DAMASK_EICMD/code/DAMASK_spectral_Utilities.f90

605 lines
29 KiB
Fortran

! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##################################################################################################
!* $Id$
!##################################################################################################
! Material subroutine for BVP solution using spectral method
!
! Run 'DAMASK_spectral.exe --help' to get usage hints
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts,
! D.D. Tjahjanto,
! C. Kords,
! M. Diehl,
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
module DAMASK_spectral_Utilities
use prec, only: &
pReal, &
pInt
use math
use IO, only: &
IO_error
implicit none
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
type(C_PTR) :: plan_forward, plan_backward ! plans for fftw
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(3,3,3,3) :: C_ref
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
real(pReal), dimension(:,:,:,:,:), pointer :: field_real
complex(pReal), dimension(:,:,:,:,:), pointer :: field_fourier
!--------------------------------------------------------------------------------------------------
! debug fftw
type(C_PTR) :: plan_scalarField_forth, plan_scalarField_back
complex(pReal), dimension(:,:,:), pointer :: scalarField_real
complex(pReal), dimension(:,:,:), pointer :: scalarField_fourier
!--------------------------------------------------------------------------------------------------
! debug divergence
type(C_PTR) :: plan_divergence
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
real(pReal), dimension(:,:,:,:), allocatable :: divergence_post
!--------------------------------------------------------------------------------------------------
!variables controlling debugging
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction
integer(pInt), dimension(3) :: res = 1_pInt
real(pReal) :: wgt
integer(pInt) :: res1_red, Npoints
!--------------------------------------------------------------------------------------------------
! solution state
type solutionState
logical :: converged = .false.
logical :: regrid = .false.
logical :: term_ill = .false.
end type solutionState
contains
subroutine Utilities_init()
use mesh, only : &
mesh_spectral_getResolution, &
mesh_spectral_getDimension
use numerics, only: &
divergence_correction, &
DAMASK_NumThreadsInt, &
fftw_planner_flag, &
fftw_timelimit
use debug, only: &
debug_level, &
debug_spectral, &
debug_levelBasic, &
debug_spectralDivergence, &
debug_spectralRestart, &
debug_spectralFFTW
implicit none
integer(pInt) :: i, j, k, ierr
integer(pInt), dimension(3) :: k_s
type(C_PTR) :: tensorField ! field in real and fourier space
type(C_PTR) :: scalarField_realC, scalarField_fourierC
type(C_PTR) :: divergence
write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectralSolver Utilities init -+>>>'
write(6,'(a)') ' $Id$'
#include "compilation_info.f90"
write(6,'(a)') ''
!--------------------------------------------------------------------------------------------------
! set debugging parameters
debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0
debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0
debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0
debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0
!##################################################################################################
! initialization
!##################################################################################################
res = mesh_spectral_getResolution()
geomdim = mesh_spectral_getDimension()
res1_red = res(1)/2_pInt + 1_pInt
Npoints = res(1)*res(2)*res(3)
wgt = 1.0/real(Npoints,pReal)
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal) ! start out isothermally
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
call c_f_pointer(tensorField, field_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
call c_f_pointer(tensorField, field_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
!--------------------------------------------------------------------------------------------------
! general initialization of fftw (see manual on fftw.org for more details)
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
!$ if(DAMASK_NumThreadsInt > 0_pInt) then
!$ ierr = fftw_init_threads()
!$ if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
!$ call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
!$ endif
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
!--------------------------------------------------------------------------------------------------
! creating plans
plan_forward = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
field_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
field_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,fftw_planner_flag)
plan_backward =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
field_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
field_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
!--------------------------------------------------------------------------------------------------
! depending on (debug) options, allocate more memory and create additional plans
if (debugDivergence) then
divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T))
call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3])
call c_f_pointer(divergence, divergence_fourier, [ res1_red, res(2),res(3),3])
allocate (divergence_post(res(1),res(2),res(3),3)); divergence_post = 0.0_pReal
plan_divergence = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],3,&
divergence_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
divergence_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
endif
if (debugFFTW) then
scalarField_realC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T)) ! do not do an inplace transform
scalarField_fourierC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T))
call c_f_pointer(scalarField_realC, scalarField_real, [res(1),res(2),res(3)])
call c_f_pointer(scalarField_fourierC, scalarField_fourier, [res(1),res(2),res(3)])
plan_scalarField_forth = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
scalarField_real,scalarField_fourier,-1,fftw_planner_flag)
plan_scalarField_back = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
scalarField_fourier,scalarField_real,+1,fftw_planner_flag)
endif
if (debugGeneral) write(6,'(a)') 'FFTW initialized'
!--------------------------------------------------------------------------------------------------
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
if (divergence_correction) then
do i = 1_pInt, 3_pInt
if (i /= minloc(geomdim,1) .and. i /= maxloc(geomdim,1)) virt_dim = geomdim/geomdim(i)
enddo
else
virt_dim = geomdim
endif
do k = 1_pInt, res(3)
k_s(3) = k - 1_pInt
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
do j = 1_pInt, res(2)
k_s(2) = j - 1_pInt
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
do i = 1_pInt, res1_red
k_s(1) = i - 1_pInt
xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim
enddo; enddo; enddo
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
else ! precalculation of gamma_hat field
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
endif
end subroutine Utilities_init
subroutine Utilities_updateGamma(C)
use numerics, only: &
memory_efficient
implicit none
real(pReal), dimension(3,3,3,3) :: C
real(pReal), dimension(3,3) :: temp33_Real, xiDyad
integer(pInt) :: i, j, k, l, m, n, q
C_ref = C
if(.not. memory_efficient) then
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, q=1_pInt:3_pInt)&
gamma_hat(i,j,k, l,m,n,q) = temp33_Real(l,n)*xiDyad(m,q)
endif
enddo; enddo; enddo
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
endif
end subroutine Utilities_updateGamma
subroutine Utilities_forwardFFT()
implicit none
integer(pInt) :: row, column
!--------------------------------------------------------------------------------------------------
! copy one component of the stress field to to a single FT and check for mismatch
if (debugFFTW) then
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
cmplx(field_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
endif
!--------------------------------------------------------------------------------------------------
! call function to calculate divergence from math (for post processing) to check results
if (debugDivergence) &
call divergence_fft(res,virt_dim,3_pInt,&
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post)
!--------------------------------------------------------------------------------------------------
! doing the FT because it simplifies calculation of average stress in real space also
call fftw_execute_dft_r2c(plan_forward,field_real,field_fourier)
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 FT results
if (debugFFTW) then
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
field_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
endif
end subroutine Utilities_forwardFFT
subroutine Utilities_backwardFFT()
implicit none
integer(pInt) :: row, column, i, j, k, m, n
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
row = 3 ! (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
column = 3 !(mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
scalarField_fourier(i,j,k) = field_fourier(i,j,k,row,column)
enddo; enddo; enddo
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
m = 1_pInt
do k = 1_pInt, res(3)
n = 1_pInt
do j = 1_pInt, res(2)
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
if(n == 1_pInt) n = res(2) + 1_pInt
n = n-1_pInt
enddo
if(m == 1_pInt) m = res(3) + 1_pInt
m = m -1_pInt
enddo; enddo
endif
!--------------------------------------------------------------------------------------------------
! doing the inverse FT
call fftw_execute_dft_c2r(plan_backward,field_fourier,field_real) ! back transform of fluct deformation gradient
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
write(6,'(a,es11.4)') 'max iFT relative error = ',&
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
field_real(1:res(1),1:res(2),1:res(3),row,column))/&
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
endif
end subroutine Utilities_backwardFFT
subroutine Utilities_fourierConvolution(field_aim)
use numerics, only: &
memory_efficient
implicit none
real(pReal), dimension(3,3) :: xiDyad, temp33_Real, field_aim
integer(pInt) :: i, j, k, l, m, n, q
complex(pReal), dimension(3,3) :: temp33_complex
!--------------------------------------------------------------------------------------------------
! actual spectral method
write(6,'(a)') ''
write(6,'(a)') '... doing convolution .................'
!--------------------------------------------------------------------------------------------------
! removing highest frequencies
field_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
field_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(res(3)>1_pInt) &
field_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! to the actual spectral method calculation (mechanical equilibrium)
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, q=1_pInt:3_pInt)&
gamma_hat(1,1,1, l,m,n,q) = temp33_Real(l,n)*xiDyad(m,q)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
field_fourier(i,j,k,1:3,1:3))
field_fourier(i,j,k,1:3,1:3) = temp33_Complex
endif
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
field_fourier(i,j,k,1:3,1:3))
field_fourier(i,j,k, 1:3,1:3) = temp33_Complex
enddo; enddo; enddo
endif
field_fourier(1,1,1,1:3,1:3) = cmplx(field_aim,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
end subroutine Utilities_fourierConvolution
real(pReal) function Utilities_divergenceRMS()
use numerics, only: err_div_tol
integer(pInt) :: i, j, k, l, m, n, q
!--------------------------------------------------------------------------------------------------
!variables for additional output due to general debugging
real(pReal), dimension(3,3) :: field_avg
real(pReal) :: field_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
err_div_max, err_real_div_max
complex(pReal), dimension(3) :: temp3_complex
!--------------------------------------------------------------------------------------------------
! actual spectral method
write(6,'(a)') ''
write(6,'(a)') '... calculating divergence .................'
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
err_div_RMS = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_RMS = err_div_RMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
+ sum( real(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(field_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum( real(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(field_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
Utilities_divergenceRMS = err_div_RMS ! criterion to stop iterations
!--------------------------------------------------------------------------------------------------
! calculate additional divergence criteria and report
if (debugDivergence) then ! calculate divergence again
err_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
temp3_Complex = math_mul33x3_complex(field_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
xi(1:3,i,j,k))*TWOPIIMG
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
enddo; enddo; enddo
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
err_real_div_RMS = 0.0_pReal
err_post_div_RMS = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
enddo; enddo; enddo
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
err_real_div_max = sqrt( err_real_div_max) ! max in real space
err_div_max = sqrt( err_div_max) ! max in Fourier space
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
endif
end function Utilities_divergenceRMS
function Utilities_stressBC(rot_BC,mask_stressVector,C)
real(pReal), dimension(3,3,3,3) :: Utilities_stressBC
real(pReal), dimension(3,3,3,3), intent(in) :: C
integer(pInt) :: i, j, k, m, n
real(pReal), dimension(3,3), intent(in) :: rot_BC
logical, dimension(9), intent(in) :: mask_stressVector
real(pReal), dimension(3,3,3,3) :: C_lastInc
real(pReal), dimension(9,9) :: temp99_Real
integer(pInt) :: size_reduced = 0_pInt
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
logical :: errmatinv
size_reduced = count(mask_stressVector)
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
C_lastInc = math_rotate_forward3333(C,rot_BC) ! calculate stiffness from former inc
temp99_Real = math_Plain3333to99(C_lastInc)
k = 0_pInt ! build reduced stiffness
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=400_pInt)
temp99_Real = 0.0_pReal ! build full compliance
k = 0_pInt
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
Utilities_stressBC = math_Plain99to3333(temp99_Real)
end function Utilities_stressBC
subroutine Utilities_constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
P,C,P_av,ForwardData,rotation_BC)
use debug, only: &
debug_reset, &
debug_info
use CPFEM, only: &
CPFEM_general
use FEsolving, only: restartWrite
implicit none
real(pReal), dimension(res(1),res(2),res(3)) :: temperature
real(pReal), dimension(res(1),res(2),res(3),3) :: coordinates
real(pReal), dimension(res(1),res(2),res(3),3,3) :: F,F_lastInc, P
real(pReal) :: timeinc
logical :: ForwardData
integer(pInt) :: i, j, k, ielem
integer(pInt) :: CPFEM_mode
real(pReal), dimension(3,3,3,3) :: dPdF, C
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(3,3) :: P_av_lab, P_av, rotation_BC
if (ForwardData) then
CPFEM_mode = 1_pInt
else
CPFEM_mode = 2_pInt
endif
write(6,'(a)') ''
write(6,'(a)') '... update stress field P(F) .....................................'
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
P = 0.0_pReal ! needed because of the padding for FFTW
C = 0.0_pReal
P_av_lab = 0.0_pReal
ielem = 0_pInt
call debug_reset()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
CPFEM_mode = 2_pInt
C = C + dPdF
P_av_lab = P_av_lab + P(i,j,k,1:3,1:3)
enddo; enddo; enddo
call debug_info()
restartWrite = .false.
P_av_lab = P_av_lab * wgt
P_av = math_rotate_forward33(P_av_lab,rotation_BC)
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
C = C * wgt
end subroutine Utilities_constitutiveResponse
subroutine Utilities_destroy()
implicit none
if (debugDivergence) then
call fftw_destroy_plan(plan_divergence)
endif
if (debugFFTW) then
call fftw_destroy_plan(plan_scalarField_forth)
call fftw_destroy_plan(plan_scalarField_back)
endif
call fftw_destroy_plan(plan_forward)
call fftw_destroy_plan(plan_backward)
end subroutine Utilities_destroy
end module DAMASK_spectral_Utilities