(s)
meanfreepath_S = burgers(s,instance) / sqrt(solidSolutionConcentration(instance))
jumpWidth_S = solidSolutionSize(instance) * burgers(s,instance)
activationLength_S = burgers(s,instance) / sqrt(solidSolutionConcentration(instance))
activationVolume_S = activationLength_S * jumpWidth_S * burgers(s,instance)
activationEnergy_S = solidSolutionEnergy(instance)
criticalStress_S = activationEnergy_S / activationVolume_S
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S) ! ensure that the activation probability cannot become greater than one
tSolidSolution = 1.0_pReal / fattack(instance) &
* exp(activationEnergy_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**pParam(instance))**qParam(instance))
if (tauEff < criticalStress_S) then
dtSolidSolution_dtau = tSolidSolution * pParam(instance) * qParam(instance) &
* activationVolume_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**pParam(instance))**(qParam(instance)-1.0_pReal) &
* tauRel_S**(pParam(instance)-1.0_pReal)
else
dtSolidSolution_dtau = 0.0_pReal
endif
!* viscous glide velocity
tauEff = abs(tau(s)) - tauThreshold(s)
mobility = burgers(s,instance) / viscosity(instance)
vViscous = mobility * tauEff
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
!* free flight at glide velocity in between.
!* adopt sign from resolved stress
v(s) = sign(1.0_pReal,tau(s)) &
/ (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous)
dv_dtau(s) = v(s) * v(s) * (dtSolidSolution_dtau / meanfreepath_S &
+ mobility / (vViscous * vViscous))
dv_dtauNS(s) = v(s) * v(s) * dtPeierls_dtau / meanfreepath_P
endif
enddo
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_kinetics at el ip',el,ip
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tau / MPa', tau / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauNS / MPa', tauNS / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> v / 1e-3m/s', v * 1e3
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtau', dv_dtau
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtauNS', dv_dtauNS
endif
#endif
end subroutine plastic_nonlocal_kinetics
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_LpAndItsTangent(Lp, dLp_dTstar99, Tstar_v, Temperature, ip, el)
use math, only: math_Plain3333to99, &
math_mul6x6, &
math_mul33xx33, &
math_Mandel6to33
use debug, only: debug_level, &
debug_constitutive, &
debug_levelExtensive, &
debug_levelSelective, &
debug_i, &
debug_e
use material, only: material_phase, &
plasticState, &
phaseAt, phasememberAt,&
phase_plasticityInstance
use lattice, only: lattice_Sslip, &
lattice_Sslip_v, &
lattice_NnonSchmid
use mesh, only: mesh_ipVolume
implicit none
!*** input variables
integer(pInt), intent(in) :: ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola-Kirchhoff stress in Mandel notation
!*** output variables
real(pReal), dimension(3,3), intent(out) :: Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 !< derivative of Lp with respect to Tstar (9x9 matrix)
!*** local variables
integer(pInt) instance, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
i, &
j, &
k, &
l, &
ph, & !phase number
of, & !offset
t, & !< dislocation type
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 !< derivative of Lp with respect to Tstar (3x3x3x3 matrix)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),8) :: &
rhoSgl !< single dislocation densities (including blocked)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),4) :: &
v, & !< velocity
tauNS, & !< resolved shear stress including non Schmid and backstress terms
dv_dtau, & !< velocity derivative with respect to the shear stress
dv_dtauNS !< velocity derivative with respect to the shear stress
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
tau, & !< resolved shear stress including backstress terms
gdotTotal, & !< shear rate
tauBack, & !< back stress from dislocation gradients on same slip system
tauThreshold !< threshold shear stress
!*** shortcut for mapping
ph = phaseAt(1_pInt,ip,el)
of = phasememberAt(1_pInt,ip,el)
!*** initialize local variables
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(plasticState(ph)%state(iRhoU(s,t,instance),of), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = plasticState(ph)%state(iRhoB(s,t,instance),of)
endforall
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoSgl) < significantRho(instance)) &
rhoSgl = 0.0_pReal
tauBack = plasticState(ph)%state(iTauB(1:ns,instance),of)
tauThreshold = plasticState(ph)%state(iTauF(1:ns,instance),of)
!*** get resolved shear stress
!*** for screws possible non-schmid contributions are also taken into account
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,instance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,ph))
tauNS(s,1) = tau(s)
tauNS(s,2) = tau(s)
if (tau(s) > 0.0_pReal) then
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,1,s,instance))
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,3,s,instance))
else
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,2,s,instance))
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,4,s,instance))
endif
enddo
forall (t = 1_pInt:4_pInt) &
tauNS(1:ns,t) = tauNS(1:ns,t) + tauBack ! add backstress
tau = tau + tauBack ! add backstress
!*** get dislocation velocity and its tangent and store the velocity in the state array
! edges
call plastic_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), dv_dtauNS(1:ns,1), &
tau(1:ns), tauNS(1:ns,1), tauThreshold(1:ns), &
1_pInt, Temperature, ip, el)
v(1:ns,2) = v(1:ns,1)
dv_dtau(1:ns,2) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,2) = dv_dtauNS(1:ns,1)
!screws
if (lattice_NnonSchmid(ph) == 0_pInt) then ! no non-Schmid contributions
forall(t = 3_pInt:4_pInt)
v(1:ns,t) = v(1:ns,1)
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,t) = dv_dtauNS(1:ns,1)
endforall
else ! take non-Schmid contributions into account
do t = 3_pInt,4_pInt
call plastic_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), dv_dtauNS(1:ns,t), &
tau(1:ns), tauNS(1:ns,t), tauThreshold(1:ns), &
2_pInt , Temperature, ip, el)
enddo
endif
!*** store velocity in state
forall (t = 1_pInt:4_pInt) &
plasticState(ph)%state(iV(1:ns,t,instance),of) = v(1:ns,t)
!*** Bauschinger effect
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt, rhoSgl(s,t) * v(s,t-4_pInt) < 0.0_pReal) &
rhoSgl(s,t-4_pInt) = rhoSgl(s,t-4_pInt) + abs(rhoSgl(s,t))
!*** Calculation of Lp and its tangent
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * burgers(1:ns,instance)
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,instance)
Lp = Lp + gdotTotal(s) * lattice_Sslip(1:3,1:3,1,sLattice,ph)
! Schmid contributions to tangent
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,ph) * lattice_Sslip(k,l,1,sLattice,ph) &
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * burgers(s,instance)
! non Schmid contributions to tangent
if (tau(s) > 0.0_pReal) then
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,ph) &
* ( nonSchmidProjection(k,l,1,s,instance) * rhoSgl(s,3) * dv_dtauNS(s,3) &
+ nonSchmidProjection(k,l,3,s,instance) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
* burgers(s,instance)
else
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,ph) &
* ( nonSchmidProjection(k,l,2,s,instance) * rhoSgl(s,3) * dv_dtauNS(s,3) &
+ nonSchmidProjection(k,l,4,s,instance) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
* burgers(s,instance)
endif
enddo
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_LpandItsTangent at el ip',el,ip
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> gdot total / 1e-3',gdotTotal*1e3_pReal
write(6,'(a,/,3(12x,3(f12.7,1x),/))') '<< CONST >> Lp',transpose(Lp)
endif
#endif
end subroutine plastic_nonlocal_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_deltaState(Tstar_v,ip,el)
use prec, only: &
dNeq0
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_i, &
debug_e
use math, only: pi, &
math_mul6x6
use lattice, only: lattice_Sslip_v ,&
lattice_mu, &
lattice_nu
use mesh, only: mesh_ipVolume
use material, only: material_phase, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: ip, & ! current grain number
el ! current element number
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
integer(pInt) :: &
ph, & !< phase
of !< offset
integer(pInt) ::instance, & ! current instance of this plasticity
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
t, & ! type of dislocation
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1,ip,el))),10) :: &
deltaRho, & ! density increment
deltaRhoRemobilization, & ! density increment by remobilization
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1,ip,el))),8) :: &
rhoSgl ! current single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1,ip,el))),4) :: &
v ! dislocation glide velocity
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1,ip,el)))) :: &
tau, & ! current resolved shear stress
tauBack ! current back stress from pileups on same slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1,ip,el))),2) :: &
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
dLower, & ! minimum stable dipole distance for edges and screws
dUpper, & ! current maximum stable dipole distance for edges and screws
dUpperOld, & ! old maximum stable dipole distance for edges and screws
deltaDUpper ! change in maximum stable dipole distance for edges and screws
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) &
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_deltaState at el ip ',el,ip
#endif
ph = phaseAt(1,ip,el)
of = phasememberAt(1,ip,el)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(plasticState(ph)%state(iRhoU(s,t,instance),of), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = plasticState(ph)%state(iRhoB(s,t,instance),of)
v(s,t) = plasticState(ph)%state(iV(s,t,instance),of)
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = max(plasticState(ph)%state(iRhoD(s,c,instance),of), 0.0_pReal) ! ensure positive dipole densities
dUpperOld(s,c) = plasticState(ph)%state(iD(s,c,instance),of)
endforall
tauBack = plasticState(ph)%state(iTauB(1:ns,instance),of)
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoSgl) < significantRho(instance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoDip) < significantRho(instance)) &
rhoDip = 0.0_pReal
!****************************************************************************
!*** dislocation remobilization (bauschinger effect)
deltaRhoRemobilization = 0.0_pReal
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
if (rhoSgl(s,t+4_pInt) * v(s,t) < 0.0_pReal) then
deltaRhoRemobilization(s,t) = abs(rhoSgl(s,t+4_pInt))
rhoSgl(s,t) = rhoSgl(s,t) + abs(rhoSgl(s,t+4_pInt))
deltaRhoRemobilization(s,t+4_pInt) = - rhoSgl(s,t+4_pInt)
rhoSgl(s,t+4_pInt) = 0.0_pReal
endif
enddo
enddo
!****************************************************************************
!*** calculate dipole formation and dissociation by stress change
!*** calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,instance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,ph)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,instance)
dUpper(1:ns,1) = lattice_mu(ph) * burgers(1:ns,instance) &
/ (8.0_pReal * pi * (1.0_pReal - lattice_nu(ph)) * abs(tau))
dUpper(1:ns,2) = lattice_mu(ph) * burgers(1:ns,instance) / (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt)
where(dNeq0(sqrt(rhoSgl(1:ns,2*c-1)+rhoSgl(1:ns,2*c)+abs(rhoSgl(1:ns,2*c+3))&
+abs(rhoSgl(1:ns,2*c+4))+rhoDip(1:ns,c)))) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
end forall
dUpper = max(dUpper,dLower)
deltaDUpper = dUpper - dUpperOld
!*** dissociation by stress increase
deltaRhoDipole2SingleStress = 0.0_pReal
forall (c=1_pInt:2_pInt, s=1_pInt:ns, deltaDUpper(s,c) < 0.0_pReal .and. &
dNeq0(dUpperOld(s,c) - dLower(s,c))) &
deltaRhoDipole2SingleStress(s,8_pInt+c) = rhoDip(s,c) * deltaDUpper(s,c) &
/ (dUpperOld(s,c) - dLower(s,c))
forall (t=1_pInt:4_pInt) &
deltaRhoDipole2SingleStress(1_pInt:ns,t) = -0.5_pReal &
* deltaRhoDipole2SingleStress(1_pInt:ns,(t-1_pInt)/2_pInt+9_pInt)
!*** store new maximum dipole height in state
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
plasticState(ph)%state(iD(s,c,instance),of) = dUpper(s,c)
!****************************************************************************
!*** assign the changes in the dislocation densities to deltaState
deltaRho = deltaRhoRemobilization &
+ deltaRhoDipole2SingleStress
plasticState(ph)%deltaState(:,of) = 0.0_pReal
forall (s = 1:ns, t = 1_pInt:4_pInt)
plasticState(ph)%deltaState(iRhoU(s,t,instance),of)= deltaRho(s,t)
plasticState(ph)%deltaState(iRhoB(s,t,instance),of) = deltaRho(s,t+4_pInt)
endforall
forall (s = 1:ns, c = 1_pInt:2_pInt) &
plasticState(ph)%deltaState(iRhoD(s,c,instance),of) = deltaRho(s,c+8_pInt)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation remobilization', deltaRhoRemobilization(1:ns,1:8)
write(6,'(a,/,10(12x,12(e12.5,1x),/),/)') '<< CONST >> dipole dissociation by stress increase', deltaRhoDipole2SingleStress
endif
#endif
end subroutine plastic_nonlocal_deltaState
!---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!---------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, &
timestep,subfrac, ip,el)
use, intrinsic :: &
IEEE_arithmetic
use prec, only: dNeq0, &
dNeq, &
dEq0
use numerics, only: numerics_integrationMode, &
numerics_timeSyncing
use IO, only: IO_error
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use math, only: math_mul6x6, &
math_mul3x3, &
math_mul33x3, &
math_mul33x33, &
math_inv33, &
math_det33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_ipNeighborhood, &
mesh_ipVolume, &
mesh_ipArea, &
mesh_ipAreaNormal, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_localPlasticity, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticity ,&
PLASTICITY_NONLOCAL_ID
use lattice, only: lattice_Sslip_v, &
lattice_sd, &
lattice_st ,&
lattice_mu, &
lattice_nu, &
lattice_structure, &
LATTICE_bcc_ID, &
LATTICE_fcc_ID
implicit none
!*** input variables
integer(pInt), intent(in) :: ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: Temperature, & !< temperature
timestep !< substepped crystallite time increment
real(pReal), dimension(6), intent(in) :: Tstar_v !< current 2nd Piola-Kirchhoff stress in Mandel notation
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
subfrac !< fraction of timestep at the beginning of the substepped crystallite time increment
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe, & !< elastic deformation gradient
Fp !< plastic deformation gradient
!*** local variables
integer(pInt) :: ph, &
instance, & !< current instance of this plasticity
neighbor_instance, & !< instance of my neighbor's plasticity
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
n, & !< index of my current neighbor
neighbor_el, & !< element number of my neighbor
neighbor_ip, & !< integration point of my neighbor
neighbor_n, & !< neighbor index pointing to me when looking from my neighbor
opposite_neighbor, & !< index of my opposite neighbor
opposite_ip, & !< ip of my opposite neighbor
opposite_el, & !< element index of my opposite neighbor
opposite_n, & !< neighbor index pointing to me when looking from my opposite neighbor
t, & !< type of dislocation
o,& !< offset shortcut
no,& !< neighbour offset shortcut
p,& !< phase shortcut
np,& !< neighbour phase shortcut
topp, & !< type of dislocation with opposite sign to t
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),10) :: &
rhoDot, & !< density evolution
rhoDotMultiplication, & !< density evolution by multiplication
rhoDotFlux, & !< density evolution by flux
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),8) :: &
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
rhoSglOriginal, &
neighbor_rhoSgl, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
rhoSgl0, & !< single dislocation densities at start of cryst inc (positive/negative screw and edge without dipoles)
my_rhoSgl !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),4) :: &
v, & !< current dislocation glide velocity
v0, & !< dislocation glide velocity at start of cryst inc
my_v, & !< dislocation glide velocity of central ip
neighbor_v, & !< dislocation glide velocity of enighboring ip
gdot !< shear rates
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
rhoForest, & !< forest dislocation density
tauThreshold, & !< threshold shear stress
tau, & !< current resolved shear stress
tauBack, & !< current back stress from pileups on same slip system
vClimb, & !< climb velocity of edge dipoles
nSources
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),2) :: &
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
rhoDipOriginal, &
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),4) :: &
m !< direction of dislocation motion
real(pReal), dimension(3,3) :: my_F, & !< my total deformation gradient
neighbor_F, & !< total deformation gradient of my neighbor
my_Fe, & !< my elastic deformation gradient
neighbor_Fe, & !< elastic deformation gradient of my neighbor
Favg !< average total deformation gradient of me and my neighbor
real(pReal), dimension(3) :: normal_neighbor2me, & !< interface normal pointing from my neighbor to me in neighbor's lattice configuration
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to me in shared deformed configuration
normal_me2neighbor, & !< interface normal pointing from me to my neighbor in my lattice configuration
normal_me2neighbor_defConf !< interface normal pointing from me to my neighbor in shared deformed configuration
real(pReal) area, & !< area of the current interface
transmissivity, & !< overall transmissivity of dislocation flux to neighboring material point
lineLength, & !< dislocation line length leaving the current interface
selfDiffusion, & !< self diffusion
rnd, &
meshlength
logical considerEnteringFlux, &
considerLeavingFlux
p = phaseAt(1,ip,el)
o = phasememberAt(1,ip,el)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) &
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_dotState at el ip ',el,ip
#endif
ph = material_phase(1_pInt,ip,el)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
tau = 0.0_pReal
gdot = 0.0_pReal
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(plasticState(p)%state(iRhoU(s,t,instance),o), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = plasticState(p)%state(iRhoB(s,t,instance),o)
v(s,t) = plasticState(p)%state(iV (s,t,instance),o)
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = max(plasticState(p)%state(iRhoD(s,c,instance),o), 0.0_pReal) ! ensure positive dipole densities
endforall
rhoForest = plasticState(p)%state(iRhoF(1:ns,instance),o)
tauThreshold = plasticState(p)%state(iTauF(1:ns,instance),o)
tauBack = plasticState(p)%state(iTauB(1:ns,instance),o)
rhoSglOriginal = rhoSgl
rhoDipOriginal = rhoDip
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoSgl) < significantRho(instance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoDip) < significantRho(instance)) &
rhoDip = 0.0_pReal
if (numerics_timeSyncing) then
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl0(s,t) = max(plasticState(p)%state0(iRhoU(s,t,instance),o), 0.0_pReal)
rhoSgl0(s,t+4_pInt) = plasticState(p)%state0(iRhoB(s,t,instance),o)
v0(s,t) = plasticState(p)%state0(iV (s,t,instance),o)
endforall
where (abs(rhoSgl0) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(instance) &
.or. abs(rhoSgl0) < significantRho(instance)) &
rhoSgl0 = 0.0_pReal
endif
!*** sanity check for timestep
if (timestep <= 0.0_pReal) then ! if illegal timestep... Why here and not on function entry??
plasticState(p)%dotState = 0.0_pReal ! ...return without doing anything (-> zero dotState)
return
endif
!****************************************************************************
!*** Calculate shear rate
forall (t = 1_pInt:4_pInt) &
gdot(1_pInt:ns,t) = rhoSgl(1_pInt:ns,t) * burgers(1:ns,instance) * v(1:ns,t)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> rho / 1/m^2', rhoSgl, rhoDip
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> gdot / 1/s',gdot
endif
#endif
!****************************************************************************
!*** calculate limits for stable dipole height
do s = 1_pInt,ns ! loop over slip systems
sLattice = slipSystemLattice(s,instance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,ph)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,instance)
dUpper(1:ns,1) = lattice_mu(ph) * burgers(1:ns,instance) &
/ (8.0_pReal * pi * (1.0_pReal - lattice_nu(ph)) * abs(tau))
dUpper(1:ns,2) = lattice_mu(ph) * burgers(1:ns,instance) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt)
where(dNeq0(sqrt(rhoSgl(1:ns,2*c-1)+rhoSgl(1:ns,2*c)+abs(rhoSgl(1:ns,2*c+3))&
+abs(rhoSgl(1:ns,2*c+4))+rhoDip(1:ns,c)))) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
end forall
dUpper = max(dUpper,dLower)
!****************************************************************************
!*** calculate dislocation multiplication
rhoDotMultiplication = 0.0_pReal
if (lattice_structure(ph) == LATTICE_bcc_ID) then ! BCC
forall (s = 1:ns, sum(abs(v(s,1:4))) > 0.0_pReal)
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / burgers(s,instance) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(rhoForest(s)) / lambda0(s,instance) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) / burgers(s,instance) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(rhoForest(s)) / lambda0(s,instance) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
endforall
else ! ALL OTHER STRUCTURES
if (probabilisticMultiplication(instance)) then
meshlength = mesh_ipVolume(ip,el)**0.333_pReal
where(sum(rhoSgl(1:ns,1:4),2) > 0.0_pReal)
nSources = (sum(rhoSgl(1:ns,1:2),2) * fEdgeMultiplication(instance) + sum(rhoSgl(1:ns,3:4),2)) &
/ sum(rhoSgl(1:ns,1:4),2) * meshlength / lambda0(1:ns,instance)*sqrt(rhoForest(1:ns))
elsewhere
nSources = meshlength / lambda0(1:ns,instance) * sqrt(rhoForest(1:ns))
endwhere
do s = 1_pInt,ns
if (nSources(s) < 1.0_pReal) then
if (sourceProbability(s,1_pInt,ip,el) > 1.0_pReal) then
call random_number(rnd)
sourceProbability(s,1_pInt,ip,el) = rnd
!$OMP FLUSH(sourceProbability)
endif
if (sourceProbability(s,1_pInt,ip,el) > 1.0_pReal - nSources(s)) then
rhoDotMultiplication(s,1:4) = sum(rhoSglOriginal(s,1:4) * abs(v(s,1:4))) / meshlength
endif
else
sourceProbability(s,1_pInt,ip,el) = 2.0_pReal
rhoDotMultiplication(s,1:4) = &
(sum(abs(gdot(s,1:2))) * fEdgeMultiplication(instance) + sum(abs(gdot(s,3:4)))) &
/ burgers(s,instance) * sqrt(rhoForest(s)) / lambda0(s,instance)
endif
enddo
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) &
write(6,'(a,/,4(12x,12(f12.5,1x),/,/))') '<< CONST >> sources', nSources
#endif
else
rhoDotMultiplication(1:ns,1:4) = spread( &
(sum(abs(gdot(1:ns,1:2)),2) * fEdgeMultiplication(instance) + sum(abs(gdot(1:ns,3:4)),2)) &
* sqrt(rhoForest(1:ns)) / lambda0(1:ns,instance) / burgers(1:ns,instance), 2, 4)
endif
endif
!****************************************************************************
!*** calculate dislocation fluxes (only for nonlocal plasticity)
rhoDotFlux = 0.0_pReal
!? why needed here
if (.not. phase_localPlasticity(material_phase(1_pInt,ip,el))) then ! only for nonlocal plasticity
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
.and. CFLfactor(instance) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
maxval(abs(v), abs(gdot) > 0.0_pReal &
.and. CFLfactor(instance) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el))), &
' at a timestep of ',timestep
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
plasticState(p)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN) ! -> return NaN and, hence, enforce cutback
return
endif
!*** be aware of the definition of lattice_st = lattice_sd x lattice_sn !!!
!*** opposite sign to our p vector in the (s,p,n) triplet !!!
m(1:3,1:ns,1) = lattice_sd(1:3, slipSystemLattice(1:ns,instance), ph)
m(1:3,1:ns,2) = -lattice_sd(1:3, slipSystemLattice(1:ns,instance), ph)
m(1:3,1:ns,3) = -lattice_st(1:3, slipSystemLattice(1:ns,instance), ph)
m(1:3,1:ns,4) = lattice_st(1:3, slipSystemLattice(1:ns,instance), ph)
my_Fe = Fe(1:3,1:3,1_pInt,ip,el)
my_F = math_mul33x33(my_Fe, Fp(1:3,1:3,1_pInt,ip,el))
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! loop through my neighbors
! write(6,*) 'c'
neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
neighbor_n = mesh_ipNeighborhood(3,n,ip,el)
np = phaseAt(1,neighbor_ip,neighbor_el)
no = phasememberAt(1,neighbor_ip,neighbor_el)
opposite_neighbor = n + mod(n,2_pInt) - mod(n+1_pInt,2_pInt)
opposite_el = mesh_ipNeighborhood(1,opposite_neighbor,ip,el)
opposite_ip = mesh_ipNeighborhood(2,opposite_neighbor,ip,el)
opposite_n = mesh_ipNeighborhood(3,opposite_neighbor,ip,el)
if (neighbor_n > 0_pInt) then ! if neighbor exists, average deformation gradient
neighbor_instance = phase_plasticityInstance(material_phase(1_pInt,neighbor_ip,neighbor_el))
neighbor_Fe = Fe(1:3,1:3,1_pInt,neighbor_ip,neighbor_el)
neighbor_F = math_mul33x33(neighbor_Fe, Fp(1:3,1:3,1_pInt,neighbor_ip,neighbor_el))
Favg = 0.5_pReal * (my_F + neighbor_F)
else ! if no neighbor, take my value as average
Favg = my_F
endif
!* FLUX FROM MY NEIGHBOR TO ME
!* This is only considered, if I have a neighbor of nonlocal plasticity
!* (also nonlocal constitutive law with local properties) that is at least a little bit
!* compatible.
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of
!* my neighbor's interface.
!* The entering flux from my neighbor will be distributed on my slip systems according to the
!*compatibility
considerEnteringFlux = .false.
neighbor_v = 0.0_pReal ! needed for check of sign change in flux density below
neighbor_rhoSgl = 0.0_pReal
if (neighbor_n > 0_pInt) then
if (phase_plasticity(material_phase(1,neighbor_ip,neighbor_el)) == PLASTICITY_NONLOCAL_ID &
.and. any(compatibility(:,:,:,n,ip,el) > 0.0_pReal)) &
considerEnteringFlux = .true.
endif
if (considerEnteringFlux) then
if(numerics_timeSyncing .and. (dNeq(subfrac(1,neighbor_ip,neighbor_el),subfrac(1,ip,el)))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
forall (s = 1:ns, t = 1_pInt:4_pInt)
neighbor_v(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no)
neighbor_rhoSgl(s,t) = max(plasticState(np)%state0(iRhoU(s,t,neighbor_instance),no),0.0_pReal)
endforall
else
forall (s = 1:ns, t = 1_pInt:4_pInt)
neighbor_v(s,t) = plasticState(np)%state(iV (s,t,neighbor_instance),no)
neighbor_rhoSgl(s,t) = max(plasticState(np)%state(iRhoU(s,t,neighbor_instance),no), &
0.0_pReal)
endforall
endif
where (neighbor_rhoSgl * mesh_ipVolume(neighbor_ip,neighbor_el) ** 0.667_pReal < significantN(instance) &
.or. neighbor_rhoSgl < significantRho(instance)) &
neighbor_rhoSgl = 0.0_pReal
normal_neighbor2me_defConf = math_det33(Favg) * math_mul33x3(math_inv33(transpose(Favg)), &
mesh_ipAreaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
normal_neighbor2me = math_mul33x3(transpose(neighbor_Fe), normal_neighbor2me_defConf) &
/ math_det33(neighbor_Fe) ! interface normal in the lattice configuration of my neighbor
area = mesh_ipArea(neighbor_n,neighbor_ip,neighbor_el) * norm2(normal_neighbor2me)
normal_neighbor2me = normal_neighbor2me / norm2(normal_neighbor2me) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2
topp = t + mod(t,2_pInt) - mod(t+1_pInt,2_pInt)
if (neighbor_v(s,t) * math_mul3x3(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
.and. v(s,t) * neighbor_v(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
lineLength = neighbor_rhoSgl(s,t) * neighbor_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
where (compatibility(c,1_pInt:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
rhoDotFlux(1_pInt:ns,t) = rhoDotFlux(1_pInt:ns,t) &
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
where (compatibility(c,1_pInt:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
rhoDotFlux(1_pInt:ns,topp) = rhoDotFlux(1_pInt:ns,topp) &
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
endif
enddo
enddo
endif
!* FLUX FROM ME TO MY NEIGHBOR
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with lcal properties).
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to me.
!* So the net flux in the direction of my neighbor is equal to zero:
!* leaving flux to neighbor == entering flux from opposite neighbor
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
considerLeavingFlux = .true.
if (opposite_n > 0_pInt) then
if (phase_plasticity(material_phase(1,opposite_ip,opposite_el)) /= PLASTICITY_NONLOCAL_ID) &
considerLeavingFlux = .false.
endif
if (considerLeavingFlux) then
!* timeSyncing mode: If the central ip has zero subfraction, always use "state0". This is needed in case of
!* a synchronization step for the central ip, because then "state" contains the values at the end of the
!* previously converged full time step. Also, if either me or my neighbor has zero subfraction, we have to
!* use "state0" to make sure that fluxes on both sides of the (potential) timestep are equal.
my_rhoSgl = rhoSgl
my_v = v
if(numerics_timeSyncing) then
if (dEq0(subfrac(1_pInt,ip,el))) then
my_rhoSgl = rhoSgl0
my_v = v0
elseif (neighbor_n > 0_pInt) then
if (dEq0(subfrac(1_pInt,neighbor_ip,neighbor_el))) then
my_rhoSgl = rhoSgl0
my_v = v0
endif
endif
endif
normal_me2neighbor_defConf = math_det33(Favg) &
* math_mul33x3(math_inv33(math_transpose33(Favg)), &
mesh_ipAreaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
normal_me2neighbor = math_mul33x3(math_transpose33(my_Fe), normal_me2neighbor_defConf) &
/ math_det33(my_Fe) ! interface normal in my lattice configuration
area = mesh_ipArea(n,ip,el) * norm2(normal_me2neighbor)
normal_me2neighbor = normal_me2neighbor / norm2(normal_me2neighbor) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2_pInt
if (my_v(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
if (my_v(s,t) * neighbor_v(s,t) >= 0.0_pReal) then ! no sign change in flux density
transmissivity = sum(compatibility(c,1_pInt:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
transmissivity = 0.0_pReal
endif
lineLength = my_rhoSgl(s,t) * my_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from current type
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) &
+ lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
* sign(1.0_pReal, my_v(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
endif
enddo
enddo
endif
enddo ! neighbor loop
endif
!****************************************************************************
!*** calculate dipole formation and annihilation
!*** formation by glide
do c = 1_pInt,2_pInt
rhoDotSingle2DipoleGlide(1:ns,2*c-1) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,instance) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,2*c) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,instance) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c))) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+3) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,instance) &
* rhoSgl(1:ns,2*c+3) * abs(gdot(1:ns,2*c)) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+4) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,instance) &
* rhoSgl(1:ns,2*c+4) * abs(gdot(1:ns,2*c-1)) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,c+8) = - rhoDotSingle2DipoleGlide(1:ns,2*c-1) &
- rhoDotSingle2DipoleGlide(1:ns,2*c) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+3)) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+4))
enddo
!*** athermal annihilation
rhoDotAthermalAnnihilation = 0.0_pReal
forall (c=1_pInt:2_pInt) &
rhoDotAthermalAnnihilation(1:ns,c+8_pInt) = -2.0_pReal * dLower(1:ns,c) / burgers(1:ns,instance) &
* ( 2.0_pReal * (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) + rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1))) & ! was single hitting single
+ 2.0_pReal * (abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c)) + abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rhoDip(1:ns,c) * (abs(gdot(1:ns,2*c-1)) + abs(gdot(1:ns,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
if (lattice_structure(ph) == LATTICE_fcc_ID) & ! only fcc
forall (s = 1:ns, colinearSystem(s,instance) > 0_pInt) &
rhoDotAthermalAnnihilation(colinearSystem(s,instance),1:2) = - rhoDotAthermalAnnihilation(s,10) &
* 0.25_pReal * sqrt(rhoForest(s)) * (dUpper(s,2) + dLower(s,2)) * edgeJogFactor(instance)
!*** thermally activated annihilation of edge dipoles by climb
rhoDotThermalAnnihilation = 0.0_pReal
selfDiffusion = Dsd0(instance) * exp(-selfDiffusionEnergy(instance) / (KB * Temperature))
vClimb = atomicVolume(instance) * selfDiffusion / ( KB * Temperature ) &
* lattice_mu(ph) / ( 2.0_pReal * PI * (1.0_pReal-lattice_nu(ph)) ) &
* 2.0_pReal / ( dUpper(1:ns,1) + dLower(1:ns,1) )
forall (s = 1_pInt:ns, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
!****************************************************************************
!*** assign the rates of dislocation densities to my dotState
!*** if evolution rates lead to negative densities, a cutback is enforced
rhoDot = 0.0_pReal
rhoDot = rhoDotFlux &
+ rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation &
+ rhoDotThermalAnnihilation
if (numerics_integrationMode == 1_pInt) then ! save rates for output if in central integration mode
rhoDotFluxOutput(1:ns,1:8,1_pInt,ip,el) = rhoDotFlux(1:ns,1:8)
rhoDotMultiplicationOutput(1:ns,1:2,1_pInt,ip,el) = rhoDotMultiplication(1:ns,[1,3])
rhoDotSingle2DipoleGlideOutput(1:ns,1:2,1_pInt,ip,el) = rhoDotSingle2DipoleGlide(1:ns,9:10)
rhoDotAthermalAnnihilationOutput(1:ns,1:2,1_pInt,ip,el) = rhoDotAthermalAnnihilation(1:ns,9:10)
rhoDotThermalAnnihilationOutput(1:ns,1:2,1_pInt,ip,el) = rhoDotThermalAnnihilation(1:ns,9:10)
rhoDotEdgeJogsOutput(1:ns,1_pInt,ip,el) = 2.0_pReal * rhoDotThermalAnnihilation(1:ns,1)
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == 1_pInt)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> dislocation multiplication', &
rhoDotMultiplication(1:ns,1:4) * timestep
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation flux', &
rhoDotFlux(1:ns,1:8) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole formation by glide', &
rhoDotSingle2DipoleGlide * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
rhoDotAthermalAnnihilation * timestep
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> thermally activated dipole annihilation', &
rhoDotThermalAnnihilation(1:ns,9:10) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> total density change', &
rhoDot * timestep
write(6,'(a,/,10(12x,12(f12.5,1x),/))') '<< CONST >> relative density change', &
rhoDot(1:ns,1:8) * timestep / (abs(rhoSglOriginal)+1.0e-10), &
rhoDot(1:ns,9:10) * timestep / (rhoDipOriginal+1.0e-10)
write(6,*)
endif
#endif
if ( any(rhoSglOriginal(1:ns,1:4) + rhoDot(1:ns,1:4) * timestep < -aTolRho(instance)) &
.or. any(rhoDipOriginal(1:ns,1:2) + rhoDot(1:ns,9:10) * timestep < -aTolRho(instance))) then
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> evolution rate leads to negative density at el ',el,' ip ',ip
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
plasticState(p)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
return
else
forall (s = 1:ns, t = 1_pInt:4_pInt)
plasticState(p)%dotState(iRhoU(s,t,instance),o) = rhoDot(s,t)
plasticState(p)%dotState(iRhoB(s,t,instance),o) = rhoDot(s,t+4_pInt)
endforall
forall (s = 1:ns, c = 1_pInt:2_pInt) &
plasticState(p)%dotState(iRhoD(s,c,instance),o) = rhoDot(s,c+8_pInt)
forall (s = 1:ns) &
plasticState(p)%dotState(iGamma(s,instance),o) = sum(gdot(s,1:4))
endif
end subroutine plastic_nonlocal_dotState
!*********************************************************************
!* COMPATIBILITY UPDATE *
!* Compatibility is defined as normalized product of signed cosine *
!* of the angle between the slip plane normals and signed cosine of *
!* the angle between the slip directions. Only the largest values *
!* that sum up to a total of 1 are considered, all others are set to *
!* zero. *
!*********************************************************************
subroutine plastic_nonlocal_updateCompatibility(orientation,i,e)
use math, only: math_mul3x3, &
math_qRot
use material, only: material_phase, &
material_texture, &
phase_localPlasticity, &
phase_plasticityInstance, &
homogenization_maxNgrains
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
mesh_maxNips, &
mesh_NcpElems, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use lattice, only: lattice_sn, &
lattice_sd, &
lattice_qDisorientation
implicit none
!* input variables
integer(pInt), intent(in) :: i, & ! ip index
e ! element index
real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
orientation ! crystal orientation in quaternions
!* local variables
integer(pInt) Nneighbors, & ! number of neighbors
n, & ! neighbor index
neighbor_e, & ! element index of my neighbor
neighbor_i, & ! integration point index of my neighbor
ph, &
neighbor_phase, &
textureID, &
neighbor_textureID, &
instance, & ! instance of plasticity
ns, & ! number of active slip systems
s1, & ! slip system index (me)
s2 ! slip system index (my neighbor)
real(pReal), dimension(4) :: absoluteMisorientation ! absolute misorientation (without symmetry) between me and my neighbor
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))) :: &
my_compatibility ! my_compatibility for current element and ip
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
slipNormal, &
slipDirection
real(pReal) my_compatibilitySum, &
thresholdValue, &
nThresholdValues
logical, dimension(totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
belowThreshold
Nneighbors = FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
ph = material_phase(1,i,e)
textureID = material_texture(1,i,e)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
slipNormal(1:3,1:ns) = lattice_sn(1:3, slipSystemLattice(1:ns,instance), ph)
slipDirection(1:3,1:ns) = lattice_sd(1:3, slipSystemLattice(1:ns,instance), ph)
!*** start out fully compatible
my_compatibility = 0.0_pReal
forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
!*** Loop thrugh neighbors and check whether there is any my_compatibility.
neighbors: do n = 1_pInt,Nneighbors
neighbor_e = mesh_ipNeighborhood(1,n,i,e)
neighbor_i = mesh_ipNeighborhood(2,n,i,e)
!* FREE SURFACE
!* Set surface transmissivity to the value specified in the material.config
if (neighbor_e <= 0_pInt .or. neighbor_i <= 0_pInt) then
forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(instance))
cycle
endif
!* PHASE BOUNDARY
!* If we encounter a different nonlocal "cpfem" phase at the neighbor,
!* we consider this to be a real "physical" phase boundary, so completely incompatible.
!* If one of the two "CPFEM" phases has a local plasticity law,
!* we do not consider this to be a phase boundary, so completely compatible.
neighbor_phase = material_phase(1,neighbor_i,neighbor_e)
if (neighbor_phase /= ph) then
if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(ph))&
forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,n) = 0.0_pReal
cycle
endif
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (grainboundaryTransmissivity(instance) >= 0.0_pReal) then
neighbor_textureID = material_texture(1,neighbor_i,neighbor_e)
if (neighbor_textureID /= textureID) then
if (.not. phase_localPlasticity(neighbor_phase)) then
forall(s1 = 1_pInt:ns) &
my_compatibility(1:2,s1,s1,n) = sqrt(grainboundaryTransmissivity(instance))
endif
cycle
endif
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
!* The my_compatibility value is defined as the product of the slip normal projection and the slip direction projection.
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
!* the number of compatible slip systems is minimized with the sum of the original my_compatibility values exceeding one.
!* Finally the smallest my_compatibility value is decreased until the sum is exactly equal to one.
!* All values below the threshold are set to zero.
else
absoluteMisorientation = lattice_qDisorientation(orientation(1:4,1,i,e), &
orientation(1:4,1,neighbor_i,neighbor_e)) ! no symmetry
mySlipSystems: do s1 = 1_pInt,ns
neighborSlipSystems: do s2 = 1_pInt,ns
my_compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
my_compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
enddo neighborSlipSystems
my_compatibilitySum = 0.0_pReal
belowThreshold = .true.
do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) >= thresholdValue),pReal)
where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) &
belowThreshold(1:ns) = .false.
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
where (abs(my_compatibility(1:2,1:ns,s1,n)) >= thresholdValue) & ! MD: rather check below threshold?
my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) &
/ nThresholdValues, my_compatibility(1:2,1:ns,s1,n))
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
enddo
where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal
where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal
enddo mySlipSystems
endif
enddo neighbors
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility
end subroutine plastic_nonlocal_updateCompatibility
!*********************************************************************
!* calculates quantities characterizing the microstructure *
!*********************************************************************
function plastic_nonlocal_dislocationstress(Fe, ip, el)
use prec, only: &
dEq0
use math, only: math_mul33x33, &
math_mul33x3, &
math_inv33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_node0, &
mesh_cellCenterCoordinates, &
mesh_ipVolume, &
mesh_periodicSurface, &
FE_Nips, &
FE_geomtype
use material, only: homogenization_maxNgrains, &
material_phase, &
plasticState, &
phaseAt, phasememberAt,&
phase_localPlasticity, &
phase_plasticityInstance
use lattice, only: lattice_mu, &
lattice_nu
implicit none
!*** input variables
integer(pInt), intent(in) :: ip, & !< current integration point
el !< current element
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe !< elastic deformation gradient
!*** output variables
real(pReal), dimension(3,3) :: plastic_nonlocal_dislocationstress
!*** local variables
integer(pInt) neighbor_el, & !< element number of neighbor material point
neighbor_ip, & !< integration point of neighbor material point
instance, & !< my instance of this plasticity
neighbor_instance, & !< instance of this plasticity of neighbor material point
ph, &
neighbor_phase, &
ns, & !< total number of active slip systems at my material point
neighbor_ns, & !< total number of active slip systems at neighbor material point
c, & !< index of dilsocation character (edge, screw)
s, & !< slip system index
o,& !< offset shortcut
no,& !< neighbour offset shortcut
p,& !< phase shortcut
np,& !< neighbour phase shortcut
t, & !< index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
deltaX, deltaY, deltaZ, &
side, &
j
integer(pInt), dimension(2,3) :: periodicImages
real(pReal) x, y, z, & !< coordinates of connection vector in neighbor lattice frame
xsquare, ysquare, zsquare, & !< squares of respective coordinates
distance, & !< length of connection vector
segmentLength, & !< segment length of dislocations
lambda, &
R, Rsquare, Rcube, &
denominator, &
flipSign, &
neighbor_ipVolumeSideLength
real(pReal), dimension(3) :: connection, & !< connection vector between me and my neighbor in the deformed configuration
connection_neighborLattice, & !< connection vector between me and my neighbor in the lattice configuration of my neighbor
connection_neighborSlip, & !< connection vector between me and my neighbor in the slip system frame of my neighbor
maxCoord, minCoord, &
meshSize, &
coords, & !< x,y,z coordinates of cell center of ip volume
neighbor_coords !< x,y,z coordinates of cell center of neighbor ip volume
real(pReal), dimension(3,3) :: sigma, & !< dislocation stress for one slip system in neighbor material point's slip system frame
Tdislo_neighborLattice, & !< dislocation stress as 2nd Piola-Kirchhoff stress at neighbor material point
invFe, & !< inverse of my elastic deformation gradient
neighbor_invFe, &
neighborLattice2myLattice !< mapping from neighbor MPs lattice configuration to my lattice configuration
real(pReal), dimension(2,2,maxval(totalNslip)) :: &
neighbor_rhoExcess !< excess density at neighbor material point (edge/screw,mobile/dead,slipsystem)
real(pReal), dimension(2,maxval(totalNslip)) :: &
rhoExcessDead
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
ph = material_phase(1_pInt,ip,el)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
p = phaseAt(1,ip,el)
o = phasememberAt(1,ip,el)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(plasticState(p)%state(iRhoU(s,t,instance),o), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = plasticState(p)%state(iRhoB(s,t,instance),o)
endforall
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
plastic_nonlocal_dislocationstress = 0.0_pReal
if (.not. phase_localPlasticity(ph)) then
invFe = math_inv33(Fe(1:3,1:3,1_pInt,ip,el))
!* in case of periodic surfaces we have to find out how many periodic images in each direction we need
do dir = 1_pInt,3_pInt
maxCoord(dir) = maxval(mesh_node0(dir,:))
minCoord(dir) = minval(mesh_node0(dir,:))
enddo
meshSize = maxCoord - minCoord
coords = mesh_cellCenterCoordinates(ip,el)
periodicImages = 0_pInt
do dir = 1_pInt,3_pInt
if (mesh_periodicSurface(dir)) then
periodicImages(1,dir) = floor((coords(dir) - cutoffRadius(instance) - minCoord(dir)) / meshSize(dir), pInt)
periodicImages(2,dir) = ceiling((coords(dir) + cutoffRadius(instance) - maxCoord(dir)) / meshSize(dir), pInt)
endif
enddo
!* loop through all material points (also through their periodic images if present),
!* but only consider nonlocal neighbors within a certain cutoff radius R
do neighbor_el = 1_pInt,mesh_NcpElems
ipLoop: do neighbor_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighbor_el)))
neighbor_phase = material_phase(1_pInt,neighbor_ip,neighbor_el)
np = phaseAt(1,neighbor_ip,neighbor_el)
no = phasememberAt(1,neighbor_ip,neighbor_el)
if (phase_localPlasticity(neighbor_phase)) cycle
neighbor_instance = phase_plasticityInstance(neighbor_phase)
neighbor_ns = totalNslip(neighbor_instance)
neighbor_invFe = math_inv33(Fe(1:3,1:3,1,neighbor_ip,neighbor_el))
neighbor_ipVolumeSideLength = mesh_ipVolume(neighbor_ip,neighbor_el) ** (1.0_pReal/3.0_pReal) ! reference volume used here
forall (s = 1_pInt:neighbor_ns, c = 1_pInt:2_pInt)
neighbor_rhoExcess(c,1,s) = plasticState(np)%state(iRhoU(s,2*c-1,neighbor_instance),no) & ! positive mobiles
- plasticState(np)%state(iRhoU(s,2*c,neighbor_instance),no) ! negative mobiles
neighbor_rhoExcess(c,2,s) = abs(plasticState(np)%state(iRhoB(s,2*c-1,neighbor_instance),no)) & ! positive deads
- abs(plasticState(np)%state(iRhoB(s,2*c,neighbor_instance),no)) ! negative deads
endforall
Tdislo_neighborLattice = 0.0_pReal
do deltaX = periodicImages(1,1),periodicImages(2,1)
do deltaY = periodicImages(1,2),periodicImages(2,2)
do deltaZ = periodicImages(1,3),periodicImages(2,3)
!* regular case
if (neighbor_el /= el .or. neighbor_ip /= ip &
.or. deltaX /= 0_pInt .or. deltaY /= 0_pInt .or. deltaZ /= 0_pInt) then
neighbor_coords = mesh_cellCenterCoordinates(neighbor_ip,neighbor_el) &
+ [real(deltaX,pReal), real(deltaY,pReal), real(deltaZ,pReal)] * meshSize
connection = neighbor_coords - coords
distance = sqrt(sum(connection * connection))
if (distance > cutoffRadius(instance)) cycle
!* the segment length is the minimum of the third root of the control volume and the ip distance
!* this ensures, that the central MP never sits on a neighbor dislocation segment
connection_neighborLattice = math_mul33x3(neighbor_invFe, connection)
segmentLength = min(neighbor_ipVolumeSideLength, distance)
!* loop through all slip systems of the neighbor material point
!* and add up the stress contributions from egde and screw excess on these slip systems (if significant)
do s = 1_pInt,neighbor_ns
if (all(abs(neighbor_rhoExcess(:,:,s)) < significantRho(instance))) cycle ! not significant
!* map the connection vector from the lattice into the slip system frame
connection_neighborSlip = math_mul33x3(lattice2slip(1:3,1:3,s,neighbor_instance), &
connection_neighborLattice)
!* edge contribution to stress
sigma = 0.0_pReal
x = connection_neighborSlip(1)
y = connection_neighborSlip(2)
z = connection_neighborSlip(3)
xsquare = x * x
ysquare = y * y
zsquare = z * z
do j = 1_pInt,2_pInt
if (abs(neighbor_rhoExcess(1,j,s)) < significantRho(instance)) then
cycle
elseif (j > 1_pInt) then
x = connection_neighborSlip(1) &
+ sign(0.5_pReal * segmentLength, &
plasticState(np)%state(iRhoB(s,1,neighbor_instance),no) &
- plasticState(np)%state(iRhoB(s,2,neighbor_instance),no))
xsquare = x * x
endif
flipSign = sign(1.0_pReal, -y)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = real(side,pReal) * 0.5_pReal * segmentLength - y
R = sqrt(xsquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (dEq0(denominator)) exit ipLoop
sigma(1,1) = sigma(1,1) - real(side,pReal) &
* flipSign * z / denominator &
* (1.0_pReal + xsquare / Rsquare + xsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(2,2) = sigma(2,2) - real(side,pReal) &
* (flipSign * 2.0_pReal * lattice_nu(ph) * z / denominator + z * lambda / Rcube) &
* neighbor_rhoExcess(1,j,s)
sigma(3,3) = sigma(3,3) + real(side,pReal) &
* flipSign * z / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(1,2) = sigma(1,2) + real(side,pReal) &
* x * z / Rcube * neighbor_rhoExcess(1,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) &
* flipSign * x / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(2,3) = sigma(2,3) - real(side,pReal) &
* (lattice_nu(ph) / R - zsquare / Rcube) * neighbor_rhoExcess(1,j,s)
enddo
enddo
!* screw contribution to stress
x = connection_neighborSlip(1) ! have to restore this value, because position might have been adapted for edge deads before
do j = 1_pInt,2_pInt
if (abs(neighbor_rhoExcess(2,j,s)) < significantRho(instance)) then
cycle
elseif (j > 1_pInt) then
y = connection_neighborSlip(2) &
+ sign(0.5_pReal * segmentLength, &
plasticState(np)%state(iRhoB(s,3,neighbor_instance),no) &
- plasticState(np)%state(iRhoB(s,4,neighbor_instance),no))
ysquare = y * y
endif
flipSign = sign(1.0_pReal, x)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = x + real(side,pReal) * 0.5_pReal * segmentLength
R = sqrt(ysquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (dEq0(denominator)) exit ipLoop
sigma(1,2) = sigma(1,2) - real(side,pReal) * flipSign * z &
* (1.0_pReal - lattice_nu(ph)) / denominator &
* neighbor_rhoExcess(2,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) * flipSign * y &
* (1.0_pReal - lattice_nu(ph)) / denominator &
* neighbor_rhoExcess(2,j,s)
enddo
enddo
if (all(abs(sigma) < 1.0e-10_pReal)) cycle ! SIGMA IS NOT A REAL STRESS, THATS WHY WE NEED A REALLY SMALL VALUE HERE
!* copy symmetric parts
sigma(2,1) = sigma(1,2)
sigma(3,1) = sigma(1,3)
sigma(3,2) = sigma(2,3)
!* scale stresses and map them into the neighbor material point's lattice configuration
sigma = sigma * lattice_mu(neighbor_phase) * burgers(s,neighbor_instance) &
/ (4.0_pReal * pi * (1.0_pReal - lattice_nu(neighbor_phase))) &
* mesh_ipVolume(neighbor_ip,neighbor_el) / segmentLength ! reference volume is used here (according to the segment length calculation)
Tdislo_neighborLattice = Tdislo_neighborLattice &
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,neighbor_instance)), &
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,neighbor_instance)))
enddo ! slip system loop
!* special case of central ip volume
!* only consider dead dislocations
!* we assume that they all sit at a distance equal to half the third root of V
!* in direction of the according slip direction
else
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoExcessDead(c,s) = plasticState(p)%state(iRhoB(s,2*c-1,instance),o) & ! positive deads (here we use symmetry: if this has negative sign it is
!treated as negative density at positive position instead of positive
!density at negative position)
+ plasticState(p)%state(iRhoB(s,2*c,instance),o) ! negative deads (here we use symmetry: if this has negative sign it is
!treated as positive density at positive position instead of negative
!density at negative position)
do s = 1_pInt,ns
if (all(abs(rhoExcessDead(:,s)) < significantRho(instance))) cycle ! not significant
sigma = 0.0_pReal ! all components except for sigma13 are zero
sigma(1,3) = - (rhoExcessDead(1,s) + rhoExcessDead(2,s) * (1.0_pReal - lattice_nu(ph))) &
* neighbor_ipVolumeSideLength * lattice_mu(ph) * burgers(s,instance) &
/ (sqrt(2.0_pReal) * pi * (1.0_pReal - lattice_nu(ph)))
sigma(3,1) = sigma(1,3)
Tdislo_neighborLattice = Tdislo_neighborLattice &
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,instance)), &
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,instance)))
enddo ! slip system loop
endif
enddo ! deltaZ loop
enddo ! deltaY loop
enddo ! deltaX loop
!* map the stress from the neighbor MP's lattice configuration into the deformed configuration
!* and back into my lattice configuration
neighborLattice2myLattice = math_mul33x33(invFe, Fe(1:3,1:3,1,neighbor_ip,neighbor_el))
plastic_nonlocal_dislocationstress = plastic_nonlocal_dislocationstress &
+ math_mul33x33(neighborLattice2myLattice, &
math_mul33x33(Tdislo_neighborLattice, &
math_transpose33(neighborLattice2myLattice)))
enddo ipLoop
enddo ! element loop
endif
end function plastic_nonlocal_dislocationstress
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_nonlocal_postResults(Tstar_v,Fe,ip,el)
use prec, only: &
dNeq0
use math, only: &
math_mul6x6, &
math_mul33x3, &
math_mul33x33, &
pi
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phaseAt, phasememberAt, &
plasticState, &
phase_plasticityInstance
use lattice, only: &
lattice_Sslip_v, &
lattice_sd, &
lattice_st, &
lattice_sn, &
lattice_mu, &
lattice_nu
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe !< elastic deformation gradient
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_nonlocal_sizePostResults(&
phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
plastic_nonlocal_postResults
integer(pInt) :: &
ph, &
instance, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
cs, & !< constitutive result index
o, & !< index of current output
of,& !< offset shortcut
t, & !< type of dislocation
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),8) :: &
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
rhoDotSgl !< evolution rate of single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),4) :: &
gdot, & !< shear rates
v !< velocities
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
rhoForest, & !< forest dislocation density
tauThreshold, & !< threshold shear stress
tau, & !< current resolved shear stress
tauBack !< back stress from pileups on same slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),2) :: &
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
rhoDotDip, & !< evolution rate of dipole dislocation densities (screw and edge dipoles)
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el))),2) :: &
m, & !< direction of dislocation motion for edge and screw (unit vector)
m_currentconf !< direction of dislocation motion for edge and screw (unit vector) in current configuration
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1_pInt,ip,el)))) :: &
n_currentconf !< slip system normal (unit vector) in current configuration
real(pReal), dimension(3,3) :: &
sigma
ph = phaseAt(1,ip,el)
of = phasememberAt(1,ip,el)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
cs = 0_pInt
plastic_nonlocal_postResults = 0.0_pReal
!* short hand notations for state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = plasticState(ph)%State(iRhoU(s,t,instance),of)
rhoSgl(s,t+4_pInt) = plasticState(ph)%State(iRhoB(s,t,instance),of)
v(s,t) = plasticState(ph)%State(iV(s,t,instance),of)
rhoDotSgl(s,t) = plasticState(ph)%dotState(iRhoU(s,t,instance),of)
rhoDotSgl(s,t+4_pInt) = plasticState(ph)%dotState(iRhoB(s,t,instance),of)
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = plasticState(ph)%State(iRhoD(s,c,instance),of)
rhoDotDip(s,c) = plasticState(ph)%dotState(iRhoD(s,c,instance),of)
endforall
rhoForest = plasticState(ph)%State(iRhoF(1:ns,instance),of)
tauThreshold = plasticState(ph)%State(iTauF(1:ns,instance),of)
tauBack = plasticState(ph)%State(iTauB(1:ns,instance),of)
!* Calculate shear rate
forall (t = 1_pInt:4_pInt) &
gdot(1:ns,t) = rhoSgl(1:ns,t) * burgers(1:ns,instance) * v(1:ns,t)
!* calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,instance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,ph)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,instance)
dUpper(1:ns,1) = lattice_mu(ph) * burgers(1:ns,instance) &
/ (8.0_pReal * pi * (1.0_pReal - lattice_nu(ph)) * abs(tau))
dUpper(1:ns,2) = lattice_mu(ph) * burgers(1:ns,instance) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt)
where(dNeq0(sqrt(rhoSgl(1:ns,2*c-1)+rhoSgl(1:ns,2*c)+abs(rhoSgl(1:ns,2*c+3))&
+abs(rhoSgl(1:ns,2*c+4))+rhoDip(1:ns,c)))) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
end forall
dUpper = max(dUpper,dLower)
!*** dislocation motion
m(1:3,1:ns,1) = lattice_sd(1:3,slipSystemLattice(1:ns,instance),ph)
m(1:3,1:ns,2) = -lattice_st(1:3,slipSystemLattice(1:ns,instance),ph)
forall (c = 1_pInt:2_pInt, s = 1_pInt:ns) &
m_currentconf(1:3,s,c) = math_mul33x3(Fe(1:3,1:3,1_pInt,ip,el), m(1:3,s,c))
forall (s = 1_pInt:ns) &
n_currentconf(1:3,s) = math_mul33x3(Fe(1:3,1:3,1_pInt,ip,el), &
lattice_sn(1:3,slipSystemLattice(s,instance),ph))
outputsLoop: do o = 1_pInt,plastic_nonlocal_Noutput(instance)
select case(plastic_nonlocal_outputID(o,instance))
case (rho_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2) + sum(rhoDip,2)
cs = cs + ns
case (rho_sgl_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2)
cs = cs + ns
case (rho_sgl_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,1:4)),2)
cs = cs + ns
case (rho_sgl_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:8),2)
cs = cs + ns
case (rho_dip_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDip,2)
cs = cs + ns
case (rho_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,[1,2,5,6])),2) + rhoDip(1:ns,1)
cs = cs + ns
case (rho_sgl_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,[1,2,5,6])),2)
cs = cs + ns
case (rho_sgl_edge_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,1:2),2)
cs = cs + ns
case (rho_sgl_edge_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:6),2)
cs = cs + ns
case (rho_sgl_edge_pos_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))
cs = cs + ns
case (rho_sgl_edge_pos_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1)
cs = cs + ns
case (rho_sgl_edge_pos_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,5)
cs = cs + ns
case (rho_sgl_edge_neg_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))
cs = cs + ns
case (rho_sgl_edge_neg_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2)
cs = cs + ns
case (rho_sgl_edge_neg_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,6)
cs = cs + ns
case (rho_dip_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,1)
cs = cs + ns
case (rho_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,[3,4,7,8])),2) + rhoDip(1:ns,2)
cs = cs + ns
case (rho_sgl_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,[3,4,7,8])),2)
cs = cs + ns
case (rho_sgl_screw_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,3:4),2)
cs = cs + ns
case (rho_sgl_screw_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,7:8),2)
cs = cs + ns
case (rho_sgl_screw_pos_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))
cs = cs + ns
case (rho_sgl_screw_pos_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3)
cs = cs + ns
case (rho_sgl_screw_pos_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,7)
cs = cs + ns
case (rho_sgl_screw_neg_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8))
cs = cs + ns
case (rho_sgl_screw_neg_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4)
cs = cs + ns
case (rho_sgl_screw_neg_immobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,8)
cs = cs + ns
case (rho_dip_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,2)
cs = cs + ns
case (excess_rho_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))) &
+ (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case (excess_rho_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6)))
cs = cs + ns
case (excess_rho_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case (rho_forest_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoForest
cs = cs + ns
case (delta_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2) + sum(rhoDip,2))
cs = cs + ns
case (delta_sgl_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2))
cs = cs + ns
case (delta_dip_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(rhoDip,2))
cs = cs + ns
case (shearrate_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(gdot,2)
cs = cs + ns
case (resolvedstress_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = tau
cs = cs + ns
case (resolvedstress_back_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = tauBack
cs = cs + ns
case (resolvedstress_external_ID)
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,instance)
plastic_nonlocal_postResults(cs+s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,ph))
enddo
cs = cs + ns
case (resistance_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = tauThreshold
cs = cs + ns
case (rho_dot_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl(1:ns,1:4),2) &
+ sum(rhoDotSgl(1:ns,5:8)*sign(1.0_pReal,rhoSgl(1:ns,5:8)),2) &
+ sum(rhoDotDip,2)
cs = cs + ns
case (rho_dot_sgl_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl(1:ns,1:4),2) &
+ sum(rhoDotSgl(1:ns,5:8)*sign(1.0_pReal,rhoSgl(1:ns,5:8)),2)
cs = cs + ns
case (rho_dot_sgl_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl(1:ns,1:4),2)
cs = cs + ns
case (rho_dot_dip_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotDip,2)
cs = cs + ns
case (rho_dot_gen_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,1,1_pInt,ip,el) &
+ rhoDotMultiplicationOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_gen_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,1,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_gen_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_sgl2dip_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,1,1_pInt,ip,el) &
+ rhoDotSingle2DipoleGlideOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_sgl2dip_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,1,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_sgl2dip_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_ann_ath_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotAthermalAnnihilationOutput(1:ns,1,1_pInt,ip,el) &
+ rhoDotAthermalAnnihilationOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_ann_the_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,1,1_pInt,ip,el) &
+ rhoDotThermalAnnihilationOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_ann_the_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,1,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_ann_the_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,2,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_edgejogs_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotEdgeJogsOutput(1:ns,1_pInt,ip,el)
cs = cs + ns
case (rho_dot_flux_mobile_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,1:4,1_pInt,ip,el),2)
cs = cs + ns
case (rho_dot_flux_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,1:4,1_pInt,ip,el),2) &
+ sum(rhoDotFluxOutput(1:ns,5:8,1_pInt,ip,el)*sign(1.0_pReal,rhoSgl(1:ns,5:8)),2)
cs = cs + ns
case (rho_dot_flux_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,1:2,1_pInt,ip,el),2) &
+ sum(rhoDotFluxOutput(1:ns,5:6,1_pInt,ip,el)*sign(1.0_pReal,rhoSgl(1:ns,5:6)),2)
cs = cs + ns
case (rho_dot_flux_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,3:4,1_pInt,ip,el),2) &
+ sum(rhoDotFluxOutput(1:ns,7:8,1_pInt,ip,el)*sign(1.0_pReal,rhoSgl(1:ns,7:8)),2)
cs = cs + ns
case (velocity_edge_pos_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,1)
cs = cs + ns
case (velocity_edge_neg_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,2)
cs = cs + ns
case (velocity_screw_pos_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,3)
cs = cs + ns
case (velocity_screw_neg_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,4)
cs = cs + ns
case (slipdirectionx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(1,1:ns,1)
cs = cs + ns
case (slipdirectiony_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(2,1:ns,1)
cs = cs + ns
case (slipdirectionz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(3,1:ns,1)
cs = cs + ns
case (slipnormalx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(1,1:ns)
cs = cs + ns
case (slipnormaly_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(2,1:ns)
cs = cs + ns
case (slipnormalz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(3,1:ns)
cs = cs + ns
case (fluxdensity_edge_posx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(1,1:ns,1)
cs = cs + ns
case (fluxdensity_edge_posy_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(2,1:ns,1)
cs = cs + ns
case (fluxdensity_edge_posz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(3,1:ns,1)
cs = cs + ns
case (fluxdensity_edge_negx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(1,1:ns,1)
cs = cs + ns
case (fluxdensity_edge_negy_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(2,1:ns,1)
cs = cs + ns
case (fluxdensity_edge_negz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(3,1:ns,1)
cs = cs + ns
case (fluxdensity_screw_posx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(1,1:ns,2)
cs = cs + ns
case (fluxdensity_screw_posy_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(2,1:ns,2)
cs = cs + ns
case (fluxdensity_screw_posz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(3,1:ns,2)
cs = cs + ns
case (fluxdensity_screw_negx_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(1,1:ns,2)
cs = cs + ns
case (fluxdensity_screw_negy_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(2,1:ns,2)
cs = cs + ns
case (fluxdensity_screw_negz_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(3,1:ns,2)
cs = cs + ns
case (maximumdipoleheight_edge_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,1)
cs = cs + ns
case (maximumdipoleheight_screw_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,2)
cs = cs + ns
case(dislocationstress_ID)
sigma = plastic_nonlocal_dislocationstress(Fe, ip, el)
plastic_nonlocal_postResults(cs+1_pInt) = sigma(1,1)
plastic_nonlocal_postResults(cs+2_pInt) = sigma(2,2)
plastic_nonlocal_postResults(cs+3_pInt) = sigma(3,3)
plastic_nonlocal_postResults(cs+4_pInt) = sigma(1,2)
plastic_nonlocal_postResults(cs+5_pInt) = sigma(2,3)
plastic_nonlocal_postResults(cs+6_pInt) = sigma(3,1)
cs = cs + 6_pInt
case(accumulatedshear_ID)
plastic_nonlocal_postResults(cs+1_pInt:cs+ns) = plasticState(ph)%state(iGamma(1:ns,instance),of)
cs = cs + ns
end select
enddo outputsLoop
end function plastic_nonlocal_postResults
end module plastic_nonlocal