1345 lines
63 KiB
Fortran
1345 lines
63 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Su Leen Wong, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Nan Jia, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief material subroutine incoprorating dislocation and twinning physics
|
||
!> @details to be done
|
||
!--------------------------------------------------------------------------------------------------
|
||
module plastic_dislotwin
|
||
use prec, only: &
|
||
pReal, &
|
||
pInt
|
||
|
||
implicit none
|
||
private
|
||
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
||
plastic_dislotwin_sizePostResult !< size of each post result output
|
||
character(len=64), dimension(:,:), allocatable, target, public :: &
|
||
plastic_dislotwin_output !< name of each post result output
|
||
|
||
real(pReal), parameter, private :: &
|
||
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
||
|
||
enum, bind(c)
|
||
enumerator :: &
|
||
undefined_ID, &
|
||
edge_density_ID, &
|
||
dipole_density_ID, &
|
||
shear_rate_slip_ID, &
|
||
accumulated_shear_slip_ID, &
|
||
mfp_slip_ID, &
|
||
resolved_stress_slip_ID, &
|
||
threshold_stress_slip_ID, &
|
||
edge_dipole_distance_ID, &
|
||
twin_fraction_ID, &
|
||
mfp_twin_ID, &
|
||
resolved_stress_twin_ID, &
|
||
threshold_stress_twin_ID, &
|
||
resolved_stress_shearband_ID, &
|
||
shear_rate_shearband_ID, &
|
||
strain_trans_fraction_ID
|
||
end enum
|
||
|
||
type, private :: tParameters
|
||
real(pReal) :: &
|
||
mu, &
|
||
nu, &
|
||
D0, & !< prefactor for self-diffusion coefficient
|
||
Qsd, & !< activation energy for dislocation climb
|
||
GrainSize, & !<grain size
|
||
pShearBand, & !< p-exponent in shear band velocity
|
||
qShearBand, & !< q-exponent in shear band velocity
|
||
CEdgeDipMinDistance, & !<
|
||
Cmfptwin, & !<
|
||
Cthresholdtwin, & !<
|
||
SolidSolutionStrength, & !<strength due to elements in solid solution
|
||
L0_twin, & !< Length of twin nuclei in Burgers vectors
|
||
L0_trans, & !< Length of trans nuclei in Burgers vectors
|
||
xc_twin, & !< critical distance for formation of twin nucleus
|
||
xc_trans, & !< critical distance for formation of trans nucleus
|
||
VcrossSlip, & !< cross slip volume
|
||
sbResistance, & !< value for shearband resistance (might become an internal state variable at some point)
|
||
sbVelocity, & !< value for shearband velocity_0
|
||
sbQedge, & !< value for shearband systems Qedge
|
||
SFE_0K, & !< stacking fault energy at zero K
|
||
dSFE_dT, & !< temperature dependance of stacking fault energy
|
||
aTolRho, & !< absolute tolerance for integration of dislocation density
|
||
aTolTwinFrac, & !< absolute tolerance for integration of twin volume fraction
|
||
aTolTransFrac, & !< absolute tolerance for integration of trans volume fraction
|
||
deltaG, & !< Free energy difference between austensite and martensite
|
||
Cmfptrans, & !<
|
||
Cthresholdtrans, & !<
|
||
transStackHeight !< Stack height of hex nucleus
|
||
real(pReal), dimension(:), allocatable :: &
|
||
rho0, & !< initial unipolar dislocation density per slip system
|
||
rhoDip0, & !< initial dipole dislocation density per slip system
|
||
burgers_slip, & !< absolute length of burgers vector [m] for each slip system
|
||
burgers_twin, & !< absolute length of burgers vector [m] for each slip system
|
||
burgers_trans, & !< absolute length of burgers vector [m] for each twin system
|
||
Qedge,& !< activation energy for glide [J] for each slip system
|
||
v0, & !< dislocation velocity prefactor [m/s] for each slip system
|
||
tau_peierls,& !< Peierls stress [Pa] for each slip system
|
||
Ndot0_twin, & !< twin nucleation rate [1/m³s] for each twin system
|
||
Ndot0_trans, & !< trans nucleation rate [1/m³s] for each trans system
|
||
twinsize, & !< twin thickness [m] for each twin system
|
||
CLambdaSlip, & !< Adj. parameter for distance between 2 forest dislocations for each slip system
|
||
atomicVolume, &
|
||
lamellarsize, & !< martensite lamellar thickness [m] for each trans system and instance
|
||
p, & !< p-exponent in glide velocity
|
||
q, & !< q-exponent in glide velocity
|
||
r, & !< r-exponent in twin nucleation rate
|
||
s, & !< s-exponent in trans nucleation rate
|
||
shear_twin, & !< characteristic shear for twins
|
||
B !< drag coefficient
|
||
real(pReal), dimension(:,:), allocatable :: &
|
||
interaction_SlipSlip, & !<
|
||
interaction_SlipTwin, & !<
|
||
interaction_TwinSlip, & !<
|
||
interaction_TwinTwin, & !<
|
||
interaction_SlipTrans, & !<
|
||
interaction_TransTrans !<
|
||
integer(pInt), dimension(:,:), allocatable :: &
|
||
fcc_twinNucleationSlipPair ! ToDo: Better name? Is also use for trans
|
||
real(pReal), dimension(:,:), allocatable :: &
|
||
forestProjection, &
|
||
C66
|
||
real(pReal), dimension(:,:,:), allocatable :: &
|
||
Schmid_trans, &
|
||
Schmid_slip, &
|
||
Schmid_twin, &
|
||
C66_twin, &
|
||
C66_trans
|
||
integer(pInt) :: &
|
||
totalNslip, & !< total number of active slip system
|
||
totalNtwin, & !< total number of active twin system
|
||
totalNtrans !< total number of active transformation system
|
||
integer(pInt), dimension(:), allocatable :: &
|
||
Nslip, & !< number of active slip systems for each family
|
||
Ntwin, & !< number of active twin systems for each family
|
||
Ntrans !< number of active transformation systems for each family
|
||
integer(kind(undefined_ID)), dimension(:), allocatable :: &
|
||
outputID !< ID of each post result output
|
||
logical :: &
|
||
fccTwinTransNucleation, & !< twinning and transformation models are for fcc
|
||
dipoleFormation !< flag indicating consideration of dipole formation
|
||
end type !< container type for internal constitutive parameters
|
||
|
||
type, private :: tDislotwinState
|
||
real(pReal), pointer, dimension(:,:) :: &
|
||
rhoEdge, &
|
||
rhoEdgeDip, &
|
||
accshear_slip, &
|
||
twinFraction, &
|
||
strainTransFraction
|
||
end type tDislotwinState
|
||
|
||
type, private :: tDislotwinMicrostructure
|
||
real(pReal), allocatable, dimension(:,:) :: &
|
||
invLambdaSlip, &
|
||
invLambdaSlipTwin, &
|
||
invLambdaSlipTrans, &
|
||
invLambdaTwin, &
|
||
invLambdaTrans, &
|
||
mfp_slip, &
|
||
mfp_twin, &
|
||
mfp_trans, &
|
||
threshold_stress_slip, &
|
||
threshold_stress_twin, &
|
||
threshold_stress_trans, &
|
||
twinVolume, &
|
||
martensiteVolume, &
|
||
tau_r_twin, & !< stress to bring partials close together (twin)
|
||
tau_r_trans !< stress to bring partials close together (trans)
|
||
end type tDislotwinMicrostructure
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! containers for parameters and state
|
||
type(tParameters), allocatable, dimension(:), private :: param
|
||
type(tDislotwinState), allocatable, dimension(:), private :: &
|
||
dotState, &
|
||
state
|
||
type(tDislotwinMicrostructure), allocatable, dimension(:), private :: microstructure
|
||
|
||
public :: &
|
||
plastic_dislotwin_init, &
|
||
plastic_dislotwin_homogenizedC, &
|
||
plastic_dislotwin_dependentState, &
|
||
plastic_dislotwin_LpAndItsTangent, &
|
||
plastic_dislotwin_dotState, &
|
||
plastic_dislotwin_postResults, &
|
||
plastic_dislotwin_results
|
||
private :: &
|
||
kinetics_slip, &
|
||
kinetics_twin, &
|
||
kinetics_trans
|
||
|
||
contains
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief module initialization
|
||
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_init
|
||
use prec, only: &
|
||
pStringLen, &
|
||
dEq0, &
|
||
dNeq0, &
|
||
dNeq
|
||
use debug, only: &
|
||
debug_level,&
|
||
debug_constitutive,&
|
||
debug_levelBasic
|
||
use math, only: &
|
||
math_expand,&
|
||
PI
|
||
use IO, only: &
|
||
IO_error
|
||
use material, only: &
|
||
phase_plasticity, &
|
||
phase_plasticityInstance, &
|
||
phase_Noutput, &
|
||
material_allocatePlasticState, &
|
||
PLASTICITY_DISLOTWIN_label, &
|
||
PLASTICITY_DISLOTWIN_ID, &
|
||
material_phase, &
|
||
plasticState
|
||
use config, only: &
|
||
config_phase
|
||
use lattice
|
||
|
||
implicit none
|
||
integer(pInt) :: &
|
||
Ninstance, &
|
||
p, i, &
|
||
NipcMyPhase, outputSize, &
|
||
sizeState, sizeDotState, &
|
||
startIndex, endIndex
|
||
|
||
integer(pInt), dimension(0), parameter :: emptyIntArray = [integer(pInt)::]
|
||
real(pReal), dimension(0), parameter :: emptyRealArray = [real(pReal)::]
|
||
character(len=65536), dimension(0), parameter :: emptyStringArray = [character(len=65536)::]
|
||
|
||
integer(kind(undefined_ID)) :: &
|
||
outputID
|
||
|
||
character(len=pStringLen) :: &
|
||
extmsg = ''
|
||
character(len=65536), dimension(:), allocatable :: &
|
||
outputs
|
||
|
||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>'
|
||
|
||
write(6,'(/,a)') ' Ma and Roters, Acta Materialia 52(12):3603–3612, 2004'
|
||
write(6,'(a)') ' https://doi.org/10.1016/j.actamat.2004.04.012'
|
||
|
||
write(6,'(/,a)') ' Roters et al., Computational Materials Science 39:91–95, 2007'
|
||
write(6,'(a)') ' https://doi.org/10.1016/j.commatsci.2006.04.014'
|
||
|
||
write(6,'(/,a)') ' Wong et al., Acta Materialia 118:140–151, 2016'
|
||
write(6,'(a,/)') ' https://doi.org/10.1016/j.actamat.2016.07.032'
|
||
|
||
Ninstance = count(phase_plasticity == PLASTICITY_DISLOTWIN_ID)
|
||
|
||
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
||
write(6,'(a16,1x,i5,/)') '# instances:',Ninstance
|
||
|
||
allocate(plastic_dislotwin_sizePostResult(maxval(phase_Noutput),Ninstance),source=0_pInt)
|
||
allocate(plastic_dislotwin_output(maxval(phase_Noutput),Ninstance))
|
||
plastic_dislotwin_output = ''
|
||
|
||
allocate(param(Ninstance))
|
||
allocate(state(Ninstance))
|
||
allocate(dotState(Ninstance))
|
||
allocate(microstructure(Ninstance))
|
||
|
||
do p = 1_pInt, size(phase_plasticity)
|
||
if (phase_plasticity(p) /= PLASTICITY_DISLOTWIN_ID) cycle
|
||
associate(prm => param(phase_plasticityInstance(p)), &
|
||
dot => dotState(phase_plasticityInstance(p)), &
|
||
stt => state(phase_plasticityInstance(p)), &
|
||
dst => microstructure(phase_plasticityInstance(p)), &
|
||
config => config_phase(p))
|
||
|
||
prm%aTolRho = config%getFloat('atol_rho', defaultVal=0.0_pReal)
|
||
prm%aTolTwinFrac = config%getFloat('atol_twinfrac', defaultVal=0.0_pReal)
|
||
prm%aTolTransFrac = config%getFloat('atol_transfrac', defaultVal=0.0_pReal)
|
||
|
||
! This data is read in already in lattice
|
||
prm%mu = lattice_mu(p)
|
||
prm%nu = lattice_nu(p)
|
||
prm%C66 = lattice_C66(1:6,1:6,p)
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! slip related parameters
|
||
prm%Nslip = config%getInts('nslip',defaultVal=emptyIntArray)
|
||
prm%totalNslip = sum(prm%Nslip)
|
||
slipActive: if (prm%totalNslip > 0_pInt) then
|
||
prm%Schmid_slip = lattice_SchmidMatrix_slip(prm%Nslip,config%getString('lattice_structure'),&
|
||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||
prm%interaction_SlipSlip = lattice_interaction_SlipBySlip(prm%Nslip, &
|
||
config%getFloats('interaction_slipslip'), &
|
||
config%getString('lattice_structure'))
|
||
prm%forestProjection = lattice_forestProjection (prm%Nslip,config%getString('lattice_structure'),&
|
||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||
|
||
prm%fccTwinTransNucleation = merge(.true., .false., lattice_structure(p) == LATTICE_FCC_ID) &
|
||
.and. (prm%Nslip(1) == 12_pInt)
|
||
if(prm%fccTwinTransNucleation) &
|
||
prm%fcc_twinNucleationSlipPair = lattice_fcc_twinNucleationSlipPair
|
||
|
||
prm%rho0 = config%getFloats('rhoedge0', requiredSize=size(prm%Nslip)) !ToDo: rename to rho_0
|
||
prm%rhoDip0 = config%getFloats('rhoedgedip0',requiredSize=size(prm%Nslip)) !ToDo: rename to rho_dip_0
|
||
prm%v0 = config%getFloats('v0', requiredSize=size(prm%Nslip))
|
||
prm%burgers_slip = config%getFloats('slipburgers',requiredSize=size(prm%Nslip))
|
||
prm%Qedge = config%getFloats('qedge', requiredSize=size(prm%Nslip)) !ToDo: rename (ask Karo)
|
||
prm%CLambdaSlip = config%getFloats('clambdaslip',requiredSize=size(prm%Nslip))
|
||
prm%p = config%getFloats('p_slip', requiredSize=size(prm%Nslip))
|
||
prm%q = config%getFloats('q_slip', requiredSize=size(prm%Nslip))
|
||
prm%B = config%getFloats('b', requiredSize=size(prm%Nslip), &
|
||
defaultVal=[(0.0_pReal, i=1,size(prm%Nslip))])
|
||
prm%tau_peierls = config%getFloats('tau_peierls',requiredSize=size(prm%Nslip), &
|
||
defaultVal=[(0.0_pReal, i=1,size(prm%Nslip))]) ! Deprecated
|
||
|
||
prm%CEdgeDipMinDistance = config%getFloat('cedgedipmindistance')
|
||
prm%D0 = config%getFloat('d0')
|
||
prm%Qsd = config%getFloat('qsd')
|
||
prm%atomicVolume = config%getFloat('catomicvolume') * prm%burgers_slip**3.0_pReal
|
||
|
||
! expand: family => system
|
||
prm%rho0 = math_expand(prm%rho0, prm%Nslip)
|
||
prm%rhoDip0 = math_expand(prm%rhoDip0, prm%Nslip)
|
||
prm%v0 = math_expand(prm%v0, prm%Nslip)
|
||
prm%burgers_slip = math_expand(prm%burgers_slip,prm%Nslip)
|
||
prm%Qedge = math_expand(prm%Qedge, prm%Nslip)
|
||
prm%CLambdaSlip = math_expand(prm%CLambdaSlip, prm%Nslip)
|
||
prm%p = math_expand(prm%p, prm%Nslip)
|
||
prm%q = math_expand(prm%q, prm%Nslip)
|
||
prm%B = math_expand(prm%B, prm%Nslip)
|
||
prm%tau_peierls = math_expand(prm%tau_peierls, prm%Nslip)
|
||
prm%atomicVolume = math_expand(prm%atomicVolume,prm%Nslip)
|
||
|
||
! sanity checks
|
||
if ( prm%D0 <= 0.0_pReal) extmsg = trim(extmsg)//' D0'
|
||
if ( prm%Qsd <= 0.0_pReal) extmsg = trim(extmsg)//' Qsd'
|
||
if (any(prm%rho0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho0'
|
||
if (any(prm%rhoDip0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoDip0'
|
||
if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v0'
|
||
if (any(prm%burgers_slip <= 0.0_pReal)) extmsg = trim(extmsg)//' burgers_slip'
|
||
if (any(prm%Qedge <= 0.0_pReal)) extmsg = trim(extmsg)//' Qedge'
|
||
if (any(prm%CLambdaSlip <= 0.0_pReal)) extmsg = trim(extmsg)//' CLambdaSlip'
|
||
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
|
||
if (any(prm%tau_peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls'
|
||
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p'
|
||
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q'
|
||
|
||
else slipActive
|
||
allocate(prm%burgers_slip(0))
|
||
endif slipActive
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! twin related parameters
|
||
prm%Ntwin = config%getInts('ntwin', defaultVal=emptyIntArray)
|
||
prm%totalNtwin = sum(prm%Ntwin)
|
||
if (prm%totalNtwin > 0_pInt) then
|
||
prm%Schmid_twin = lattice_SchmidMatrix_twin(prm%Ntwin,config%getString('lattice_structure'),&
|
||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||
prm%interaction_TwinTwin = lattice_interaction_TwinByTwin(prm%Ntwin,&
|
||
config%getFloats('interaction_twintwin'), &
|
||
config%getString('lattice_structure'))
|
||
|
||
prm%burgers_twin = config%getFloats('twinburgers', requiredSize=size(prm%Ntwin))
|
||
prm%twinsize = config%getFloats('twinsize', requiredSize=size(prm%Ntwin))
|
||
prm%r = config%getFloats('r_twin', requiredSize=size(prm%Ntwin))
|
||
|
||
prm%xc_twin = config%getFloat('xc_twin')
|
||
prm%L0_twin = config%getFloat('l0_twin')
|
||
prm%Cthresholdtwin = config%getFloat('cthresholdtwin', defaultVal=0.0_pReal)
|
||
prm%Cmfptwin = config%getFloat('cmfptwin', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||
|
||
prm%shear_twin = lattice_characteristicShear_Twin(prm%Ntwin,config%getString('lattice_structure'),&
|
||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||
|
||
prm%C66_twin = lattice_C66_twin(prm%Ntwin,prm%C66,config%getString('lattice_structure'),&
|
||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||
|
||
if (.not. prm%fccTwinTransNucleation) then
|
||
prm%Ndot0_twin = config%getFloats('ndot0_twin')
|
||
prm%Ndot0_twin = math_expand(prm%Ndot0_twin,prm%Ntwin)
|
||
endif
|
||
|
||
! expand: family => system
|
||
prm%burgers_twin = math_expand(prm%burgers_twin,prm%Ntwin)
|
||
prm%twinsize = math_expand(prm%twinsize,prm%Ntwin)
|
||
prm%r = math_expand(prm%r,prm%Ntwin)
|
||
|
||
else
|
||
allocate(prm%twinsize(0))
|
||
allocate(prm%burgers_twin(0))
|
||
allocate(prm%r(0))
|
||
endif
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! transformation related parameters
|
||
prm%Ntrans = config%getInts('ntrans', defaultVal=emptyIntArray)
|
||
prm%totalNtrans = sum(prm%Ntrans)
|
||
if (prm%totalNtrans > 0_pInt) then
|
||
prm%burgers_trans = config%getFloats('transburgers')
|
||
prm%burgers_trans = math_expand(prm%burgers_trans,prm%Ntrans)
|
||
|
||
prm%Cthresholdtrans = config%getFloat('cthresholdtrans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||
prm%transStackHeight = config%getFloat('transstackheight', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||
prm%Cmfptrans = config%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||
prm%deltaG = config%getFloat('deltag')
|
||
prm%xc_trans = config%getFloat('xc_trans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||
prm%L0_trans = config%getFloat('l0_trans')
|
||
|
||
prm%interaction_TransTrans = lattice_interaction_TransByTrans(prm%Ntrans,&
|
||
config%getFloats('interaction_transtrans'), &
|
||
config%getString('lattice_structure'))
|
||
|
||
prm%C66_trans = lattice_C66_trans(prm%Ntrans,prm%C66, &
|
||
config%getString('trans_lattice_structure'), &
|
||
0.0_pReal, &
|
||
config%getFloat('a_bcc', defaultVal=0.0_pReal), &
|
||
config%getFloat('a_fcc', defaultVal=0.0_pReal))
|
||
|
||
prm%Schmid_trans = lattice_SchmidMatrix_trans(prm%Ntrans, &
|
||
config%getString('trans_lattice_structure'), &
|
||
0.0_pReal, &
|
||
config%getFloat('a_bcc', defaultVal=0.0_pReal), &
|
||
config%getFloat('a_fcc', defaultVal=0.0_pReal))
|
||
|
||
if (lattice_structure(p) /= LATTICE_fcc_ID) then
|
||
prm%Ndot0_trans = config%getFloats('ndot0_trans')
|
||
prm%Ndot0_trans = math_expand(prm%Ndot0_trans,prm%Ntrans)
|
||
endif
|
||
prm%lamellarsize = config%getFloats('lamellarsize')
|
||
prm%lamellarsize = math_expand(prm%lamellarsize,prm%Ntrans)
|
||
prm%s = config%getFloats('s_trans',defaultVal=[0.0_pReal])
|
||
prm%s = math_expand(prm%s,prm%Ntrans)
|
||
else
|
||
allocate(prm%lamellarsize(0))
|
||
allocate(prm%burgers_trans(0))
|
||
endif
|
||
|
||
if (sum(prm%Ntwin) > 0_pInt .or. prm%totalNtrans > 0_pInt) then
|
||
prm%SFE_0K = config%getFloat('sfe_0k')
|
||
prm%dSFE_dT = config%getFloat('dsfe_dt')
|
||
prm%VcrossSlip = config%getFloat('vcrossslip')
|
||
endif
|
||
|
||
if (prm%totalNslip > 0_pInt .and. prm%totalNtwin > 0_pInt) then
|
||
prm%interaction_SlipTwin = lattice_interaction_SlipByTwin(prm%Nslip,prm%Ntwin,&
|
||
config%getFloats('interaction_sliptwin'), &
|
||
config%getString('lattice_structure'))
|
||
prm%interaction_TwinSlip = lattice_interaction_TwinBySlip(prm%Ntwin,prm%Nslip,&
|
||
config%getFloats('interaction_twinslip'), &
|
||
config%getString('lattice_structure'))
|
||
if (prm%fccTwinTransNucleation .and. prm%totalNtwin > 12_pInt) write(6,*) 'mist' ! ToDo: implement better test. The model will fail also if ntwin is [6,6]
|
||
endif
|
||
|
||
if (prm%totalNslip > 0_pInt .and. prm%totalNtrans > 0_pInt) then
|
||
prm%interaction_SlipTrans = lattice_interaction_SlipByTrans(prm%Nslip,prm%Ntrans,&
|
||
config%getFloats('interaction_sliptrans'), &
|
||
config%getString('lattice_structure'))
|
||
if (prm%fccTwinTransNucleation .and. prm%totalNtrans > 12_pInt) write(6,*) 'mist' ! ToDo: implement better test. The model will fail also if ntrans is [6,6]
|
||
endif
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! shearband related parameters
|
||
prm%sbVelocity = config%getFloat('shearbandvelocity',defaultVal=0.0_pReal)
|
||
if (prm%sbVelocity > 0.0_pReal) then
|
||
prm%sbResistance = config%getFloat('shearbandresistance')
|
||
prm%sbQedge = config%getFloat('qedgepersbsystem')
|
||
prm%pShearBand = config%getFloat('p_shearband')
|
||
prm%qShearBand = config%getFloat('q_shearband')
|
||
|
||
! sanity checks
|
||
if (prm%sbResistance < 0.0_pReal) extmsg = trim(extmsg)//' shearbandresistance'
|
||
if (prm%sbQedge < 0.0_pReal) extmsg = trim(extmsg)//' qedgepersbsystem'
|
||
if (prm%pShearBand <= 0.0_pReal) extmsg = trim(extmsg)//' p_shearband'
|
||
if (prm%qShearBand <= 0.0_pReal) extmsg = trim(extmsg)//' q_shearband'
|
||
endif
|
||
|
||
|
||
|
||
prm%GrainSize = config%getFloat('grainsize')
|
||
prm%SolidSolutionStrength = config%getFloat('solidsolutionstrength') ! Deprecated
|
||
|
||
if (config%keyExists('dipoleformationfactor')) call IO_error(1,ext_msg='use /nodipoleformation/')
|
||
prm%dipoleformation = .not. config%keyExists('/nodipoleformation/')
|
||
|
||
|
||
!if (Ndot0PerTwinFamily(f,p) < 0.0_pReal) &
|
||
! call IO_error(211_pInt,el=p,ext_msg='ndot0_twin ('//PLASTICITY_DISLOTWIN_label//')')
|
||
|
||
if (any(prm%atomicVolume <= 0.0_pReal)) &
|
||
call IO_error(211_pInt,el=p,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (prm%totalNtwin > 0_pInt) then
|
||
if (prm%aTolRho <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=p,ext_msg='aTolRho ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (prm%aTolTwinFrac <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=p,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
if (prm%totalNtrans > 0_pInt) then
|
||
if (prm%aTolTransFrac <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=p,ext_msg='aTolTransFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
|
||
outputs = config%getStrings('(output)', defaultVal=emptyStringArray)
|
||
allocate(prm%outputID(0))
|
||
do i= 1_pInt, size(outputs)
|
||
outputID = undefined_ID
|
||
select case(outputs(i))
|
||
case ('edge_density')
|
||
outputID = merge(edge_density_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('dipole_density')
|
||
outputID = merge(dipole_density_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('shear_rate_slip','shearrate_slip')
|
||
outputID = merge(shear_rate_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('accumulated_shear_slip')
|
||
outputID = merge(accumulated_shear_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('mfp_slip')
|
||
outputID = merge(mfp_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('resolved_stress_slip')
|
||
outputID = merge(resolved_stress_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
case ('threshold_stress_slip')
|
||
outputID= merge(threshold_stress_slip_ID,undefined_ID,prm%totalNslip > 0_pInt)
|
||
outputSize = prm%totalNslip
|
||
|
||
case ('twin_fraction')
|
||
outputID = merge(twin_fraction_ID,undefined_ID,prm%totalNtwin >0_pInt)
|
||
outputSize = prm%totalNtwin
|
||
case ('mfp_twin')
|
||
outputID = merge(mfp_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
|
||
outputSize = prm%totalNtwin
|
||
case ('resolved_stress_twin')
|
||
outputID = merge(resolved_stress_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
|
||
outputSize = prm%totalNtwin
|
||
case ('threshold_stress_twin')
|
||
outputID = merge(threshold_stress_twin_ID,undefined_ID,prm%totalNtwin >0_pInt)
|
||
outputSize = prm%totalNtwin
|
||
|
||
case ('strain_trans_fraction')
|
||
outputID = strain_trans_fraction_ID
|
||
outputSize = prm%totalNtrans
|
||
|
||
end select
|
||
|
||
if (outputID /= undefined_ID) then
|
||
plastic_dislotwin_output(i,phase_plasticityInstance(p)) = outputs(i)
|
||
plastic_dislotwin_sizePostResult(i,phase_plasticityInstance(p)) = outputSize
|
||
prm%outputID = [prm%outputID, outputID]
|
||
endif
|
||
|
||
enddo
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! allocate state arrays
|
||
NipcMyPhase = count(material_phase == p)
|
||
sizeDotState = int(size(['rho ','rhoDip ','accshearslip']),pInt) * prm%totalNslip &
|
||
+ int(size(['twinFraction']),pInt) * prm%totalNtwin &
|
||
+ int(size(['strainTransFraction']),pInt) * prm%totalNtrans
|
||
sizeState = sizeDotState
|
||
|
||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0_pInt, &
|
||
prm%totalNslip,prm%totalNtwin,prm%totalNtrans)
|
||
plasticState(p)%sizePostResults = sum(plastic_dislotwin_sizePostResult(:,phase_plasticityInstance(p)))
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! locally defined state aliases and initialization of state0 and aTolState
|
||
startIndex = 1_pInt
|
||
endIndex = prm%totalNslip
|
||
stt%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:)
|
||
stt%rhoEdge= spread(prm%rho0,2,NipcMyPhase)
|
||
dot%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||
|
||
startIndex = endIndex + 1_pInt
|
||
endIndex = endIndex + prm%totalNslip
|
||
stt%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:)
|
||
stt%rhoEdgeDip= spread(prm%rhoDip0,2,NipcMyPhase)
|
||
dot%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolRho
|
||
|
||
startIndex = endIndex + 1_pInt
|
||
endIndex = endIndex + prm%totalNslip
|
||
stt%accshear_slip=>plasticState(p)%state(startIndex:endIndex,:)
|
||
dot%accshear_slip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%aTolState(startIndex:endIndex) = 1.0e6_pReal !ToDo: better make optional parameter
|
||
! global alias
|
||
plasticState(p)%slipRate => plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%accumulatedSlip => plasticState(p)%state(startIndex:endIndex,:)
|
||
|
||
startIndex = endIndex + 1_pInt
|
||
endIndex = endIndex + prm%totalNtwin
|
||
stt%twinFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||
dot%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTwinFrac
|
||
|
||
startIndex = endIndex + 1_pInt
|
||
endIndex = endIndex + prm%totalNtrans
|
||
stt%strainTransFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||
dot%strainTransFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTolTransFrac
|
||
|
||
allocate(dst%invLambdaSlip (prm%totalNslip, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%invLambdaSlipTwin (prm%totalNslip, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%invLambdaSlipTrans (prm%totalNslip, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%mfp_slip (prm%totalNslip, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%threshold_stress_slip (prm%totalNslip, NipcMyPhase),source=0.0_pReal)
|
||
|
||
allocate(dst%invLambdaTwin (prm%totalNtwin, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%mfp_twin (prm%totalNtwin, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%threshold_stress_twin (prm%totalNtwin, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%tau_r_twin (prm%totalNtwin, NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%twinVolume (prm%totalNtwin, NipcMyPhase),source=0.0_pReal)
|
||
|
||
allocate(dst%invLambdaTrans (prm%totalNtrans,NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%mfp_trans (prm%totalNtrans,NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%threshold_stress_trans(prm%totalNtrans,NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%tau_r_trans (prm%totalNtrans,NipcMyPhase),source=0.0_pReal)
|
||
allocate(dst%martensiteVolume (prm%totalNtrans,NipcMyPhase),source=0.0_pReal)
|
||
|
||
|
||
plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally
|
||
|
||
end associate
|
||
|
||
enddo
|
||
|
||
end subroutine plastic_dislotwin_init
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief returns the homogenized elasticity matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC)
|
||
use material, only: &
|
||
material_phase, &
|
||
phase_plasticityInstance, &
|
||
phasememberAt
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6) :: &
|
||
homogenizedC
|
||
integer(pInt), intent(in) :: &
|
||
ipc, & !< component-ID of integration point
|
||
ip, & !< integration point
|
||
el !< element
|
||
|
||
integer(pInt) :: i, &
|
||
of
|
||
real(pReal) :: f_unrotated
|
||
|
||
of = phasememberAt(ipc,ip,el)
|
||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||
|
||
f_unrotated = 1.0_pReal &
|
||
- sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) &
|
||
- sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||
|
||
homogenizedC = f_unrotated * prm%C66
|
||
do i=1_pInt,prm%totalNtwin
|
||
homogenizedC = homogenizedC &
|
||
+ stt%twinFraction(i,of)*prm%C66_twin(1:6,1:6,i)
|
||
enddo
|
||
do i=1_pInt,prm%totalNtrans
|
||
homogenizedC = homogenizedC &
|
||
+ stt%strainTransFraction(i,of)*prm%C66_trans(1:6,1:6,i)
|
||
enddo
|
||
|
||
end associate
|
||
|
||
end function plastic_dislotwin_homogenizedC
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates plastic velocity gradient and its tangent
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,of)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dNeq0
|
||
use math, only: &
|
||
math_eigenValuesVectorsSym, &
|
||
math_outer, &
|
||
math_symmetric33, &
|
||
math_mul33xx33, &
|
||
math_mul33x3
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||
real(pReal), dimension(3,3,3,3), intent(out) :: dLp_dMp
|
||
real(pReal), dimension(3,3), intent(in) :: Mp
|
||
integer(pInt), intent(in) :: instance,of
|
||
real(pReal), intent(in) :: Temperature
|
||
|
||
integer(pInt) :: i,k,l,m,n
|
||
real(pReal) :: f_unrotated,StressRatio_p,&
|
||
BoltzmannRatio, &
|
||
dgdot_dtau, &
|
||
tau
|
||
real(pReal), dimension(param(instance)%totalNslip) :: &
|
||
gdot_slip,dgdot_dtau_slip
|
||
real(pReal), dimension(param(instance)%totalNtwin) :: &
|
||
gdot_twin,dgdot_dtau_twin
|
||
real(pReal), dimension(param(instance)%totalNtrans) :: &
|
||
gdot_trans,dgdot_dtau_trans
|
||
real(pReal):: gdot_sb
|
||
real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand
|
||
real(pReal), dimension(3) :: eigValues
|
||
logical :: error
|
||
real(pReal), dimension(3,6), parameter :: &
|
||
sb_sComposition = &
|
||
reshape(real([&
|
||
1, 0, 1, &
|
||
1, 0,-1, &
|
||
1, 1, 0, &
|
||
1,-1, 0, &
|
||
0, 1, 1, &
|
||
0, 1,-1 &
|
||
],pReal),[ 3,6]), &
|
||
sb_mComposition = &
|
||
reshape(real([&
|
||
1, 0,-1, &
|
||
1, 0,+1, &
|
||
1,-1, 0, &
|
||
1, 1, 0, &
|
||
0, 1,-1, &
|
||
0, 1, 1 &
|
||
],pReal),[ 3,6])
|
||
|
||
associate(prm => param(instance), stt => state(instance), dst => microstructure(instance))
|
||
|
||
f_unrotated = 1.0_pReal &
|
||
- sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) &
|
||
- sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||
|
||
Lp = 0.0_pReal
|
||
dLp_dMp = 0.0_pReal
|
||
|
||
call kinetics_slip(Mp,temperature,instance,of,gdot_slip,dgdot_dtau_slip)
|
||
slipContribution: do i = 1_pInt, prm%totalNslip
|
||
Lp = Lp + gdot_slip(i)*prm%Schmid_slip(1:3,1:3,i)
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||
+ dgdot_dtau_slip(i) * prm%Schmid_slip(k,l,i) * prm%Schmid_slip(m,n,i)
|
||
enddo slipContribution
|
||
|
||
!ToDo: Why do this before shear banding?
|
||
Lp = Lp * f_unrotated
|
||
dLp_dMp = dLp_dMp * f_unrotated
|
||
|
||
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
|
||
|
||
BoltzmannRatio = prm%sbQedge/(kB*Temperature)
|
||
call math_eigenValuesVectorsSym(Mp,eigValues,eigVectors,error)
|
||
|
||
do i = 1_pInt,6_pInt
|
||
Schmid_shearBand = 0.5_pReal * math_outer(math_mul33x3(eigVectors,sb_sComposition(1:3,i)),&
|
||
math_mul33x3(eigVectors,sb_mComposition(1:3,i)))
|
||
tau = math_mul33xx33(Mp,Schmid_shearBand)
|
||
|
||
significantShearBandStress: if (abs(tau) > tol_math_check) then
|
||
StressRatio_p = (abs(tau)/prm%sbResistance)**prm%pShearBand
|
||
gdot_sb = sign(prm%sbVelocity*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand), tau)
|
||
dgdot_dtau = abs(gdot_sb)*BoltzmannRatio* prm%pShearBand*prm%qShearBand/ prm%sbResistance &
|
||
* (abs(tau)/prm%sbResistance)**(prm%pShearBand-1.0_pReal) &
|
||
* (1.0_pReal-StressRatio_p)**(prm%qShearBand-1.0_pReal)
|
||
|
||
Lp = Lp + gdot_sb * Schmid_shearBand
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||
+ dgdot_dtau * Schmid_shearBand(k,l) * Schmid_shearBand(m,n)
|
||
endif significantShearBandStress
|
||
enddo
|
||
|
||
endif shearBandingContribution
|
||
|
||
call kinetics_twin(Mp,temperature,gdot_slip,instance,of,gdot_twin,dgdot_dtau_twin)
|
||
twinContibution: do i = 1_pInt, prm%totalNtwin
|
||
Lp = Lp + gdot_twin(i)*prm%Schmid_twin(1:3,1:3,i) * f_unrotated
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||
+ dgdot_dtau_twin(i)* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i) * f_unrotated
|
||
enddo twinContibution
|
||
|
||
call kinetics_twin(Mp,temperature,gdot_slip,instance,of,gdot_trans,dgdot_dtau_trans)
|
||
transContibution: do i = 1_pInt, prm%totalNtrans
|
||
Lp = Lp + gdot_trans(i)*prm%Schmid_trans(1:3,1:3,i) * f_unrotated
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||
+ dgdot_dtau_trans(i)* prm%Schmid_trans(k,l,i)*prm%Schmid_trans(m,n,i) * f_unrotated
|
||
enddo transContibution
|
||
|
||
|
||
end associate
|
||
|
||
end subroutine plastic_dislotwin_LpAndItsTangent
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates the rate of change of microstructure
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dEq0
|
||
use math, only: &
|
||
math_clip, &
|
||
math_mul33xx33, &
|
||
PI
|
||
use material, only: &
|
||
plasticState
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in):: &
|
||
Mp !< Mandel stress
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature at integration point
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
|
||
integer(pInt) :: i
|
||
real(pReal) :: f_unrotated,&
|
||
VacancyDiffusion,&
|
||
EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
||
DotRhoDipFormation,DotRhoEdgeEdgeAnnihilation, &
|
||
tau
|
||
real(pReal), dimension(plasticState(instance)%Nslip) :: &
|
||
EdgeDipMinDistance, &
|
||
DotRhoMultiplication, &
|
||
gdot_slip
|
||
real(pReal), dimension(plasticState(instance)%Ntwin) :: &
|
||
gdot_twin
|
||
real(pReal), dimension(plasticState(instance)%Ntrans) :: &
|
||
gdot_trans
|
||
|
||
associate(prm => param(instance), stt => state(instance), &
|
||
dot => dotstate(instance), dst => microstructure(instance))
|
||
|
||
f_unrotated = 1.0_pReal &
|
||
- sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) &
|
||
- sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||
|
||
call kinetics_slip(Mp,temperature,instance,of,gdot_slip)
|
||
dot%accshear_slip(:,of) = abs(gdot_slip)
|
||
|
||
DotRhoMultiplication = abs(gdot_slip)/(prm%burgers_slip*dst%mfp_slip(:,of))
|
||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip
|
||
|
||
slipState: do i = 1_pInt, prm%totalNslip
|
||
tau = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,i))
|
||
|
||
significantSlipStress: if (dEq0(tau)) then
|
||
DotRhoDipFormation = 0.0_pReal
|
||
DotRhoEdgeDipClimb = 0.0_pReal
|
||
else significantSlipStress
|
||
EdgeDipDistance = 3.0_pReal*prm%mu*prm%burgers_slip(i)/(16.0_pReal*PI*abs(tau))
|
||
EdgeDipDistance = math_clip(EdgeDipDistance, right = dst%mfp_slip(i,of))
|
||
EdgeDipDistance = math_clip(EdgeDipDistance, left = EdgeDipMinDistance(i))
|
||
|
||
if (prm%dipoleFormation) then
|
||
DotRhoDipFormation = 2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance(i))/prm%burgers_slip(i) &
|
||
* stt%rhoEdge(i,of)*abs(gdot_slip(i))
|
||
else
|
||
DotRhoDipFormation = 0.0_pReal
|
||
endif
|
||
|
||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance(i))) then
|
||
DotRhoEdgeDipClimb = 0.0_pReal
|
||
else
|
||
ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume(i) &
|
||
/ (2.0_pReal*PI*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance(i)))
|
||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(i,of) &
|
||
/ (EdgeDipDistance-EdgeDipMinDistance(i))
|
||
endif
|
||
endif significantSlipStress
|
||
|
||
!* Spontaneous annihilation of 2 single edge dislocations
|
||
DotRhoEdgeEdgeAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%burgers_slip(i) &
|
||
* stt%rhoEdge(i,of)*abs(gdot_slip(i))
|
||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||
DotRhoEdgeDipAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%burgers_slip(i) &
|
||
* stt%rhoEdgeDip(i,of)*abs(gdot_slip(i))
|
||
|
||
dot%rhoEdge(i,of) = DotRhoMultiplication(i)-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||
dot%rhoEdgeDip(i,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||
enddo slipState
|
||
|
||
call kinetics_twin(Mp,temperature,gdot_slip,instance,of,gdot_twin)
|
||
dot%twinFraction(:,of) = f_unrotated*gdot_twin/prm%shear_twin
|
||
|
||
call kinetics_trans(Mp,temperature,gdot_slip,instance,of,gdot_trans)
|
||
dot%twinFraction(:,of) = f_unrotated*gdot_trans
|
||
|
||
end associate
|
||
|
||
end subroutine plastic_dislotwin_dotState
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates derived quantities from state
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
||
use math, only: &
|
||
PI
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
real(pReal), intent(in) :: &
|
||
temperature
|
||
|
||
integer(pInt) :: &
|
||
i
|
||
real(pReal) :: &
|
||
sumf_twin,SFE,sumf_trans
|
||
real(pReal), dimension(:), allocatable :: &
|
||
x0, &
|
||
fOverStacksize, &
|
||
ftransOverLamellarSize
|
||
|
||
|
||
associate(prm => param(instance),&
|
||
stt => state(instance),&
|
||
dst => microstructure(instance))
|
||
|
||
sumf_twin = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||
sumf_trans = sum(stt%strainTransFraction(1:prm%totalNtrans,of))
|
||
|
||
SFE = prm%SFE_0K + prm%dSFE_dT * Temperature
|
||
|
||
!* rescaled volume fraction for topology
|
||
fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize !ToDo: this is per system
|
||
ftransOverLamellarSize = sumf_trans/prm%lamellarsize !ToDo: But this not ...
|
||
!Todo: Physically ok, but naming could be adjusted
|
||
|
||
|
||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||
forall (i = 1_pInt:prm%totalNslip) &
|
||
dst%invLambdaSlip(i,of) = &
|
||
sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||
prm%forestProjection(1:prm%totalNslip,i)))/prm%CLambdaSlip(i)
|
||
|
||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||
dst%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||
matmul(transpose(prm%interaction_SlipTwin),fOverStacksize)/(1.0_pReal-sumf_twin) ! ToDo: Transpose need
|
||
|
||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||
|
||
!ToDo: needed? if (prm%totalNtwin > 0_pInt) &
|
||
dst%invLambdaTwin(1_pInt:prm%totalNtwin,of) = matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf_twin)
|
||
|
||
|
||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||
dst%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = & ! ToDo: does not work if Ntrans is not 12
|
||
matmul(transpose(prm%interaction_SlipTrans),ftransOverLamellarSize)/(1.0_pReal-sumf_trans) ! ToDo: Transpose needed
|
||
|
||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||
!ToDo: needed? if (prm%totalNtrans > 0_pInt) &
|
||
dst%invLambdaTrans(1_pInt:prm%totalNtrans,of) = matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumf_trans)
|
||
|
||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||
do i = 1_pInt,prm%totalNslip
|
||
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified
|
||
dst%mfp_slip(i,of) = &
|
||
prm%GrainSize/(1.0_pReal+prm%GrainSize*&
|
||
(dst%invLambdaSlip(i,of) + dst%invLambdaSlipTwin(i,of) + dst%invLambdaSlipTrans(i,of)))
|
||
else
|
||
dst%mfp_slip(i,of) = prm%GrainSize &
|
||
/ (1.0_pReal+prm%GrainSize*dst%invLambdaSlip(i,of)) !!!!!! correct?
|
||
endif
|
||
enddo
|
||
|
||
!* mean free path between 2 obstacles seen by a growing twin/martensite
|
||
dst%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*dst%invLambdaTwin(:,of))
|
||
dst%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*dst%invLambdaTrans(:,of))
|
||
|
||
!* threshold stress for dislocation motion
|
||
forall (i = 1_pInt:prm%totalNslip) dst%threshold_stress_slip(i,of) = &
|
||
prm%mu*prm%burgers_slip(i)*&
|
||
sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||
prm%interaction_SlipSlip(:,i)))
|
||
|
||
!* threshold stress for growing twin/martensite
|
||
if(prm%totalNtwin == prm%totalNslip) &
|
||
dst%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||
(SFE/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*prm%mu/ &
|
||
(prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
|
||
if(prm%totalNtrans == prm%totalNslip) &
|
||
dst%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
|
||
(SFE/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*prm%mu/&
|
||
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
|
||
|
||
|
||
dst%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*dst%mfp_twin(:,of)**2.0_pReal
|
||
dst%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsize*dst%mfp_trans(:,of)**2.0_pReal
|
||
|
||
|
||
x0 = prm%mu*prm%burgers_twin**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu)
|
||
dst%tau_r_twin(:,of) = prm%mu*prm%burgers_twin/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
|
||
|
||
x0 = prm%mu*prm%burgers_trans**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu)
|
||
dst%tau_r_trans(:,of) = prm%mu*prm%burgers_trans/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
|
||
|
||
end associate
|
||
|
||
end subroutine plastic_dislotwin_dependentState
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief return array of constitutive results
|
||
!--------------------------------------------------------------------------------------------------
|
||
function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postResults)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dEq0
|
||
use math, only: &
|
||
PI, &
|
||
math_mul33xx33
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3),intent(in) :: &
|
||
Mp !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature at integration point
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
|
||
real(pReal), dimension(sum(plastic_dislotwin_sizePostResult(:,instance))) :: &
|
||
postResults
|
||
|
||
integer(pInt) :: &
|
||
o,c,j
|
||
|
||
associate(prm => param(instance), stt => state(instance), dst => microstructure(instance))
|
||
|
||
c = 0_pInt
|
||
|
||
do o = 1_pInt,size(prm%outputID)
|
||
select case(prm%outputID(o))
|
||
|
||
case (edge_density_ID)
|
||
postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdge(1_pInt:prm%totalNslip,of)
|
||
c = c + prm%totalNslip
|
||
case (dipole_density_ID)
|
||
postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)
|
||
c = c + prm%totalNslip
|
||
case (shear_rate_slip_ID)
|
||
call kinetics_slip(Mp,temperature,instance,of,postResults(c+1:c+prm%totalNslip))
|
||
c = c + prm%totalNslip
|
||
case (accumulated_shear_slip_ID)
|
||
postResults(c+1_pInt:c+prm%totalNslip) = stt%accshear_slip(1_pInt:prm%totalNslip,of)
|
||
c = c + prm%totalNslip
|
||
case (mfp_slip_ID)
|
||
postResults(c+1_pInt:c+prm%totalNslip) = dst%mfp_slip(1_pInt:prm%totalNslip,of)
|
||
c = c + prm%totalNslip
|
||
case (resolved_stress_slip_ID)
|
||
do j = 1_pInt, prm%totalNslip
|
||
postResults(c+j) = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,j))
|
||
enddo
|
||
c = c + prm%totalNslip
|
||
case (threshold_stress_slip_ID)
|
||
postResults(c+1_pInt:c+prm%totalNslip) = dst%threshold_stress_slip(1_pInt:prm%totalNslip,of)
|
||
c = c + prm%totalNslip
|
||
|
||
case (twin_fraction_ID)
|
||
postResults(c+1_pInt:c+prm%totalNtwin) = stt%twinFraction(1_pInt:prm%totalNtwin,of)
|
||
c = c + prm%totalNtwin
|
||
case (mfp_twin_ID)
|
||
postResults(c+1_pInt:c+prm%totalNtwin) = dst%mfp_twin(1_pInt:prm%totalNtwin,of)
|
||
c = c + prm%totalNtwin
|
||
case (resolved_stress_twin_ID)
|
||
do j = 1_pInt, prm%totalNtwin
|
||
postResults(c+j) = math_mul33xx33(Mp,prm%Schmid_twin(1:3,1:3,j))
|
||
enddo
|
||
c = c + prm%totalNtwin
|
||
case (threshold_stress_twin_ID)
|
||
postResults(c+1_pInt:c+prm%totalNtwin) = dst%threshold_stress_twin(1_pInt:prm%totalNtwin,of)
|
||
c = c + prm%totalNtwin
|
||
|
||
case (strain_trans_fraction_ID)
|
||
postResults(c+1_pInt:c+prm%totalNtrans) = stt%strainTransFraction(1_pInt:prm%totalNtrans,of)
|
||
c = c + prm%totalNtrans
|
||
end select
|
||
enddo
|
||
|
||
end associate
|
||
|
||
end function plastic_dislotwin_postResults
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief writes results to HDF5 output file
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_results(instance,group)
|
||
#if defined(PETSc) || defined(DAMASKHDF5)
|
||
use results
|
||
|
||
implicit none
|
||
integer, intent(in) :: instance
|
||
character(len=*) :: group
|
||
integer :: o
|
||
|
||
associate(prm => param(instance), stt => state(instance))
|
||
outputsLoop: do o = 1_pInt,size(prm%outputID)
|
||
select case(prm%outputID(o))
|
||
end select
|
||
enddo outputsLoop
|
||
end associate
|
||
#else
|
||
integer, intent(in) :: instance
|
||
character(len=*) :: group
|
||
#endif
|
||
|
||
end subroutine plastic_dislotwin_results
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Shear rates on slip systems, their derivatives with respect to resolved stress and the
|
||
! resolved stresss
|
||
!> @details Derivatives and resolved stress are calculated only optionally.
|
||
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
|
||
! have the optional arguments at the end
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
|
||
gdot_slip,dgdot_dtau_slip,tau_slip)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dNeq0
|
||
use math, only: &
|
||
math_mul33xx33
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mp !< Mandel stress
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
|
||
real(pReal), dimension(param(instance)%totalNslip), intent(out) :: &
|
||
gdot_slip
|
||
real(pReal), dimension(param(instance)%totalNslip), optional, intent(out) :: &
|
||
dgdot_dtau_slip, &
|
||
tau_slip
|
||
real(pReal), dimension(param(instance)%totalNslip) :: &
|
||
dgdot_dtau
|
||
|
||
real(pReal), dimension(param(instance)%totalNslip) :: &
|
||
tau, &
|
||
stressRatio, &
|
||
StressRatio_p, &
|
||
BoltzmannRatio, &
|
||
v_wait_inverse, & !< inverse of the effective velocity of a dislocation waiting at obstacles (unsigned)
|
||
v_run_inverse, & !< inverse of the velocity of a free moving dislocation (unsigned)
|
||
dV_wait_inverse_dTau, &
|
||
dV_run_inverse_dTau, &
|
||
dV_dTau, &
|
||
tau_eff !< effective resolved stress
|
||
integer(pInt) :: i
|
||
|
||
associate(prm => param(instance), stt => state(instance), dst => microstructure(instance))
|
||
|
||
do i = 1_pInt, prm%totalNslip
|
||
tau(i) = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,i))
|
||
enddo
|
||
|
||
tau_eff = abs(tau)-dst%threshold_stress_slip(:,of)
|
||
|
||
significantStress: where(tau_eff > tol_math_check)
|
||
stressRatio = tau_eff/(prm%SolidSolutionStrength+prm%tau_peierls)
|
||
StressRatio_p = stressRatio** prm%p
|
||
BoltzmannRatio = prm%Qedge/(kB*Temperature)
|
||
v_wait_inverse = prm%v0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q)
|
||
v_run_inverse = prm%B/(tau_eff*prm%burgers_slip)
|
||
|
||
gdot_slip = sign(stt%rhoEdge(:,of)*prm%burgers_slip/(v_wait_inverse+v_run_inverse),tau)
|
||
|
||
dV_wait_inverse_dTau = v_wait_inverse * prm%p * prm%q * BoltzmannRatio &
|
||
* (stressRatio**(prm%p-1.0_pReal)) &
|
||
* (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) &
|
||
/ (prm%SolidSolutionStrength+prm%tau_peierls)
|
||
dV_run_inverse_dTau = v_run_inverse/tau_eff
|
||
dV_dTau = (dV_wait_inverse_dTau+dV_run_inverse_dTau) &
|
||
/ (v_wait_inverse+v_run_inverse)**2.0_pReal
|
||
dgdot_dtau = dV_dTau*stt%rhoEdge(:,of)*prm%burgers_slip
|
||
else where significantStress
|
||
gdot_slip = 0.0_pReal
|
||
dgdot_dtau = 0.0_pReal
|
||
end where significantStress
|
||
|
||
end associate
|
||
|
||
if(present(dgdot_dtau_slip)) dgdot_dtau_slip = dgdot_dtau
|
||
if(present(tau_slip)) tau_slip = tau
|
||
|
||
end subroutine kinetics_slip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates shear rates on twin systems
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure subroutine kinetics_twin(Mp,temperature,gdot_slip,instance,of,&
|
||
gdot_twin,dgdot_dtau_twin)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dNeq0
|
||
use math, only: &
|
||
math_mul33xx33
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mp !< Mandel stress
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
real(pReal), dimension(param(instance)%totalNslip), intent(in) :: &
|
||
gdot_slip
|
||
|
||
real(pReal), dimension(param(instance)%totalNtwin), intent(out) :: &
|
||
gdot_twin
|
||
real(pReal), dimension(param(instance)%totalNtwin), optional, intent(out) :: &
|
||
dgdot_dtau_twin
|
||
|
||
real, dimension(param(instance)%totalNtwin) :: &
|
||
tau, &
|
||
Ndot0, &
|
||
stressRatio_r, &
|
||
dgdot_dtau
|
||
|
||
integer(pInt) :: i,s1,s2
|
||
|
||
associate(prm => param(instance), stt => state(instance), dst => microstructure(instance))
|
||
|
||
do i = 1_pInt, prm%totalNtwin
|
||
tau(i) = math_mul33xx33(Mp,prm%Schmid_twin(1:3,1:3,i))
|
||
isFCC: if (prm%fccTwinTransNucleation) then
|
||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||
if (tau(i) < dst%tau_r_twin(i,of)) then
|
||
Ndot0=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||
(prm%L0_twin*prm%burgers_slip(i))*&
|
||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||
(dst%tau_r_twin(i,of)-tau)))
|
||
else
|
||
Ndot0=0.0_pReal
|
||
end if
|
||
else isFCC
|
||
Ndot0=prm%Ndot0_twin(i)
|
||
endif isFCC
|
||
enddo
|
||
|
||
significantStress: where(tau > tol_math_check)
|
||
StressRatio_r = (dst%threshold_stress_twin(:,of)/tau)**prm%r
|
||
gdot_twin = prm%shear_twin * dst%twinVolume(:,of) * Ndot0*exp(-StressRatio_r)
|
||
dgdot_dtau = (gdot_twin*prm%r/tau)*StressRatio_r
|
||
else where significantStress
|
||
gdot_twin = 0.0_pReal
|
||
dgdot_dtau = 0.0_pReal
|
||
end where significantStress
|
||
|
||
end associate
|
||
|
||
if(present(dgdot_dtau_twin)) dgdot_dtau_twin = dgdot_dtau
|
||
|
||
end subroutine kinetics_twin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates shear rates on twin systems
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure subroutine kinetics_trans(Mp,temperature,gdot_slip,instance,of,&
|
||
gdot_trans,dgdot_dtau_trans)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dNeq0
|
||
use math, only: &
|
||
math_mul33xx33
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: &
|
||
Mp !< Mandel stress
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature
|
||
integer(pInt), intent(in) :: &
|
||
instance, &
|
||
of
|
||
real(pReal), dimension(param(instance)%totalNslip), intent(in) :: &
|
||
gdot_slip
|
||
|
||
real(pReal), dimension(param(instance)%totalNtrans), intent(out) :: &
|
||
gdot_trans
|
||
real(pReal), dimension(param(instance)%totalNtrans), optional, intent(out) :: &
|
||
dgdot_dtau_trans
|
||
|
||
real, dimension(param(instance)%totalNtrans) :: &
|
||
tau, &
|
||
Ndot0, &
|
||
stressRatio_s, &
|
||
dgdot_dtau
|
||
|
||
integer(pInt) :: i,s1,s2
|
||
|
||
associate(prm => param(instance), stt => state(instance), dst => microstructure(instance))
|
||
|
||
do i = 1_pInt, prm%totalNtrans
|
||
tau(i) = math_mul33xx33(Mp,prm%Schmid_trans(1:3,1:3,i))
|
||
isFCC: if (prm%fccTwinTransNucleation) then
|
||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||
if (tau(i) < dst%tau_r_trans(i,of)) then
|
||
Ndot0=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||
(prm%L0_trans*prm%burgers_slip(i))*&
|
||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||
(dst%tau_r_trans(i,of)-tau)))
|
||
else
|
||
Ndot0=0.0_pReal
|
||
end if
|
||
else isFCC
|
||
Ndot0=prm%Ndot0_trans(i)
|
||
endif isFCC
|
||
enddo
|
||
|
||
significantStress: where(tau > tol_math_check)
|
||
StressRatio_s = (dst%threshold_stress_trans(:,of)/tau)**prm%s
|
||
gdot_trans = dst%martensiteVolume(:,of) * Ndot0*exp(-StressRatio_s)
|
||
dgdot_dtau = (gdot_trans*prm%r/tau)*StressRatio_s
|
||
else where significantStress
|
||
gdot_trans = 0.0_pReal
|
||
dgdot_dtau = 0.0_pReal
|
||
end where significantStress
|
||
|
||
end associate
|
||
|
||
if(present(dgdot_dtau_trans)) dgdot_dtau_trans = dgdot_dtau
|
||
|
||
end subroutine kinetics_trans
|
||
|
||
end module plastic_dislotwin
|