298 lines
11 KiB
Python
298 lines
11 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
from damask import mechanics
|
|
|
|
def Cauchy(P,F):
|
|
sigma = 1.0/np.linalg.det(F) * np.dot(P,F.T)
|
|
return mechanics.symmetric(sigma)
|
|
|
|
|
|
def deviatoric_part(T):
|
|
return T - np.eye(3)*spherical_part(T)
|
|
|
|
|
|
def eigenvalues(T_sym):
|
|
return np.linalg.eigvalsh(symmetric(T_sym))
|
|
|
|
|
|
def eigenvectors(T_sym,RHS=False):
|
|
(u,v) = np.linalg.eigh(symmetric(T_sym))
|
|
|
|
if RHS:
|
|
if np.linalg.det(v) < 0.0: v[:,2] *= -1.0
|
|
return v
|
|
|
|
|
|
def left_stretch(T):
|
|
return polar_decomposition(T,'V')[0]
|
|
|
|
|
|
def maximum_shear(T_sym):
|
|
w = eigenvalues(T_sym)
|
|
return (w[0] - w[2])*0.5
|
|
|
|
|
|
def Mises_strain(epsilon):
|
|
return Mises(epsilon,2.0/3.0)
|
|
|
|
|
|
def Mises_stress(sigma):
|
|
return Mises(sigma,3.0/2.0)
|
|
|
|
|
|
def PK2(P,F):
|
|
S = np.dot(np.linalg.inv(F),P)
|
|
return symmetric(S)
|
|
|
|
|
|
def right_stretch(T):
|
|
return polar_decomposition(T,'U')[0]
|
|
|
|
|
|
def rotational_part(T):
|
|
return polar_decomposition(T,'R')[0]
|
|
|
|
def spherical_part(T,tensor=False):
|
|
sph = np.trace(T)/3.0
|
|
return sph if not tensor else np.eye(3)*sph
|
|
|
|
|
|
def strain_tensor(F,t,m):
|
|
F_ = F.reshape(1,3,3)
|
|
|
|
if t == 'V':
|
|
B = np.matmul(F_,mechanics.transpose(F_))
|
|
w,n = np.linalg.eigh(B)
|
|
elif t == 'U':
|
|
C = np.matmul(mechanics.transpose(F_),F_)
|
|
w,n = np.linalg.eigh(C)
|
|
|
|
if m > 0.0:
|
|
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
|
|
- np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
|
|
elif m < 0.0:
|
|
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
|
|
+ np.broadcast_to(np.eye(3),[F_.shape[0],3,3]))
|
|
else:
|
|
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
|
|
|
|
return eps.reshape(3,3)
|
|
|
|
|
|
def symmetric(T):
|
|
return (T+transpose(T))*0.5
|
|
|
|
|
|
def transpose(T):
|
|
return T.T
|
|
|
|
|
|
def polar_decomposition(T,requested):
|
|
u, s, vh = np.linalg.svd(T)
|
|
R = np.dot(u,vh)
|
|
|
|
output = []
|
|
if 'R' in requested:
|
|
output.append(R)
|
|
if 'V' in requested:
|
|
output.append(np.dot(T,R.T))
|
|
if 'U' in requested:
|
|
output.append(np.dot(R.T,T))
|
|
|
|
return tuple(output)
|
|
|
|
def Mises(T_sym,s):
|
|
d = deviatoric_part(T_sym)
|
|
return np.sqrt(s*(np.sum(d**2.0)))
|
|
|
|
|
|
class TestMechanics:
|
|
|
|
n = 1000
|
|
c = np.random.randint(n)
|
|
|
|
|
|
@pytest.mark.parametrize('vectorized,single',[(mechanics.deviatoric_part, deviatoric_part),
|
|
(mechanics.spherical_part, spherical_part)
|
|
])
|
|
def test_vectorize_1_arg_(self,vectorized,single):
|
|
print("done")
|
|
test_data_flat = np.random.rand(self.n,3,3)
|
|
test_data = np.reshape(test_data_flat,(self.n//10,10,3,3))
|
|
for i,v in enumerate(np.reshape(vectorized(test_data),vectorized(test_data_flat).shape)):
|
|
assert np.allclose(single(test_data_flat[i]),v)
|
|
|
|
@pytest.mark.parametrize('vectorized,single',[
|
|
(mechanics.deviatoric_part, deviatoric_part),
|
|
(mechanics.eigenvalues , eigenvalues ),
|
|
(mechanics.eigenvectors , eigenvectors ),
|
|
(mechanics.left_stretch , left_stretch ),
|
|
(mechanics.maximum_shear , maximum_shear ),
|
|
(mechanics.Mises_strain , Mises_strain ),
|
|
(mechanics.Mises_stress , Mises_stress ),
|
|
(mechanics.right_stretch , right_stretch ),
|
|
(mechanics.rotational_part, rotational_part),
|
|
(mechanics.spherical_part , spherical_part ),
|
|
(mechanics.symmetric , symmetric ),
|
|
(mechanics.transpose , transpose ),
|
|
])
|
|
def test_vectorize_1_arg(self,vectorized,single):
|
|
epsilon = np.random.rand(self.n,3,3)
|
|
epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3))
|
|
for i,v in enumerate(np.reshape(vectorized(epsilon_vec),vectorized(epsilon).shape)):
|
|
assert np.allclose(single(epsilon[i]),v)
|
|
|
|
@pytest.mark.parametrize('vectorized,single',[
|
|
(mechanics.Cauchy,Cauchy),
|
|
(mechanics.PK2 ,PK2 )
|
|
])
|
|
def test_vectorize_2_arg(self,vectorized,single):
|
|
P = np.random.rand(self.n,3,3)
|
|
F = np.random.rand(self.n,3,3)
|
|
P_vec = np.reshape(P,(self.n//10,10,3,3))
|
|
F_vec = np.reshape(F,(self.n//10,10,3,3))
|
|
for i,v in enumerate(np.reshape(vectorized(P_vec,F_vec),vectorized(P,F).shape)):
|
|
assert np.allclose(single(P[i],F[i]),v)
|
|
|
|
|
|
@pytest.mark.parametrize('vectorized,single',[(mechanics.strain_tensor,strain_tensor)])
|
|
def test_vectorize_strain_tensor(self,vectorized,single):
|
|
F = np.random.rand(self.n,3,3)
|
|
F_vec = np.reshape(F,(self.n//10,10,3,3))
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*10.0 -5.0
|
|
for i,v in enumerate(np.reshape(vectorized(F_vec,t,m),vectorized(F,t,m).shape)):
|
|
assert np.allclose(single(F[i],t,m),v)
|
|
|
|
@pytest.mark.parametrize('function',[mechanics.Cauchy,
|
|
mechanics.PK2,
|
|
])
|
|
def test_stress_measures(self,function):
|
|
"""Ensure that all stress measures are equivalent for no deformation."""
|
|
P = np.random.rand(self.n,3,3)
|
|
assert np.allclose(function(P,np.broadcast_to(np.eye(3),(self.n,3,3))),mechanics.symmetric(P))
|
|
|
|
def test_deviatoric_part(self):
|
|
I_n = np.broadcast_to(np.eye(3),(self.n,3,3))
|
|
r = np.logical_not(I_n)*np.random.rand(self.n,3,3)
|
|
assert np.allclose(mechanics.deviatoric_part(I_n+r),r)
|
|
|
|
def test_polar_decomposition(self):
|
|
"""F = RU = VR."""
|
|
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
|
|
R = mechanics.rotational_part(F)
|
|
V = mechanics.left_stretch(F)
|
|
U = mechanics.right_stretch(F)
|
|
assert np.allclose(np.matmul(R,U),
|
|
np.matmul(V,R))
|
|
|
|
@pytest.mark.parametrize('m',[0.0,np.random.random()*10.,np.random.random()*-10.])
|
|
def test_strain_tensor_no_rotation(self,m):
|
|
"""Ensure that left and right stretch give same results for no rotation."""
|
|
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.rand(self.n,3,3)
|
|
assert np.allclose(mechanics.strain_tensor(F,'U',m),
|
|
mechanics.strain_tensor(F,'V',m))
|
|
|
|
@pytest.mark.parametrize('m',[0.0,np.random.random()*2.5,np.random.random()*-2.5])
|
|
def test_strain_tensor_rotation_equivalence(self,m):
|
|
"""Ensure that left and right strain differ only by a rotation."""
|
|
F = np.broadcast_to(np.eye(3),[self.n,3,3]) + (np.random.rand(self.n,3,3)*0.5 - 0.25)
|
|
assert np.allclose(np.linalg.det(mechanics.strain_tensor(F,'U',m)),
|
|
np.linalg.det(mechanics.strain_tensor(F,'V',m)))
|
|
|
|
@pytest.mark.parametrize('m',[0.0,np.random.random(),np.random.random()*-1.])
|
|
@pytest.mark.parametrize('t',['V','U'])
|
|
def test_strain_tensor_rotation(self,m,t):
|
|
"""Ensure that pure rotation results in no strain."""
|
|
F = mechanics.rotational_part(np.random.rand(self.n,3,3))
|
|
assert np.allclose(mechanics.strain_tensor(F,t,m),
|
|
0.0)
|
|
|
|
def test_rotation_determinant(self):
|
|
"""
|
|
Ensure that the determinant of the rotational part is +- 1.
|
|
|
|
Should be +1, but random F might contain a reflection.
|
|
"""
|
|
x = np.random.rand(self.n,3,3)
|
|
assert np.allclose(np.abs(np.linalg.det(mechanics.rotational_part(x))),
|
|
1.0)
|
|
|
|
def test_spherical_deviatoric_part(self):
|
|
"""Ensure that full tensor is sum of spherical and deviatoric part."""
|
|
x = np.random.rand(self.n,3,3)
|
|
sph = mechanics.spherical_part(x,True)
|
|
assert np.allclose(sph + mechanics.deviatoric_part(x),
|
|
x)
|
|
|
|
def test_deviatoric_Mises(self):
|
|
"""Ensure that Mises equivalent stress depends only on deviatoric part."""
|
|
x = np.random.rand(self.n,3,3)
|
|
full = mechanics.Mises_stress(x)
|
|
dev = mechanics.Mises_stress(mechanics.deviatoric_part(x))
|
|
assert np.allclose(full,
|
|
dev)
|
|
|
|
def test_spherical_mapping(self):
|
|
"""Ensure that mapping to tensor is correct."""
|
|
x = np.random.rand(self.n,3,3)
|
|
tensor = mechanics.spherical_part(x,True)
|
|
scalar = mechanics.spherical_part(x)
|
|
assert np.allclose(np.linalg.det(tensor),
|
|
scalar**3.0)
|
|
|
|
def test_spherical_Mises(self):
|
|
"""Ensure that Mises equivalent strrain of spherical strain is 0."""
|
|
x = np.random.rand(self.n,3,3)
|
|
sph = mechanics.spherical_part(x,True)
|
|
assert np.allclose(mechanics.Mises_strain(sph),
|
|
0.0)
|
|
|
|
def test_symmetric(self):
|
|
"""Ensure that a symmetric tensor is half of the sum of a tensor and its transpose."""
|
|
x = np.random.rand(self.n,3,3)
|
|
assert np.allclose(mechanics.symmetric(x)*2.0,
|
|
mechanics.transpose(x)+x)
|
|
|
|
def test_transpose(self):
|
|
"""Ensure that a symmetric tensor equals its transpose."""
|
|
x = mechanics.symmetric(np.random.rand(self.n,3,3))
|
|
assert np.allclose(mechanics.transpose(x),
|
|
x)
|
|
|
|
def test_Mises(self):
|
|
"""Ensure that equivalent stress is 3/2 of equivalent strain."""
|
|
x = np.random.rand(self.n,3,3)
|
|
assert np.allclose(mechanics.Mises_stress(x)/mechanics.Mises_strain(x),
|
|
1.5)
|
|
|
|
def test_eigenvalues(self):
|
|
"""Ensure that the characteristic polynomial can be solved."""
|
|
A = mechanics.symmetric(np.random.rand(self.n,3,3))
|
|
lambd = mechanics.eigenvalues(A)
|
|
s = np.random.randint(self.n)
|
|
for i in range(3):
|
|
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
|
|
|
def test_eigenvalues_and_vectors(self):
|
|
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
|
A = mechanics.symmetric(np.random.rand(self.n,3,3))
|
|
lambd = mechanics.eigenvalues(A)
|
|
x = mechanics.eigenvectors(A)
|
|
s = np.random.randint(self.n)
|
|
for i in range(3):
|
|
assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0)
|
|
|
|
def test_eigenvectors_RHS(self):
|
|
"""Ensure that RHS coordinate system does only change sign of determinant."""
|
|
A = mechanics.symmetric(np.random.rand(self.n,3,3))
|
|
LRHS = np.linalg.det(mechanics.eigenvectors(A,RHS=False))
|
|
RHS = np.linalg.det(mechanics.eigenvectors(A,RHS=True))
|
|
assert np.allclose(np.abs(LRHS),RHS)
|
|
|
|
def test_spherical_no_shear(self):
|
|
"""Ensure that sherical stress has max shear of 0.0."""
|
|
A = mechanics.spherical_part(mechanics.symmetric(np.random.rand(self.n,3,3)),True)
|
|
assert np.allclose(mechanics.maximum_shear(A),0.0)
|