621 lines
32 KiB
Fortran
621 lines
32 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief elasticity, plasticity, internal microstructure state
|
|
!--------------------------------------------------------------------------------------------------
|
|
module constitutive
|
|
use math
|
|
use debug
|
|
use numerics
|
|
use IO
|
|
use config
|
|
use material
|
|
use results
|
|
use HDF5_utilities
|
|
use lattice
|
|
use discretization
|
|
use plastic_none
|
|
use plastic_isotropic
|
|
use plastic_phenopowerlaw
|
|
use plastic_kinehardening
|
|
use plastic_dislotwin
|
|
use plastic_disloucla
|
|
use plastic_nonlocal
|
|
use geometry_plastic_nonlocal
|
|
use source_thermal_dissipation
|
|
use source_thermal_externalheat
|
|
use source_damage_isoBrittle
|
|
use source_damage_isoDuctile
|
|
use source_damage_anisoBrittle
|
|
use source_damage_anisoDuctile
|
|
use kinematics_cleavage_opening
|
|
use kinematics_slipplane_opening
|
|
use kinematics_thermal_expansion
|
|
|
|
implicit none
|
|
private
|
|
|
|
integer, public, protected :: &
|
|
constitutive_plasticity_maxSizeDotState, &
|
|
constitutive_source_maxSizeDotState
|
|
|
|
public :: &
|
|
constitutive_init, &
|
|
constitutive_homogenizedC, &
|
|
constitutive_microstructure, &
|
|
constitutive_LpAndItsTangents, &
|
|
constitutive_LiAndItsTangents, &
|
|
constitutive_initialFi, &
|
|
constitutive_SandItsTangents, &
|
|
constitutive_collectDotState, &
|
|
constitutive_collectDeltaState, &
|
|
constitutive_results
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief allocates arrays pointing to array of the various constitutive modules
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_init
|
|
|
|
integer :: &
|
|
ph, & !< counter in phase loop
|
|
s !< counter in source loop
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialized plasticity
|
|
if (any(phase_plasticity == PLASTICITY_NONE_ID)) call plastic_none_init
|
|
if (any(phase_plasticity == PLASTICITY_ISOTROPIC_ID)) call plastic_isotropic_init
|
|
if (any(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID)) call plastic_phenopowerlaw_init
|
|
if (any(phase_plasticity == PLASTICITY_KINEHARDENING_ID)) call plastic_kinehardening_init
|
|
if (any(phase_plasticity == PLASTICITY_DISLOTWIN_ID)) call plastic_dislotwin_init
|
|
if (any(phase_plasticity == PLASTICITY_DISLOUCLA_ID)) call plastic_disloucla_init
|
|
if (any(phase_plasticity == PLASTICITY_NONLOCAL_ID)) then
|
|
call plastic_nonlocal_init
|
|
else
|
|
call geometry_plastic_nonlocal_disable
|
|
endif
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize source mechanisms
|
|
if (any(phase_source == SOURCE_thermal_dissipation_ID)) call source_thermal_dissipation_init
|
|
if (any(phase_source == SOURCE_thermal_externalheat_ID)) call source_thermal_externalheat_init
|
|
if (any(phase_source == SOURCE_damage_isoBrittle_ID)) call source_damage_isoBrittle_init
|
|
if (any(phase_source == SOURCE_damage_isoDuctile_ID)) call source_damage_isoDuctile_init
|
|
if (any(phase_source == SOURCE_damage_anisoBrittle_ID)) call source_damage_anisoBrittle_init
|
|
if (any(phase_source == SOURCE_damage_anisoDuctile_ID)) call source_damage_anisoDuctile_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize kinematic mechanisms
|
|
if (any(phase_kinematics == KINEMATICS_cleavage_opening_ID)) call kinematics_cleavage_opening_init
|
|
if (any(phase_kinematics == KINEMATICS_slipplane_opening_ID)) call kinematics_slipplane_opening_init
|
|
if (any(phase_kinematics == KINEMATICS_thermal_expansion_ID)) call kinematics_thermal_expansion_init
|
|
|
|
write(6,'(/,a)') ' <<<+- constitutive init -+>>>'; flush(6)
|
|
|
|
constitutive_plasticity_maxSizeDotState = 0
|
|
constitutive_source_maxSizeDotState = 0
|
|
|
|
PhaseLoop2:do ph = 1,material_Nphase
|
|
!--------------------------------------------------------------------------------------------------
|
|
! partition and inititalize state
|
|
plasticState(ph)%partionedState0 = plasticState(ph)%state0
|
|
plasticState(ph)%state = plasticState(ph)%partionedState0
|
|
forall(s = 1:phase_Nsources(ph))
|
|
sourceState(ph)%p(s)%partionedState0 = sourceState(ph)%p(s)%state0
|
|
sourceState(ph)%p(s)%state = sourceState(ph)%p(s)%partionedState0
|
|
end forall
|
|
!--------------------------------------------------------------------------------------------------
|
|
! determine max size of state and output
|
|
constitutive_plasticity_maxSizeDotState = max(constitutive_plasticity_maxSizeDotState, &
|
|
plasticState(ph)%sizeDotState)
|
|
constitutive_source_maxSizeDotState = max(constitutive_source_maxSizeDotState, &
|
|
maxval(sourceState(ph)%p(:)%sizeDotState))
|
|
enddo PhaseLoop2
|
|
|
|
end subroutine constitutive_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns the homogenize elasticity matrix
|
|
!> ToDo: homogenizedC66 would be more consistent
|
|
!--------------------------------------------------------------------------------------------------
|
|
function constitutive_homogenizedC(ipc,ip,el)
|
|
|
|
real(pReal), dimension(6,6) :: constitutive_homogenizedC
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
case (PLASTICITY_DISLOTWIN_ID) plasticityType
|
|
constitutive_homogenizedC = plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|
case default plasticityType
|
|
constitutive_homogenizedC = lattice_C66(1:6,1:6,material_phaseAt(ipc,el))
|
|
end select plasticityType
|
|
|
|
end function constitutive_homogenizedC
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calls microstructure function of the different constitutive models
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_microstructure(Fe, Fp, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fe, & !< elastic deformation gradient
|
|
Fp !< plastic deformation gradient
|
|
integer :: &
|
|
ho, & !< homogenization
|
|
tme, & !< thermal member position
|
|
instance, of
|
|
|
|
ho = material_homogenizationAt(el)
|
|
tme = thermalMapping(ho)%p(ip,el)
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
case (PLASTICITY_DISLOTWIN_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_dislotwin_dependentState(temperature(ho)%p(tme),instance,of)
|
|
case (PLASTICITY_DISLOUCLA_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_disloUCLA_dependentState(instance,of)
|
|
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
|
call plastic_nonlocal_dependentState (Fe,Fp,ip,el)
|
|
end select plasticityType
|
|
|
|
end subroutine constitutive_microstructure
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief contains the constitutive equation for calculating the velocity gradient
|
|
! ToDo: Discuss wheter it makes sense if crystallite handles the configuration conversion, i.e.
|
|
! Mp in, dLp_dMp out
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
|
|
S, Fi, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S, & !< 2nd Piola-Kirchhoff stress
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
Lp !< plastic velocity gradient
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dLp_dS, &
|
|
dLp_dFi !< derivative of Lp with respect to Fi
|
|
real(pReal), dimension(3,3,3,3) :: &
|
|
dLp_dMp !< derivative of Lp with respect to Mandel stress
|
|
real(pReal), dimension(3,3) :: &
|
|
Mp !< Mandel stress work conjugate with Lp
|
|
integer :: &
|
|
ho, & !< homogenization
|
|
tme !< thermal member position
|
|
integer :: &
|
|
i, j, instance, of
|
|
|
|
ho = material_homogenizationAt(el)
|
|
tme = thermalMapping(ho)%p(ip,el)
|
|
|
|
Mp = matmul(matmul(transpose(Fi),Fi),S)
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
|
|
case (PLASTICITY_NONE_ID) plasticityType
|
|
Lp = 0.0_pReal
|
|
dLp_dMp = 0.0_pReal
|
|
|
|
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMp,Mp,instance,of)
|
|
|
|
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMp,Mp,instance,of)
|
|
|
|
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMp, Mp,instance,of)
|
|
|
|
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
|
call plastic_nonlocal_LpAndItsTangent (Lp,dLp_dMp,Mp, &
|
|
temperature(ho)%p(tme),geometry_plastic_nonlocal_IPvolume0(ip,el),ip,el)
|
|
|
|
case (PLASTICITY_DISLOTWIN_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_dislotwin_LpAndItsTangent (Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of)
|
|
|
|
case (PLASTICITY_DISLOUCLA_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_disloucla_LpAndItsTangent (Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of)
|
|
|
|
end select plasticityType
|
|
|
|
do i=1,3; do j=1,3
|
|
dLp_dFi(i,j,1:3,1:3) = matmul(matmul(Fi,S),transpose(dLp_dMp(i,j,1:3,1:3))) + &
|
|
matmul(matmul(Fi,dLp_dMp(i,j,1:3,1:3)),S)
|
|
dLp_dS(i,j,1:3,1:3) = matmul(matmul(transpose(Fi),Fi),dLp_dMp(i,j,1:3,1:3)) ! ToDo: @PS: why not: dLp_dMp:(FiT Fi)
|
|
enddo; enddo
|
|
|
|
end subroutine constitutive_LpAndItsTangents
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief contains the constitutive equation for calculating the velocity gradient
|
|
! ToDo: MD: S is Mi?
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, &
|
|
S, Fi, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S !< 2nd Piola-Kirchhoff stress
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
Li !< intermediate velocity gradient
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dLi_dS, & !< derivative of Li with respect to S
|
|
dLi_dFi
|
|
|
|
real(pReal), dimension(3,3) :: &
|
|
my_Li, & !< intermediate velocity gradient
|
|
FiInv, &
|
|
temp_33
|
|
real(pReal), dimension(3,3,3,3) :: &
|
|
my_dLi_dS
|
|
real(pReal) :: &
|
|
detFi
|
|
integer :: &
|
|
k, i, j, &
|
|
instance, of
|
|
|
|
Li = 0.0_pReal
|
|
dLi_dS = 0.0_pReal
|
|
dLi_dFi = 0.0_pReal
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
case (PLASTICITY_isotropic_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, S ,instance,of)
|
|
case default plasticityType
|
|
my_Li = 0.0_pReal
|
|
my_dLi_dS = 0.0_pReal
|
|
end select plasticityType
|
|
|
|
Li = Li + my_Li
|
|
dLi_dS = dLi_dS + my_dLi_dS
|
|
|
|
KinematicsLoop: do k = 1, phase_Nkinematics(material_phaseAt(ipc,el))
|
|
kinematicsType: select case (phase_kinematics(k,material_phaseAt(ipc,el)))
|
|
case (KINEMATICS_cleavage_opening_ID) kinematicsType
|
|
call kinematics_cleavage_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
|
|
case (KINEMATICS_slipplane_opening_ID) kinematicsType
|
|
call kinematics_slipplane_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
|
|
case (KINEMATICS_thermal_expansion_ID) kinematicsType
|
|
call kinematics_thermal_expansion_LiAndItsTangent(my_Li, my_dLi_dS, ipc, ip, el)
|
|
case default kinematicsType
|
|
my_Li = 0.0_pReal
|
|
my_dLi_dS = 0.0_pReal
|
|
end select kinematicsType
|
|
Li = Li + my_Li
|
|
dLi_dS = dLi_dS + my_dLi_dS
|
|
enddo KinematicsLoop
|
|
|
|
FiInv = math_inv33(Fi)
|
|
detFi = math_det33(Fi)
|
|
Li = matmul(matmul(Fi,Li),FiInv)*detFi !< push forward to intermediate configuration
|
|
temp_33 = matmul(FiInv,Li)
|
|
|
|
do i = 1,3; do j = 1,3
|
|
dLi_dS(1:3,1:3,i,j) = matmul(matmul(Fi,dLi_dS(1:3,1:3,i,j)),FiInv)*detFi
|
|
dLi_dFi(1:3,1:3,i,j) = dLi_dFi(1:3,1:3,i,j) + Li*FiInv(j,i)
|
|
dLi_dFi(1:3,i,1:3,j) = dLi_dFi(1:3,i,1:3,j) + math_I3*temp_33(j,i) + Li*FiInv(j,i)
|
|
enddo; enddo
|
|
|
|
end subroutine constitutive_LiAndItsTangents
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief collects initial intermediate deformation gradient
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_initialFi(ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), dimension(3,3) :: &
|
|
constitutive_initialFi !< composite initial intermediate deformation gradient
|
|
integer :: &
|
|
k !< counter in kinematics loop
|
|
integer :: &
|
|
phase, &
|
|
homog, offset
|
|
|
|
constitutive_initialFi = math_I3
|
|
phase = material_phaseAt(ipc,el)
|
|
|
|
KinematicsLoop: do k = 1, phase_Nkinematics(phase) !< Warning: small initial strain assumption
|
|
kinematicsType: select case (phase_kinematics(k,phase))
|
|
case (KINEMATICS_thermal_expansion_ID) kinematicsType
|
|
homog = material_homogenizationAt(el)
|
|
offset = thermalMapping(homog)%p(ip,el)
|
|
constitutive_initialFi = &
|
|
constitutive_initialFi + kinematics_thermal_expansion_initialStrain(homog,phase,offset)
|
|
end select kinematicsType
|
|
enddo KinematicsLoop
|
|
|
|
end function constitutive_initialFi
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
|
|
!> the elastic/intermediate deformation gradients depending on the selected elastic law
|
|
!! (so far no case switch because only Hooke is implemented)
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_SandItsTangents(S, dS_dFe, dS_dFi, Fe, Fi, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fe, & !< elastic deformation gradient
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
S !< 2nd Piola-Kirchhoff stress tensor
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
|
|
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
|
|
|
|
call constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, Fe, Fi, ipc, ip, el)
|
|
|
|
|
|
end subroutine constitutive_SandItsTangents
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
|
|
!> the elastic and intermeidate deformation gradients using Hookes law
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
|
|
Fe, Fi, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fe, & !< elastic deformation gradient
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
|
|
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
|
|
real(pReal), dimension(3,3) :: E
|
|
real(pReal), dimension(3,3,3,3) :: C
|
|
integer :: &
|
|
ho, & !< homogenization
|
|
d !< counter in degradation loop
|
|
integer :: &
|
|
i, j
|
|
|
|
ho = material_homogenizationAt(el)
|
|
C = math_66toSym3333(constitutive_homogenizedC(ipc,ip,el))
|
|
|
|
DegradationLoop: do d = 1, phase_NstiffnessDegradations(material_phaseAt(ipc,el))
|
|
degradationType: select case(phase_stiffnessDegradation(d,material_phaseAt(ipc,el)))
|
|
case (STIFFNESS_DEGRADATION_damage_ID) degradationType
|
|
C = C * damage(ho)%p(damageMapping(ho)%p(ip,el))**2
|
|
end select degradationType
|
|
enddo DegradationLoop
|
|
|
|
E = 0.5_pReal*(matmul(transpose(Fe),Fe)-math_I3) !< Green-Lagrange strain in unloaded configuration
|
|
S = math_mul3333xx33(C,matmul(matmul(transpose(Fi),E),Fi)) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration
|
|
|
|
forall (i=1:3, j=1:3)
|
|
dS_dFe(i,j,1:3,1:3) = matmul(Fe,matmul(matmul(Fi,C(i,j,1:3,1:3)),transpose(Fi))) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko
|
|
dS_dFi(i,j,1:3,1:3) = 2.0_pReal*matmul(matmul(E,Fi),C(i,j,1:3,1:3)) !< dS_ij/dFi_kl = C_ijln * E_km * Fe_mn
|
|
end forall
|
|
|
|
end subroutine constitutive_hooke_SandItsTangents
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_collectDotState(S, FeArray, Fi, FpArray, subdt, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in) :: &
|
|
subdt !< timestep
|
|
real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
|
|
FeArray, & !< elastic deformation gradient
|
|
FpArray !< plastic deformation gradient
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S !< 2nd Piola Kirchhoff stress (vector notation)
|
|
real(pReal), dimension(3,3) :: &
|
|
Mp
|
|
integer :: &
|
|
ho, & !< homogenization
|
|
tme, & !< thermal member position
|
|
i, & !< counter in source loop
|
|
instance, of
|
|
|
|
ho = material_homogenizationAt(el)
|
|
tme = thermalMapping(ho)%p(ip,el)
|
|
|
|
Mp = matmul(matmul(transpose(Fi),Fi),S)
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
|
|
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_isotropic_dotState (Mp,instance,of)
|
|
|
|
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_phenopowerlaw_dotState(Mp,instance,of)
|
|
|
|
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_kinehardening_dotState(Mp,instance,of)
|
|
|
|
case (PLASTICITY_DISLOTWIN_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_dislotwin_dotState (Mp,temperature(ho)%p(tme),instance,of)
|
|
|
|
case (PLASTICITY_DISLOUCLA_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_disloucla_dotState (Mp,temperature(ho)%p(tme),instance,of)
|
|
|
|
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
|
call plastic_nonlocal_dotState (Mp,FeArray,FpArray,temperature(ho)%p(tme), &
|
|
subdt,ip,el)
|
|
end select plasticityType
|
|
|
|
SourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
|
|
|
|
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
|
|
|
|
case (SOURCE_damage_anisoBrittle_ID) sourceType
|
|
call source_damage_anisoBrittle_dotState (S, ipc, ip, el) !< correct stress?
|
|
|
|
case (SOURCE_damage_isoDuctile_ID) sourceType
|
|
call source_damage_isoDuctile_dotState ( ipc, ip, el)
|
|
|
|
case (SOURCE_damage_anisoDuctile_ID) sourceType
|
|
call source_damage_anisoDuctile_dotState ( ipc, ip, el)
|
|
|
|
case (SOURCE_thermal_externalheat_ID) sourceType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
call source_thermal_externalheat_dotState(material_phaseAt(ipc,el),of)
|
|
|
|
end select sourceType
|
|
|
|
enddo SourceLoop
|
|
|
|
end subroutine constitutive_collectDotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief for constitutive models having an instantaneous change of state
|
|
!> will return false if delta state is not needed/supported by the constitutive model
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
|
|
|
|
integer, intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S, & !< 2nd Piola Kirchhoff stress
|
|
Fe, & !< elastic deformation gradient
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), dimension(3,3) :: &
|
|
Mp
|
|
integer :: &
|
|
i, &
|
|
instance, of
|
|
|
|
Mp = matmul(matmul(transpose(Fi),Fi),S)
|
|
|
|
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
|
|
|
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
|
of = material_phasememberAt(ipc,ip,el)
|
|
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
|
call plastic_kinehardening_deltaState(Mp,instance,of)
|
|
|
|
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
|
call plastic_nonlocal_deltaState(Mp,ip,el)
|
|
|
|
end select plasticityType
|
|
|
|
sourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
|
|
|
|
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
|
|
|
|
case (SOURCE_damage_isoBrittle_ID) sourceType
|
|
call source_damage_isoBrittle_deltaState (constitutive_homogenizedC(ipc,ip,el), Fe, &
|
|
ipc, ip, el)
|
|
|
|
end select sourceType
|
|
|
|
enddo SourceLoop
|
|
|
|
end subroutine constitutive_collectDeltaState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief writes constitutive results to HDF5 output file
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_results
|
|
|
|
integer :: p
|
|
character(len=pStringLen) :: group
|
|
do p=1,size(config_name_phase)
|
|
group = trim('current/constituent')//'/'//trim(config_name_phase(p))
|
|
call HDF5_closeGroup(results_addGroup(group))
|
|
|
|
group = trim(group)//'/plastic'
|
|
|
|
call HDF5_closeGroup(results_addGroup(group))
|
|
select case(phase_plasticity(p))
|
|
|
|
case(PLASTICITY_ISOTROPIC_ID)
|
|
call plastic_isotropic_results(phase_plasticityInstance(p),group)
|
|
|
|
case(PLASTICITY_PHENOPOWERLAW_ID)
|
|
call plastic_phenopowerlaw_results(phase_plasticityInstance(p),group)
|
|
|
|
case(PLASTICITY_KINEHARDENING_ID)
|
|
call plastic_kinehardening_results(phase_plasticityInstance(p),group)
|
|
|
|
case(PLASTICITY_DISLOTWIN_ID)
|
|
call plastic_dislotwin_results(phase_plasticityInstance(p),group)
|
|
|
|
case(PLASTICITY_DISLOUCLA_ID)
|
|
call plastic_disloUCLA_results(phase_plasticityInstance(p),group)
|
|
|
|
case(PLASTICITY_NONLOCAL_ID)
|
|
call plastic_nonlocal_results(phase_plasticityInstance(p),group)
|
|
end select
|
|
|
|
enddo
|
|
|
|
end subroutine constitutive_results
|
|
|
|
end module constitutive
|