1026 lines
49 KiB
Fortran
1026 lines
49 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
module mesh
|
|
use, intrinsic :: iso_c_binding
|
|
use prec, only: pReal, pInt
|
|
use mesh_base
|
|
|
|
implicit none
|
|
private
|
|
integer(pInt), public, protected :: &
|
|
mesh_Nnodes, & !< total number of nodes in mesh
|
|
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
|
|
mesh_Ncells, & !< total number of cells in mesh
|
|
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
|
|
mesh_maxNsharedElems !< max number of CP elements sharing a node
|
|
|
|
|
|
integer(pInt), dimension(:), allocatable, private :: &
|
|
microGlobal
|
|
integer(pInt), dimension(:), allocatable, private :: &
|
|
mesh_homogenizationAt
|
|
|
|
integer(pInt), dimension(:,:), allocatable, public, protected :: &
|
|
mesh_element !< entryCount and list of elements containing node
|
|
|
|
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
|
|
|
|
real(pReal), public, protected :: &
|
|
mesh_unitlength !< physical length of one unit in mesh
|
|
|
|
real(pReal), dimension(:,:), allocatable, public :: &
|
|
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
|
|
real(pReal), dimension(:,:), allocatable, public, protected :: &
|
|
mesh_ipVolume, & !< volume associated with IP (initially!)
|
|
mesh_node0 !< node x,y,z coordinates (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
|
|
mesh_ipArea !< area of interface to neighboring IP (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
|
|
|
|
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
|
|
|
|
logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes)
|
|
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID
|
|
|
|
integer(pInt),dimension(:,:,:), allocatable, private :: &
|
|
mesh_cell !< cell connectivity for each element,ip/cell
|
|
|
|
integer(pInt), dimension(:,:,:), allocatable, private :: &
|
|
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
|
|
|
|
|
|
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
|
|
! Hence, I suggest to prefix with "FE_"
|
|
|
|
integer(pInt), parameter, private :: &
|
|
FE_Ngeomtypes = 10_pInt, &
|
|
FE_Ncelltypes = 4_pInt, &
|
|
FE_maxNmatchingNodesPerFace = 4_pInt, &
|
|
FE_maxNfaces = 6_pInt, &
|
|
FE_maxNcellnodesPerCell = 8_pInt, &
|
|
FE_maxNcellfaces = 6_pInt, &
|
|
FE_maxNcellnodesPerCellface = 4_pInt
|
|
|
|
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
|
|
int([ &
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
8 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
|
|
int([&
|
|
2, & ! (2D 3node)
|
|
2, & ! (2D 4node)
|
|
3, & ! (3D 4node)
|
|
4 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
|
|
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
|
|
int([&
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
6 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
|
|
integer(pInt), dimension(3), public, protected :: &
|
|
grid !< (global) grid
|
|
integer(pInt), public, protected :: &
|
|
mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh
|
|
grid3, & !< (local) grid in 3rd direction
|
|
grid3Offset !< (local) grid offset in 3rd direction
|
|
real(pReal), dimension(3), public, protected :: &
|
|
geomSize
|
|
real(pReal), public, protected :: &
|
|
size3, & !< (local) size in 3rd direction
|
|
size3offset !< (local) size offset in 3rd direction
|
|
|
|
public :: &
|
|
mesh_init, &
|
|
mesh_cellCenterCoordinates
|
|
|
|
private :: &
|
|
mesh_build_cellconnectivity, &
|
|
mesh_build_ipAreas, &
|
|
mesh_build_FEdata, &
|
|
mesh_spectral_build_nodes, &
|
|
mesh_spectral_build_elements, &
|
|
mesh_spectral_build_ipNeighborhood, &
|
|
mesh_build_cellnodes, &
|
|
mesh_build_ipVolumes, &
|
|
mesh_build_ipCoordinates
|
|
|
|
type, public, extends(tMesh) :: tMesh_grid
|
|
|
|
integer(pInt), dimension(3), public :: &
|
|
grid !< (global) grid
|
|
integer(pInt), public :: &
|
|
mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh
|
|
grid3, & !< (local) grid in 3rd direction
|
|
grid3Offset !< (local) grid offset in 3rd direction
|
|
real(pReal), dimension(3), public :: &
|
|
geomSize
|
|
real(pReal), public :: &
|
|
size3, & !< (local) size in 3rd direction
|
|
size3offset
|
|
|
|
contains
|
|
procedure, pass(self) :: tMesh_grid_init
|
|
generic, public :: init => tMesh_grid_init
|
|
end type tMesh_grid
|
|
|
|
type(tMesh_grid), public, protected :: theMesh
|
|
|
|
contains
|
|
|
|
subroutine tMesh_grid_init(self,nodes)
|
|
|
|
implicit none
|
|
class(tMesh_grid) :: self
|
|
real(pReal), dimension(:,:), intent(in) :: nodes
|
|
|
|
call self%tMesh%init('grid',10_pInt,nodes)
|
|
|
|
end subroutine tMesh_grid_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief initializes the mesh by calling all necessary private routines the mesh module
|
|
!! Order and routines strongly depend on type of solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_init(ip,el)
|
|
|
|
#include <petsc/finclude/petscsys.h>
|
|
use PETScsys
|
|
|
|
use DAMASK_interface
|
|
use IO, only: &
|
|
IO_error
|
|
use debug, only: &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_level, &
|
|
debug_mesh, &
|
|
debug_levelBasic
|
|
use numerics, only: &
|
|
numerics_unitlength
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
|
|
implicit none
|
|
include 'fftw3-mpi.f03'
|
|
integer(C_INTPTR_T) :: devNull, local_K, local_K_offset
|
|
integer :: ierr, worldsize
|
|
integer(pInt), intent(in), optional :: el, ip
|
|
integer(pInt) :: j
|
|
logical :: myDebug
|
|
|
|
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
|
|
|
|
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
|
|
|
|
myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt)
|
|
|
|
call fftw_mpi_init()
|
|
call mesh_spectral_read_grid()
|
|
|
|
|
|
call MPI_comm_size(PETSC_COMM_WORLD, worldsize, ierr)
|
|
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_comm_size')
|
|
if(worldsize>grid(3)) call IO_error(894_pInt, ext_msg='number of processes exceeds grid(3)')
|
|
|
|
|
|
devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), &
|
|
int(grid(2),C_INTPTR_T), &
|
|
int(grid(1),C_INTPTR_T)/2+1, &
|
|
PETSC_COMM_WORLD, &
|
|
local_K, & ! domain grid size along z
|
|
local_K_offset) ! domain grid offset along z
|
|
grid3 = int(local_K,pInt)
|
|
grid3Offset = int(local_K_offset,pInt)
|
|
size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal)
|
|
size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal)
|
|
|
|
mesh_NcpElemsGlobal = product(grid)
|
|
|
|
mesh_Nnodes = product(grid(1:2) + 1_pInt)*(grid3 + 1_pInt)
|
|
|
|
call mesh_spectral_build_nodes()
|
|
if (myDebug) write(6,'(a)') ' Built nodes'; flush(6)
|
|
|
|
call theMesh%init(mesh_node)
|
|
call theMesh%setNelems(product(grid(1:2))*grid3)
|
|
mesh_homogenizationAt = mesh_homogenizationAt(product(grid(1:2))*grid3) ! reallocate/shrink in case of MPI
|
|
mesh_maxNipNeighbors = theMesh%elem%nIPneighbors
|
|
|
|
call mesh_spectral_build_elements()
|
|
if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
|
|
|
|
|
|
call mesh_build_FEdata ! get properties of the different types of elements
|
|
call mesh_build_cellconnectivity
|
|
if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6)
|
|
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
|
|
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
|
|
call mesh_build_ipCoordinates
|
|
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
|
|
call mesh_build_ipVolumes
|
|
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
|
|
call mesh_build_ipAreas
|
|
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
|
|
|
|
call mesh_spectral_build_ipNeighborhood
|
|
|
|
if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6)
|
|
|
|
if (debug_e < 1 .or. debug_e > theMesh%nElems) &
|
|
call IO_error(602_pInt,ext_msg='element') ! selected element does not exist
|
|
if (debug_i < 1 .or. debug_i > theMesh%elem%nIPs) &
|
|
call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP
|
|
|
|
FEsolving_execElem = [ 1_pInt,theMesh%nElems ] ! parallel loop bounds set to comprise all DAMASK elements
|
|
allocate(FEsolving_execIP(2_pInt,theMesh%nElems), source=1_pInt) ! parallel loop bounds set to comprise from first IP...
|
|
forall (j = 1_pInt:theMesh%nElems) FEsolving_execIP(2,j) = theMesh%elem%nIPs ! ...up to own IP count for each element
|
|
|
|
|
|
!!!! COMPATIBILITY HACK !!!!
|
|
! for a homogeneous mesh, all elements have the same number of IPs and and cell nodes.
|
|
! hence, xxPerElem instead of maxXX
|
|
! better name
|
|
theMesh%homogenizationAt = mesh_element(3,:)
|
|
theMesh%microstructureAt = mesh_element(4,:)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!
|
|
deallocate(mesh_cell)
|
|
end subroutine mesh_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Parses geometry file
|
|
!> @details important variables have an implicit "save" attribute. Therefore, this function is
|
|
! supposed to be called only once!
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_read_grid()
|
|
use IO, only: &
|
|
IO_stringPos, &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_intValue, &
|
|
IO_floatValue, &
|
|
IO_error
|
|
use DAMASK_interface, only: &
|
|
geometryFile
|
|
|
|
implicit none
|
|
character(len=:), allocatable :: rawData
|
|
character(len=65536) :: line
|
|
integer(pInt), allocatable, dimension(:) :: chunkPos
|
|
integer(pInt) :: h =- 1_pInt
|
|
integer(pInt) :: &
|
|
headerLength = -1_pInt, & !< length of header (in lines)
|
|
fileLength, & !< length of the geom file (in characters)
|
|
fileUnit, &
|
|
startPos, endPos, &
|
|
myStat, &
|
|
l, & !< line counter
|
|
c, & !< counter for # microstructures in line
|
|
o, & !< order of "to" packing
|
|
e, & !< "element", i.e. spectral collocation point
|
|
i, j
|
|
|
|
grid = -1_pInt
|
|
geomSize = -1.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! read data as stream
|
|
inquire(file = trim(geometryFile), size=fileLength)
|
|
open(newunit=fileUnit, file=trim(geometryFile), access='stream',&
|
|
status='old', position='rewind', action='read',iostat=myStat)
|
|
if(myStat /= 0_pInt) call IO_error(100_pInt,ext_msg=trim(geometryFile))
|
|
allocate(character(len=fileLength)::rawData)
|
|
read(fileUnit) rawData
|
|
close(fileUnit)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! get header length
|
|
endPos = index(rawData,new_line(''))
|
|
if(endPos <= index(rawData,'head')) then
|
|
startPos = len(rawData)
|
|
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid')
|
|
else
|
|
chunkPos = IO_stringPos(rawData(1:endPos))
|
|
if (chunkPos(1) < 2_pInt) call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid')
|
|
headerLength = IO_intValue(rawData(1:endPos),chunkPos,1_pInt)
|
|
startPos = endPos + 1_pInt
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! read and interprete header
|
|
l = 0
|
|
do while (l < headerLength .and. startPos < len(rawData))
|
|
endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt
|
|
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
|
|
line = rawData(startPos:endPos)
|
|
startPos = endPos + 1_pInt
|
|
l = l + 1_pInt
|
|
|
|
chunkPos = IO_stringPos(trim(line))
|
|
if (chunkPos(1) < 2) cycle ! need at least one keyword value pair
|
|
|
|
select case ( IO_lc(IO_StringValue(trim(line),chunkPos,1_pInt,.true.)) )
|
|
case ('grid')
|
|
if (chunkPos(1) > 6) then
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
|
|
case('a')
|
|
grid(1) = IO_intValue(line,chunkPos,j+1_pInt)
|
|
case('b')
|
|
grid(2) = IO_intValue(line,chunkPos,j+1_pInt)
|
|
case('c')
|
|
grid(3) = IO_intValue(line,chunkPos,j+1_pInt)
|
|
end select
|
|
enddo
|
|
endif
|
|
|
|
case ('size')
|
|
if (chunkPos(1) > 6) then
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
|
|
case('x')
|
|
geomSize(1) = IO_floatValue(line,chunkPos,j+1_pInt)
|
|
case('y')
|
|
geomSize(2) = IO_floatValue(line,chunkPos,j+1_pInt)
|
|
case('z')
|
|
geomSize(3) = IO_floatValue(line,chunkPos,j+1_pInt)
|
|
end select
|
|
enddo
|
|
endif
|
|
|
|
case ('homogenization')
|
|
if (chunkPos(1) > 1) h = IO_intValue(line,chunkPos,2_pInt)
|
|
end select
|
|
|
|
enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! sanity checks
|
|
if(h < 1_pInt) &
|
|
call IO_error(error_ID = 842_pInt, ext_msg='homogenization (mesh_spectral_read_grid)')
|
|
if(any(grid < 1_pInt)) &
|
|
call IO_error(error_ID = 842_pInt, ext_msg='grid (mesh_spectral_read_grid)')
|
|
if(any(geomSize < 0.0_pReal)) &
|
|
call IO_error(error_ID = 842_pInt, ext_msg='size (mesh_spectral_read_grid)')
|
|
|
|
allocate(microGlobal(product(grid)), source = -1_pInt)
|
|
allocate(mesh_homogenizationAt(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! read and interprete content
|
|
e = 1_pInt
|
|
do while (startPos < len(rawData))
|
|
endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt
|
|
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
|
|
line = rawData(startPos:endPos)
|
|
startPos = endPos + 1_pInt
|
|
l = l + 1_pInt
|
|
chunkPos = IO_stringPos(trim(line))
|
|
|
|
noCompression: if (chunkPos(1) /= 3) then
|
|
c = chunkPos(1)
|
|
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
|
|
else noCompression
|
|
compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then
|
|
c = IO_intValue(line,chunkPos,1)
|
|
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,3),i = 1_pInt,IO_intValue(line,chunkPos,1))]
|
|
else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression
|
|
c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1_pInt
|
|
o = merge(+1_pInt, -1_pInt, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1))
|
|
microGlobal(e:e+c-1_pInt) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
|
|
else compression
|
|
c = chunkPos(1)
|
|
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
|
|
endif compression
|
|
endif noCompression
|
|
|
|
e = e+c
|
|
end do
|
|
|
|
if (e-1 /= product(grid)) call IO_error(error_ID = 843_pInt, el=e)
|
|
|
|
end subroutine mesh_spectral_read_grid
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_nodes()
|
|
|
|
implicit none
|
|
integer(pInt) :: n
|
|
|
|
allocate (mesh_node0 (3,mesh_Nnodes), source = 0.0_pReal)
|
|
|
|
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
|
|
mesh_node0(1,n+1_pInt) = mesh_unitlength * &
|
|
geomSize(1)*real(mod(n,(grid(1)+1_pInt) ),pReal) &
|
|
/ real(grid(1),pReal)
|
|
mesh_node0(2,n+1_pInt) = mesh_unitlength * &
|
|
geomSize(2)*real(mod(n/(grid(1)+1_pInt),(grid(2)+1_pInt)),pReal) &
|
|
/ real(grid(2),pReal)
|
|
mesh_node0(3,n+1_pInt) = mesh_unitlength * &
|
|
size3*real(mod(n/(grid(1)+1_pInt)/(grid(2)+1_pInt),(grid3+1_pInt)),pReal) &
|
|
/ real(grid3,pReal) + &
|
|
size3offset
|
|
end forall
|
|
|
|
mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_spectral_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, material, texture, and node list per element.
|
|
!! Allocates global array 'mesh_element'
|
|
!> @todo does the IO_error makes sense?
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_elements()
|
|
use IO, only: &
|
|
IO_error
|
|
implicit none
|
|
integer(pInt) :: &
|
|
e, &
|
|
elemOffset
|
|
|
|
|
|
allocate(mesh_element (4_pInt+8_pInt,theMesh%nElems), source = 0_pInt)
|
|
|
|
elemOffset = product(grid(1:2))*grid3Offset
|
|
e = 0_pInt
|
|
do while (e < theMesh%nElems) ! fill expected number of elements, stop at end of data
|
|
e = e+1_pInt ! valid element entry
|
|
mesh_element( 1,e) = -1_pInt ! DEPRECATED
|
|
mesh_element( 2,e) = 10_pInt
|
|
mesh_element( 3,e) = mesh_homogenizationAt(e)
|
|
mesh_element( 4,e) = microGlobal(e+elemOffset) ! microstructure
|
|
mesh_element( 5,e) = e + (e-1_pInt)/grid(1) + &
|
|
((e-1_pInt)/(grid(1)*grid(2)))*(grid(1)+1_pInt) ! base node
|
|
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
|
|
mesh_element( 7,e) = mesh_element(5,e) + grid(1) + 2_pInt
|
|
mesh_element( 8,e) = mesh_element(5,e) + grid(1) + 1_pInt
|
|
mesh_element( 9,e) = mesh_element(5,e) +(grid(1) + 1_pInt) * (grid(2) + 1_pInt) ! second floor base node
|
|
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
|
|
mesh_element(11,e) = mesh_element(9,e) + grid(1) + 2_pInt
|
|
mesh_element(12,e) = mesh_element(9,e) + grid(1) + 1_pInt
|
|
enddo
|
|
|
|
if (e /= theMesh%nElems) call IO_error(880_pInt,e)
|
|
|
|
end subroutine mesh_spectral_build_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief build neighborhood relations for spectral
|
|
!> @details assign globals: mesh_ipNeighborhood
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_spectral_build_ipNeighborhood
|
|
|
|
implicit none
|
|
integer(pInt) :: &
|
|
x,y,z, &
|
|
e
|
|
allocate(mesh_ipNeighborhood(3,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems),source=0_pInt)
|
|
|
|
e = 0_pInt
|
|
do z = 0_pInt,grid3-1_pInt
|
|
do y = 0_pInt,grid(2)-1_pInt
|
|
do x = 0_pInt,grid(1)-1_pInt
|
|
e = e + 1_pInt
|
|
mesh_ipNeighborhood(1,1,1,e) = z * grid(1) * grid(2) &
|
|
+ y * grid(1) &
|
|
+ modulo(x+1_pInt,grid(1)) &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,2,1,e) = z * grid(1) * grid(2) &
|
|
+ y * grid(1) &
|
|
+ modulo(x-1_pInt,grid(1)) &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,3,1,e) = z * grid(1) * grid(2) &
|
|
+ modulo(y+1_pInt,grid(2)) * grid(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,4,1,e) = z * grid(1) * grid(2) &
|
|
+ modulo(y-1_pInt,grid(2)) * grid(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,grid3) * grid(1) * grid(2) &
|
|
+ y * grid(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,grid3) * grid(1) * grid(2) &
|
|
+ y * grid(1) &
|
|
+ x &
|
|
+ 1_pInt
|
|
mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt
|
|
mesh_ipNeighborhood(3,1,1,e) = 2_pInt
|
|
mesh_ipNeighborhood(3,2,1,e) = 1_pInt
|
|
mesh_ipNeighborhood(3,3,1,e) = 4_pInt
|
|
mesh_ipNeighborhood(3,4,1,e) = 3_pInt
|
|
mesh_ipNeighborhood(3,5,1,e) = 6_pInt
|
|
mesh_ipNeighborhood(3,6,1,e) = 5_pInt
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_spectral_build_ipNeighborhood
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
|
|
use debug, only: &
|
|
debug_mesh, &
|
|
debug_level, &
|
|
debug_levelBasic
|
|
|
|
implicit none
|
|
real(pReal), intent(in), dimension(:,:,:,:) :: &
|
|
centres
|
|
real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
|
|
nodes
|
|
real(pReal), intent(in), dimension(3) :: &
|
|
gDim
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Favg
|
|
real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
|
|
wrappedCentres
|
|
|
|
integer(pInt) :: &
|
|
i,j,k,n
|
|
integer(pInt), dimension(3), parameter :: &
|
|
diag = 1_pInt
|
|
integer(pInt), dimension(3) :: &
|
|
shift = 0_pInt, &
|
|
lookup = 0_pInt, &
|
|
me = 0_pInt, &
|
|
iRes = 0_pInt
|
|
integer(pInt), dimension(3,8) :: &
|
|
neighbor = reshape([ &
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
0_pInt, 1_pInt, 1_pInt ], [3,8])
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initializing variables
|
|
iRes = [size(centres,2),size(centres,3),size(centres,4)]
|
|
nodes = 0.0_pReal
|
|
wrappedCentres = 0.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report
|
|
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a)') ' Meshing cubes around centroids'
|
|
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
|
|
write(6,'(a,3(i5))') ' Resolution:', iRes
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! building wrappedCentres = centroids + ghosts
|
|
wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres
|
|
do k = 0_pInt,iRes(3)+1_pInt
|
|
do j = 0_pInt,iRes(2)+1_pInt
|
|
do i = 0_pInt,iRes(1)+1_pInt
|
|
if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin
|
|
j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin
|
|
i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin
|
|
me = [i,j,k] ! me on skin
|
|
shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me)
|
|
lookup = me-diag+shift*iRes
|
|
wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = &
|
|
centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) &
|
|
- matmul(Favg, real(shift,pReal)*gDim)
|
|
endif
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! averaging
|
|
do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1)
|
|
do n = 1_pInt,8_pInt
|
|
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = &
|
|
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), &
|
|
j+1_pInt+neighbor(2,n), &
|
|
k+1_pInt+neighbor(3,n) )
|
|
enddo
|
|
enddo; enddo; enddo
|
|
nodes = nodes/8.0_pReal
|
|
|
|
end function mesh_nodesAroundCentres
|
|
|
|
|
|
!#################################################################################################################
|
|
!#################################################################################################################
|
|
!#################################################################################################################
|
|
! The following routines are not solver specific and should be included in mesh_base (most likely in modified form)
|
|
!#################################################################################################################
|
|
!#################################################################################################################
|
|
!#################################################################################################################
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Split CP elements into cells.
|
|
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
|
|
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
|
|
!> all others (currently) might be stored more than once.
|
|
!> Also allocates the 'mesh_node' array.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_cellconnectivity
|
|
|
|
implicit none
|
|
integer(pInt), dimension(:), allocatable :: &
|
|
matchingNode2cellnode
|
|
integer(pInt), dimension(:,:), allocatable :: &
|
|
cellnodeParent
|
|
integer(pInt), dimension(theMesh%elem%Ncellnodes) :: &
|
|
localCellnode2globalCellnode
|
|
integer(pInt) :: &
|
|
e,n,i, &
|
|
matchingNodeID, &
|
|
localCellnodeID
|
|
|
|
integer(pInt), dimension(FE_Ngeomtypes), parameter :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
8 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
allocate(mesh_cell(FE_maxNcellnodesPerCell,theMesh%elem%nIPs,theMesh%nElems), source=0_pInt)
|
|
allocate(matchingNode2cellnode(theMesh%nNodes), source=0_pInt)
|
|
allocate(cellnodeParent(2_pInt,theMesh%elem%Ncellnodes*theMesh%nElems), source=0_pInt)
|
|
|
|
mesh_Ncells = theMesh%nElems*theMesh%elem%nIPs
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Count cell nodes (including duplicates) and generate cell connectivity list
|
|
mesh_Ncellnodes = 0_pInt
|
|
|
|
do e = 1_pInt,theMesh%nElems
|
|
localCellnode2globalCellnode = 0_pInt
|
|
do i = 1_pInt,theMesh%elem%nIPs
|
|
do n = 1_pInt,theMesh%elem%NcellnodesPerCell
|
|
localCellnodeID = theMesh%elem%cell(n,i)
|
|
if (localCellnodeID <= FE_NmatchingNodes(theMesh%elem%geomType)) then ! this cell node is a matching node
|
|
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
|
|
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
|
|
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
|
|
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
|
|
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
|
|
else ! this cell node is no matching node
|
|
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
|
|
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
|
|
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
|
|
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
|
|
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
|
|
|
|
forall(n = 1_pInt:mesh_Ncellnodes)
|
|
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
|
|
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
|
|
endforall
|
|
|
|
end subroutine mesh_build_cellconnectivity
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate position of cellnodes from the given position of nodes
|
|
!> Build list of cellnodes' coordinates.
|
|
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_build_cellnodes(nodes,Ncellnodes)
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
|
|
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
|
|
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
|
|
|
|
integer(pInt) :: &
|
|
e,n,m, &
|
|
localCellnodeID
|
|
real(pReal), dimension(3) :: &
|
|
myCoords
|
|
|
|
mesh_build_cellnodes = 0.0_pReal
|
|
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,myCoords)
|
|
do n = 1_pInt,Ncellnodes ! loop over cell nodes
|
|
e = mesh_cellnodeParent(1,n)
|
|
localCellnodeID = mesh_cellnodeParent(2,n)
|
|
myCoords = 0.0_pReal
|
|
do m = 1_pInt,theMesh%elem%nNodes
|
|
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
|
|
* theMesh%elem%cellNodeParentNodeWeights(m,localCellnodeID)
|
|
enddo
|
|
mesh_build_cellnodes(1:3,n) = myCoords / sum(theMesh%elem%cellNodeParentNodeWeights(:,localCellnodeID))
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end function mesh_build_cellnodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
|
!> @details The IP volume is calculated differently depending on the cell type.
|
|
!> 2D cells assume an element depth of one in order to calculate the volume.
|
|
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
|
|
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
|
|
!> calculated as an average of four tetrahedals with three corners on the cell face
|
|
!> and one corner at the central ip.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipVolumes
|
|
use math, only: &
|
|
math_volTetrahedron, &
|
|
math_areaTriangle
|
|
|
|
implicit none
|
|
integer(pInt) :: e,t,g,c,i,m,f,n
|
|
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
|
|
|
|
|
|
allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
|
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
|
|
do e = 1_pInt,theMesh%nElems ! loop over cpElems
|
|
select case (theMesh%elem%cellType)
|
|
|
|
case (1_pInt) ! 2D 3node
|
|
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)))
|
|
|
|
case (2_pInt) ! 2D 4node
|
|
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
|
|
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(1,i,e)))
|
|
|
|
case (3_pInt) ! 3D 4node
|
|
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)))
|
|
|
|
case (4_pInt)
|
|
c = theMesh%elem%cellType ! 3D 8node
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
|
subvolume = 0.0_pReal
|
|
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
subvolume(n,f) = math_volTetrahedron(&
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
|
|
mesh_ipCoordinates(1:3,i,e))
|
|
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipVolumes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
|
|
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
|
|
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
|
|
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
|
|
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
|
|
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
|
|
! HAS TO BE CHANGED IN A LATER VERSION.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipCoordinates
|
|
|
|
implicit none
|
|
integer(pInt) :: e,c,i,n
|
|
real(pReal), dimension(3) :: myCoords
|
|
|
|
if (.not. allocated(mesh_ipCoordinates)) &
|
|
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
|
|
|
!$OMP PARALLEL DO PRIVATE(c,myCoords)
|
|
do e = 1_pInt,theMesh%nElems ! loop over cpElems
|
|
c = theMesh%elem%cellType
|
|
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
|
myCoords = 0.0_pReal
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
|
|
enddo
|
|
mesh_ipCoordinates(1:3,i,e) = myCoords / real(FE_NcellnodesPerCell(c),pReal)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipCoordinates
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates cell center coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function mesh_cellCenterCoordinates(ip,el)
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: el, & !< element number
|
|
ip !< integration point number
|
|
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
|
|
integer(pInt) :: c,n
|
|
|
|
c = theMesh%elem%cellType
|
|
mesh_cellCenterCoordinates = 0.0_pReal
|
|
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
|
|
enddo
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / real(FE_NcellnodesPerCell(c),pReal)
|
|
|
|
end function mesh_cellCenterCoordinates
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipAreas
|
|
use math, only: &
|
|
math_cross
|
|
|
|
implicit none
|
|
integer(pInt) :: e,t,g,c,i,f,n,m
|
|
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
|
|
real(pReal), dimension(3) :: normal
|
|
|
|
allocate(mesh_ipArea(theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
|
|
allocate(mesh_ipAreaNormal(3_pInt,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
|
|
do e = 1_pInt,theMesh%nElems ! loop over cpElems
|
|
c = theMesh%elem%cellType
|
|
select case (c)
|
|
|
|
case (1_pInt,2_pInt) ! 2D 3 or 4 node
|
|
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
|
|
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
|
|
normal(3) = 0.0_pReal
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (3_pInt) ! 3D 4node
|
|
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
|
|
nodePos(1:3,3) - nodePos(1:3,1))
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (4_pInt) ! 3D 8node
|
|
! for this cell type we get the normal of the quadrilateral face as an average of
|
|
! four normals of triangular subfaces; since the face consists only of two triangles,
|
|
! the sum has to be divided by two; this whole prcedure tries to compensate for
|
|
! probable non-planar cell surfaces
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
|
normals(1:3,n) = 0.5_pReal &
|
|
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
|
|
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
|
|
normal = 0.5_pReal * sum(normals,2)
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
|
|
enddo
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipAreas
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get properties of different types of finite elements
|
|
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_subNodeOnIPFace
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_FEdata
|
|
|
|
implicit none
|
|
integer(pInt) :: me
|
|
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0_pInt)
|
|
|
|
|
|
! *** FE_cellface ***
|
|
me = 0_pInt
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
|
|
reshape(int([&
|
|
2,3, &
|
|
3,1, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
|
|
reshape(int([&
|
|
2,3, &
|
|
4,1, &
|
|
3,4, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
|
|
reshape(int([&
|
|
1,3,2, &
|
|
1,2,4, &
|
|
2,3,4, &
|
|
1,4,3 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1_pInt
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
|
|
reshape(int([&
|
|
2,3,7,6, &
|
|
4,1,5,8, &
|
|
3,4,8,7, &
|
|
1,2,6,5, &
|
|
5,6,7,8, &
|
|
1,4,3,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
|
|
end subroutine mesh_build_FEdata
|
|
|
|
|
|
end module mesh
|