288 lines
12 KiB
Python
Executable File
288 lines
12 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,re,sys,math,numpy,string,damask
|
|
from scipy import ndimage
|
|
from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP
|
|
|
|
scriptID = '$Id$'
|
|
scriptName = scriptID.split()[1]
|
|
|
|
#--------------------------------------------------------------------------------------------------
|
|
class extendableOption(Option):
|
|
#--------------------------------------------------------------------------------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
|
|
def periodic_3Dpad(array, rimdim=(1,1,1)):
|
|
|
|
rimdim = numpy.array(rimdim,'i')
|
|
size = numpy.array(array.shape,'i')
|
|
padded = numpy.empty(size+2*rimdim,array.dtype)
|
|
padded[rimdim[0]:rimdim[0]+size[0],
|
|
rimdim[1]:rimdim[1]+size[1],
|
|
rimdim[2]:rimdim[2]+size[2]] = array
|
|
|
|
p = numpy.zeros(3,'i')
|
|
for side in xrange(3):
|
|
for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]):
|
|
for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]):
|
|
for p[side%3] in xrange(rimdim[side%3]):
|
|
spot = (p-rimdim)%size
|
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
|
for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
|
|
spot = (p-rimdim)%size
|
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
|
return padded
|
|
|
|
#--------------------------------------------------------------------------------------------------
|
|
# MAIN
|
|
#--------------------------------------------------------------------------------------------------
|
|
synonyms = {
|
|
'grid': ['resolution'],
|
|
'size': ['dimension'],
|
|
}
|
|
identifiers = {
|
|
'grid': ['a','b','c'],
|
|
'size': ['x','y','z'],
|
|
'origin': ['x','y','z'],
|
|
}
|
|
mappings = {
|
|
'grid': lambda x: int(x),
|
|
'size': lambda x: float(x),
|
|
'origin': lambda x: float(x),
|
|
'homogenization': lambda x: int(x),
|
|
'microstructures': lambda x: int(x),
|
|
}
|
|
|
|
features = [
|
|
{'aliens': 1, 'names': ['boundary','biplane'],},
|
|
{'aliens': 2, 'names': ['tripleline',],},
|
|
{'aliens': 3, 'names': ['quadruplepoint',],}
|
|
]
|
|
|
|
neighborhoods = {
|
|
'neumann':numpy.array([
|
|
[-1, 0, 0],
|
|
[ 1, 0, 0],
|
|
[ 0,-1, 0],
|
|
[ 0, 1, 0],
|
|
[ 0, 0,-1],
|
|
[ 0, 0, 1],
|
|
]),
|
|
'moore':numpy.array([
|
|
[-1,-1,-1],
|
|
[ 0,-1,-1],
|
|
[ 1,-1,-1],
|
|
[-1, 0,-1],
|
|
[ 0, 0,-1],
|
|
[ 1, 0,-1],
|
|
[-1, 1,-1],
|
|
[ 0, 1,-1],
|
|
[ 1, 1,-1],
|
|
#
|
|
[-1,-1, 0],
|
|
[ 0,-1, 0],
|
|
[ 1,-1, 0],
|
|
[-1, 0, 0],
|
|
#
|
|
[ 1, 0, 0],
|
|
[-1, 1, 0],
|
|
[ 0, 1, 0],
|
|
[ 1, 1, 0],
|
|
#
|
|
[-1,-1, 1],
|
|
[ 0,-1, 1],
|
|
[ 1,-1, 1],
|
|
[-1, 0, 1],
|
|
[ 0, 0, 1],
|
|
[ 1, 0, 1],
|
|
[-1, 1, 1],
|
|
[ 0, 1, 1],
|
|
[ 1, 1, 1],
|
|
])
|
|
}
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
|
Produce geom files containing Euclidean distance to grain structural features:
|
|
boundaries, triple lines, and quadruple points.
|
|
""" + string.replace(scriptID,'\n','\\n')
|
|
)
|
|
|
|
parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '<string LIST>',
|
|
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
|
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
|
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
|
|
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
|
|
help = 'voxel size [%default]')
|
|
|
|
parser.set_defaults(type = [])
|
|
parser.set_defaults(neighborhood = 'neumann')
|
|
parser.set_defaults(scale = 1.0)
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
|
|
feature_list = []
|
|
for i,feature in enumerate(features):
|
|
for name in feature['names']:
|
|
for myType in options.type:
|
|
if name.startswith(myType):
|
|
feature_list.append(i) # remember valid features
|
|
break
|
|
|
|
#--- setup file handles ---------------------------------------------------------------------------
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN',
|
|
'input':sys.stdin,
|
|
'output':sys.stdout,
|
|
'croak':sys.stderr,
|
|
})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name,
|
|
'input':open(name),
|
|
'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],
|
|
'croak':sys.stdout,
|
|
})
|
|
|
|
#--- loop over input files ------------------------------------------------------------------------
|
|
for file in files:
|
|
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
|
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
|
|
|
theTable = damask.ASCIItable(file['input'],file['output'][0],labels = False)
|
|
theTable.head_read()
|
|
|
|
#--- interpret header ----------------------------------------------------------------------------
|
|
info = {
|
|
'grid': numpy.zeros(3,'i'),
|
|
'size': numpy.zeros(3,'d'),
|
|
'origin': numpy.zeros(3,'d'),
|
|
'homogenization': 0,
|
|
'microstructures': 0,
|
|
}
|
|
newInfo = {
|
|
'grid': numpy.zeros(3,'i'),
|
|
'origin': numpy.zeros(3,'d'),
|
|
'microstructures': 0,
|
|
}
|
|
extra_header = []
|
|
|
|
for header in theTable.info:
|
|
headitems = map(str.lower,header.split())
|
|
if len(headitems) == 0: continue # skip blank lines
|
|
for synonym,alternatives in synonyms.iteritems():
|
|
if headitems[0] in alternatives: headitems[0] = synonym
|
|
if headitems[0] in mappings.keys():
|
|
if headitems[0] in identifiers.keys():
|
|
for i in xrange(len(identifiers[headitems[0]])):
|
|
info[headitems[0]][i] = \
|
|
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
|
else:
|
|
info[headitems[0]] = mappings[headitems[0]](headitems[1])
|
|
else:
|
|
extra_header.append(header)
|
|
|
|
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
|
|
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
|
|
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
|
|
'homogenization: %i\n'%info['homogenization'] + \
|
|
'microstructures: %i\n'%info['microstructures'])
|
|
|
|
if numpy.any(info['grid'] < 1):
|
|
file['croak'].write('invalid grid a b c.\n')
|
|
continue
|
|
if numpy.any(info['size'] <= 0.0):
|
|
file['croak'].write('invalid size x y z.\n')
|
|
continue
|
|
|
|
#--- read data ------------------------------------------------------------------------------------
|
|
microstructure = numpy.zeros(info['grid'].prod(),'i') # initialize as flat array
|
|
i = 0
|
|
|
|
while theTable.data_read():
|
|
items = theTable.data
|
|
if len(items) > 2:
|
|
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
|
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
|
|
else: items = map(int,items)
|
|
else: items = map(int,items)
|
|
|
|
s = len(items)
|
|
microstructure[i:i+s] = items
|
|
i += s
|
|
|
|
|
|
neighborhood = neighborhoods[options.neighborhood]
|
|
convoluted = numpy.empty([len(neighborhood)]+list(info['grid']+2),'i')
|
|
structure = periodic_3Dpad(microstructure.reshape(info['grid'],order='F'))
|
|
|
|
for i,p in enumerate(neighborhood):
|
|
stencil = numpy.zeros((3,3,3),'i')
|
|
stencil[1,1,1] = -1
|
|
stencil[p[0]+1,
|
|
p[1]+1,
|
|
p[2]+1] = 1
|
|
convoluted[i,:,:,:] = ndimage.convolve(structure,stencil)
|
|
|
|
distance = numpy.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d')
|
|
|
|
convoluted = numpy.sort(convoluted,axis = 0)
|
|
uniques = numpy.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
|
|
|
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
|
uniques += numpy.where(numpy.logical_and(
|
|
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
|
|
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
|
|
1,0) # count flip
|
|
|
|
for i,feature_id in enumerate(feature_list):
|
|
distance[i,:,:,:] = numpy.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
|
|
|
for i in xrange(len(feature_list)):
|
|
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
|
|
|
for i,feature in enumerate(feature_list):
|
|
newInfo['microstructures'] = int(math.ceil(distance[i,:,:,:].max()))
|
|
|
|
#--- write header ---------------------------------------------------------------------------------
|
|
theTable = damask.ASCIItable(file['input'],file['output'][i],labels = False)
|
|
theTable.labels_clear()
|
|
theTable.info_clear()
|
|
theTable.info_append(extra_header+[
|
|
scriptID + ' ' + ' '.join(sys.argv[1:]),
|
|
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
|
|
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
|
|
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
|
|
"homogenization\t%i"%info['homogenization'],
|
|
"microstructures\t%i"%(newInfo['microstructures']),
|
|
])
|
|
theTable.head_write()
|
|
theTable.output_flush()
|
|
|
|
# --- write microstructure information ------------------------------------------------------------
|
|
formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1))
|
|
theTable.data = distance[i,:,:,:].reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
|
theTable.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
|
file['output'][i].close()
|
|
|
|
#--- output finalization --------------------------------------------------------------------------
|
|
if file['name'] != 'STDIN':
|
|
file['input'].close()
|