DAMASK_EICMD/processing/post/scaleData.py

89 lines
3.1 KiB
Python
Executable File

#!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*-
import os,sys
import numpy as np
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Uniformly scale column values by given factor.
""", version = scriptID)
parser.add_option('-l','--label',
dest = 'label',
action = 'extend', metavar = '<string LIST>',
help ='column(s) to scale')
parser.add_option('-f','--factor',
dest = 'factor',
action = 'extend', metavar='<float LIST>',
help = 'factor(s) per column')
parser.set_defaults(label = [],
)
(options,filenames) = parser.parse_args()
if len(options.label) != len(options.factor):
parser.error('number of column labels and factors do not match.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
errors = []
remarks = []
columns = []
dims = []
factors = []
for what,factor in zip(options.label,options.factor):
col = table.label_index(what)
if col < 0: remarks.append('column {} not found...'.format(what,type))
else:
columns.append(col)
factors.append(float(factor))
dims.append(table.label_dimension(what))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for col,dim,factor in zip(columns,dims,factors): # loop over items
table.data[col:col+dim] = factor * np.array(table.data[col:col+dim],'d')
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables