DAMASK_EICMD/src/mesh_grid.f90

1026 lines
49 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
!--------------------------------------------------------------------------------------------------
module mesh
use, intrinsic :: iso_c_binding
use prec, only: pReal, pInt
use mesh_base
implicit none
private
integer(pInt), public, protected :: &
mesh_Nnodes, & !< total number of nodes in mesh
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
mesh_Ncells, & !< total number of cells in mesh
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
mesh_maxNsharedElems !< max number of CP elements sharing a node
integer(pInt), dimension(:), allocatable, private :: &
microGlobal
integer(pInt), dimension(:), allocatable, private :: &
mesh_homogenizationAt
integer(pInt), dimension(:,:), allocatable, public, protected :: &
mesh_element !< entryCount and list of elements containing node
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
real(pReal), public, protected :: &
mesh_unitlength !< physical length of one unit in mesh
real(pReal), dimension(:,:), allocatable, public :: &
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable, public, protected :: &
mesh_ipVolume, & !< volume associated with IP (initially!)
mesh_node0 !< node x,y,z coordinates (initially!)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
mesh_ipArea !< area of interface to neighboring IP (initially!)
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes)
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID
integer(pInt),dimension(:,:,:), allocatable, private :: &
mesh_cell !< cell connectivity for each element,ip/cell
integer(pInt), dimension(:,:,:), allocatable, private :: &
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
! Hence, I suggest to prefix with "FE_"
integer(pInt), parameter, private :: &
FE_Ngeomtypes = 10_pInt, &
FE_Ncelltypes = 4_pInt, &
FE_maxNmatchingNodesPerFace = 4_pInt, &
FE_maxNfaces = 6_pInt, &
FE_maxNcellnodesPerCell = 8_pInt, &
FE_maxNcellfaces = 6_pInt, &
FE_maxNcellnodesPerCellface = 4_pInt
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
int([ &
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
8 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
int([&
2, & ! (2D 3node)
2, & ! (2D 4node)
3, & ! (3D 4node)
4 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
int([&
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
6 & ! (3D 8node)
],pInt)
integer(pInt), dimension(3), public, protected :: &
grid !< (global) grid
integer(pInt), public, protected :: &
mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh
grid3, & !< (local) grid in 3rd direction
grid3Offset !< (local) grid offset in 3rd direction
real(pReal), dimension(3), public, protected :: &
geomSize
real(pReal), public, protected :: &
size3, & !< (local) size in 3rd direction
size3offset !< (local) size offset in 3rd direction
public :: &
mesh_init, &
mesh_cellCenterCoordinates
private :: &
mesh_build_cellconnectivity, &
mesh_build_ipAreas, &
mesh_build_FEdata, &
mesh_spectral_build_nodes, &
mesh_spectral_build_elements, &
mesh_spectral_build_ipNeighborhood, &
mesh_build_cellnodes, &
mesh_build_ipVolumes, &
mesh_build_ipCoordinates
type, public, extends(tMesh) :: tMesh_grid
integer(pInt), dimension(3), public :: &
grid !< (global) grid
integer(pInt), public :: &
mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh
grid3, & !< (local) grid in 3rd direction
grid3Offset !< (local) grid offset in 3rd direction
real(pReal), dimension(3), public :: &
geomSize
real(pReal), public :: &
size3, & !< (local) size in 3rd direction
size3offset
contains
procedure, pass(self) :: tMesh_grid_init
generic, public :: init => tMesh_grid_init
end type tMesh_grid
type(tMesh_grid), public, protected :: theMesh
contains
subroutine tMesh_grid_init(self,nodes)
implicit none
class(tMesh_grid) :: self
real(pReal), dimension(:,:), intent(in) :: nodes
call self%tMesh%init('grid',10_pInt,nodes)
end subroutine tMesh_grid_init
!--------------------------------------------------------------------------------------------------
!> @brief initializes the mesh by calling all necessary private routines the mesh module
!! Order and routines strongly depend on type of solver
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
#include <petsc/finclude/petscsys.h>
use PETScsys
use DAMASK_interface
use IO, only: &
IO_error
use debug, only: &
debug_e, &
debug_i, &
debug_level, &
debug_mesh, &
debug_levelBasic
use numerics, only: &
numerics_unitlength
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
implicit none
include 'fftw3-mpi.f03'
integer(C_INTPTR_T) :: devNull, local_K, local_K_offset
integer :: ierr, worldsize
integer(pInt), intent(in), optional :: el, ip
integer(pInt) :: j
logical :: myDebug
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt)
call fftw_mpi_init()
call mesh_spectral_read_grid()
call MPI_comm_size(PETSC_COMM_WORLD, worldsize, ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_comm_size')
if(worldsize>grid(3)) call IO_error(894_pInt, ext_msg='number of processes exceeds grid(3)')
devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), &
int(grid(2),C_INTPTR_T), &
int(grid(1),C_INTPTR_T)/2+1, &
PETSC_COMM_WORLD, &
local_K, & ! domain grid size along z
local_K_offset) ! domain grid offset along z
grid3 = int(local_K,pInt)
grid3Offset = int(local_K_offset,pInt)
size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal)
size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal)
mesh_NcpElemsGlobal = product(grid)
mesh_Nnodes = product(grid(1:2) + 1_pInt)*(grid3 + 1_pInt)
call mesh_spectral_build_nodes()
if (myDebug) write(6,'(a)') ' Built nodes'; flush(6)
call theMesh%init(mesh_node)
call theMesh%setNelems(product(grid(1:2))*grid3)
mesh_homogenizationAt = mesh_homogenizationAt(product(grid(1:2))*grid3) ! reallocate/shrink in case of MPI
mesh_maxNipNeighbors = theMesh%elem%nIPneighbors
call mesh_spectral_build_elements()
if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
call mesh_build_FEdata ! get properties of the different types of elements
call mesh_build_cellconnectivity
if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6)
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
call mesh_build_ipCoordinates
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
call mesh_build_ipVolumes
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
call mesh_build_ipAreas
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
call mesh_spectral_build_ipNeighborhood
if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6)
if (debug_e < 1 .or. debug_e > theMesh%nElems) &
call IO_error(602_pInt,ext_msg='element') ! selected element does not exist
if (debug_i < 1 .or. debug_i > theMesh%elem%nIPs) &
call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP
FEsolving_execElem = [ 1_pInt,theMesh%nElems ] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2_pInt,theMesh%nElems), source=1_pInt) ! parallel loop bounds set to comprise from first IP...
forall (j = 1_pInt:theMesh%nElems) FEsolving_execIP(2,j) = theMesh%elem%nIPs ! ...up to own IP count for each element
!!!! COMPATIBILITY HACK !!!!
! for a homogeneous mesh, all elements have the same number of IPs and and cell nodes.
! hence, xxPerElem instead of maxXX
! better name
theMesh%homogenizationAt = mesh_element(3,:)
theMesh%microstructureAt = mesh_element(4,:)
!!!!!!!!!!!!!!!!!!!!!!!!
deallocate(mesh_cell)
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Parses geometry file
!> @details important variables have an implicit "save" attribute. Therefore, this function is
! supposed to be called only once!
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_read_grid()
use IO, only: &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
character(len=:), allocatable :: rawData
character(len=65536) :: line
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: h =- 1_pInt
integer(pInt) :: &
headerLength = -1_pInt, & !< length of header (in lines)
fileLength, & !< length of the geom file (in characters)
fileUnit, &
startPos, endPos, &
myStat, &
l, & !< line counter
c, & !< counter for # microstructures in line
o, & !< order of "to" packing
e, & !< "element", i.e. spectral collocation point
i, j
grid = -1_pInt
geomSize = -1.0_pReal
!--------------------------------------------------------------------------------------------------
! read data as stream
inquire(file = trim(geometryFile), size=fileLength)
open(newunit=fileUnit, file=trim(geometryFile), access='stream',&
status='old', position='rewind', action='read',iostat=myStat)
if(myStat /= 0_pInt) call IO_error(100_pInt,ext_msg=trim(geometryFile))
allocate(character(len=fileLength)::rawData)
read(fileUnit) rawData
close(fileUnit)
!--------------------------------------------------------------------------------------------------
! get header length
endPos = index(rawData,new_line(''))
if(endPos <= index(rawData,'head')) then
startPos = len(rawData)
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid')
else
chunkPos = IO_stringPos(rawData(1:endPos))
if (chunkPos(1) < 2_pInt) call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid')
headerLength = IO_intValue(rawData(1:endPos),chunkPos,1_pInt)
startPos = endPos + 1_pInt
endif
!--------------------------------------------------------------------------------------------------
! read and interprete header
l = 0
do while (l < headerLength .and. startPos < len(rawData))
endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
line = rawData(startPos:endPos)
startPos = endPos + 1_pInt
l = l + 1_pInt
chunkPos = IO_stringPos(trim(line))
if (chunkPos(1) < 2) cycle ! need at least one keyword value pair
select case ( IO_lc(IO_StringValue(trim(line),chunkPos,1_pInt,.true.)) )
case ('grid')
if (chunkPos(1) > 6) then
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
case('a')
grid(1) = IO_intValue(line,chunkPos,j+1_pInt)
case('b')
grid(2) = IO_intValue(line,chunkPos,j+1_pInt)
case('c')
grid(3) = IO_intValue(line,chunkPos,j+1_pInt)
end select
enddo
endif
case ('size')
if (chunkPos(1) > 6) then
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
case('x')
geomSize(1) = IO_floatValue(line,chunkPos,j+1_pInt)
case('y')
geomSize(2) = IO_floatValue(line,chunkPos,j+1_pInt)
case('z')
geomSize(3) = IO_floatValue(line,chunkPos,j+1_pInt)
end select
enddo
endif
case ('homogenization')
if (chunkPos(1) > 1) h = IO_intValue(line,chunkPos,2_pInt)
end select
enddo
!--------------------------------------------------------------------------------------------------
! sanity checks
if(h < 1_pInt) &
call IO_error(error_ID = 842_pInt, ext_msg='homogenization (mesh_spectral_read_grid)')
if(any(grid < 1_pInt)) &
call IO_error(error_ID = 842_pInt, ext_msg='grid (mesh_spectral_read_grid)')
if(any(geomSize < 0.0_pReal)) &
call IO_error(error_ID = 842_pInt, ext_msg='size (mesh_spectral_read_grid)')
allocate(microGlobal(product(grid)), source = -1_pInt)
allocate(mesh_homogenizationAt(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant)
!--------------------------------------------------------------------------------------------------
! read and interprete content
e = 1_pInt
do while (startPos < len(rawData))
endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
line = rawData(startPos:endPos)
startPos = endPos + 1_pInt
l = l + 1_pInt
chunkPos = IO_stringPos(trim(line))
noCompression: if (chunkPos(1) /= 3) then
c = chunkPos(1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
else noCompression
compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then
c = IO_intValue(line,chunkPos,1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,3),i = 1_pInt,IO_intValue(line,chunkPos,1))]
else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression
c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1_pInt
o = merge(+1_pInt, -1_pInt, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1))
microGlobal(e:e+c-1_pInt) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
else compression
c = chunkPos(1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
endif compression
endif noCompression
e = e+c
end do
if (e-1 /= product(grid)) call IO_error(error_ID = 843_pInt, el=e)
end subroutine mesh_spectral_read_grid
!--------------------------------------------------------------------------------------------------
!> @brief Store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_nodes()
implicit none
integer(pInt) :: n
allocate (mesh_node0 (3,mesh_Nnodes), source = 0.0_pReal)
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
mesh_node0(1,n+1_pInt) = mesh_unitlength * &
geomSize(1)*real(mod(n,(grid(1)+1_pInt) ),pReal) &
/ real(grid(1),pReal)
mesh_node0(2,n+1_pInt) = mesh_unitlength * &
geomSize(2)*real(mod(n/(grid(1)+1_pInt),(grid(2)+1_pInt)),pReal) &
/ real(grid(2),pReal)
mesh_node0(3,n+1_pInt) = mesh_unitlength * &
size3*real(mod(n/(grid(1)+1_pInt)/(grid(2)+1_pInt),(grid3+1_pInt)),pReal) &
/ real(grid3,pReal) + &
size3offset
end forall
mesh_node = mesh_node0
end subroutine mesh_spectral_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, material, texture, and node list per element.
!! Allocates global array 'mesh_element'
!> @todo does the IO_error makes sense?
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_elements()
use IO, only: &
IO_error
implicit none
integer(pInt) :: &
e, &
elemOffset
allocate(mesh_element (4_pInt+8_pInt,theMesh%nElems), source = 0_pInt)
elemOffset = product(grid(1:2))*grid3Offset
e = 0_pInt
do while (e < theMesh%nElems) ! fill expected number of elements, stop at end of data
e = e+1_pInt ! valid element entry
mesh_element( 1,e) = -1_pInt ! DEPRECATED
mesh_element( 2,e) = 10_pInt
mesh_element( 3,e) = mesh_homogenizationAt(e)
mesh_element( 4,e) = microGlobal(e+elemOffset) ! microstructure
mesh_element( 5,e) = e + (e-1_pInt)/grid(1) + &
((e-1_pInt)/(grid(1)*grid(2)))*(grid(1)+1_pInt) ! base node
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
mesh_element( 7,e) = mesh_element(5,e) + grid(1) + 2_pInt
mesh_element( 8,e) = mesh_element(5,e) + grid(1) + 1_pInt
mesh_element( 9,e) = mesh_element(5,e) +(grid(1) + 1_pInt) * (grid(2) + 1_pInt) ! second floor base node
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
mesh_element(11,e) = mesh_element(9,e) + grid(1) + 2_pInt
mesh_element(12,e) = mesh_element(9,e) + grid(1) + 1_pInt
enddo
if (e /= theMesh%nElems) call IO_error(880_pInt,e)
end subroutine mesh_spectral_build_elements
!--------------------------------------------------------------------------------------------------
!> @brief build neighborhood relations for spectral
!> @details assign globals: mesh_ipNeighborhood
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_ipNeighborhood
implicit none
integer(pInt) :: &
x,y,z, &
e
allocate(mesh_ipNeighborhood(3,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems),source=0_pInt)
e = 0_pInt
do z = 0_pInt,grid3-1_pInt
do y = 0_pInt,grid(2)-1_pInt
do x = 0_pInt,grid(1)-1_pInt
e = e + 1_pInt
mesh_ipNeighborhood(1,1,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x+1_pInt,grid(1)) &
+ 1_pInt
mesh_ipNeighborhood(1,2,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x-1_pInt,grid(1)) &
+ 1_pInt
mesh_ipNeighborhood(1,3,1,e) = z * grid(1) * grid(2) &
+ modulo(y+1_pInt,grid(2)) * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,4,1,e) = z * grid(1) * grid(2) &
+ modulo(y-1_pInt,grid(2)) * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,grid3) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,grid3) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt
mesh_ipNeighborhood(3,1,1,e) = 2_pInt
mesh_ipNeighborhood(3,2,1,e) = 1_pInt
mesh_ipNeighborhood(3,3,1,e) = 4_pInt
mesh_ipNeighborhood(3,4,1,e) = 3_pInt
mesh_ipNeighborhood(3,5,1,e) = 6_pInt
mesh_ipNeighborhood(3,6,1,e) = 5_pInt
enddo
enddo
enddo
end subroutine mesh_spectral_build_ipNeighborhood
!--------------------------------------------------------------------------------------------------
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
!--------------------------------------------------------------------------------------------------
function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
implicit none
real(pReal), intent(in), dimension(:,:,:,:) :: &
centres
real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
nodes
real(pReal), intent(in), dimension(3) :: &
gDim
real(pReal), intent(in), dimension(3,3) :: &
Favg
real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
wrappedCentres
integer(pInt) :: &
i,j,k,n
integer(pInt), dimension(3), parameter :: &
diag = 1_pInt
integer(pInt), dimension(3) :: &
shift = 0_pInt, &
lookup = 0_pInt, &
me = 0_pInt, &
iRes = 0_pInt
integer(pInt), dimension(3,8) :: &
neighbor = reshape([ &
0_pInt, 0_pInt, 0_pInt, &
1_pInt, 0_pInt, 0_pInt, &
1_pInt, 1_pInt, 0_pInt, &
0_pInt, 1_pInt, 0_pInt, &
0_pInt, 0_pInt, 1_pInt, &
1_pInt, 0_pInt, 1_pInt, &
1_pInt, 1_pInt, 1_pInt, &
0_pInt, 1_pInt, 1_pInt ], [3,8])
!--------------------------------------------------------------------------------------------------
! initializing variables
iRes = [size(centres,2),size(centres,3),size(centres,4)]
nodes = 0.0_pReal
wrappedCentres = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Meshing cubes around centroids'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
!--------------------------------------------------------------------------------------------------
! building wrappedCentres = centroids + ghosts
wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres
do k = 0_pInt,iRes(3)+1_pInt
do j = 0_pInt,iRes(2)+1_pInt
do i = 0_pInt,iRes(1)+1_pInt
if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin
j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin
i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin
me = [i,j,k] ! me on skin
shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me)
lookup = me-diag+shift*iRes
wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = &
centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) &
- matmul(Favg, real(shift,pReal)*gDim)
endif
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! averaging
do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1)
do n = 1_pInt,8_pInt
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = &
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), &
j+1_pInt+neighbor(2,n), &
k+1_pInt+neighbor(3,n) )
enddo
enddo; enddo; enddo
nodes = nodes/8.0_pReal
end function mesh_nodesAroundCentres
!#################################################################################################################
!#################################################################################################################
!#################################################################################################################
! The following routines are not solver specific and should be included in mesh_base (most likely in modified form)
!#################################################################################################################
!#################################################################################################################
!#################################################################################################################
!--------------------------------------------------------------------------------------------------
!> @brief Split CP elements into cells.
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
!> all others (currently) might be stored more than once.
!> Also allocates the 'mesh_node' array.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_cellconnectivity
implicit none
integer(pInt), dimension(:), allocatable :: &
matchingNode2cellnode
integer(pInt), dimension(:,:), allocatable :: &
cellnodeParent
integer(pInt), dimension(theMesh%elem%Ncellnodes) :: &
localCellnode2globalCellnode
integer(pInt) :: &
e,n,i, &
matchingNodeID, &
localCellnodeID
integer(pInt), dimension(FE_Ngeomtypes), parameter :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
8 & ! element 21 (3D 20node 27ip)
],pInt)
allocate(mesh_cell(FE_maxNcellnodesPerCell,theMesh%elem%nIPs,theMesh%nElems), source=0_pInt)
allocate(matchingNode2cellnode(theMesh%nNodes), source=0_pInt)
allocate(cellnodeParent(2_pInt,theMesh%elem%Ncellnodes*theMesh%nElems), source=0_pInt)
mesh_Ncells = theMesh%nElems*theMesh%elem%nIPs
!--------------------------------------------------------------------------------------------------
! Count cell nodes (including duplicates) and generate cell connectivity list
mesh_Ncellnodes = 0_pInt
do e = 1_pInt,theMesh%nElems
localCellnode2globalCellnode = 0_pInt
do i = 1_pInt,theMesh%elem%nIPs
do n = 1_pInt,theMesh%elem%NcellnodesPerCell
localCellnodeID = theMesh%elem%cell(n,i)
if (localCellnodeID <= FE_NmatchingNodes(theMesh%elem%geomType)) then ! this cell node is a matching node
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
else ! this cell node is no matching node
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
endif
enddo
enddo
enddo
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
forall(n = 1_pInt:mesh_Ncellnodes)
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
endforall
end subroutine mesh_build_cellconnectivity
!--------------------------------------------------------------------------------------------------
!> @brief Calculate position of cellnodes from the given position of nodes
!> Build list of cellnodes' coordinates.
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
!--------------------------------------------------------------------------------------------------
function mesh_build_cellnodes(nodes,Ncellnodes)
implicit none
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
integer(pInt) :: &
e,n,m, &
localCellnodeID
real(pReal), dimension(3) :: &
myCoords
mesh_build_cellnodes = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,myCoords)
do n = 1_pInt,Ncellnodes ! loop over cell nodes
e = mesh_cellnodeParent(1,n)
localCellnodeID = mesh_cellnodeParent(2,n)
myCoords = 0.0_pReal
do m = 1_pInt,theMesh%elem%nNodes
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
* theMesh%elem%cellNodeParentNodeWeights(m,localCellnodeID)
enddo
mesh_build_cellnodes(1:3,n) = myCoords / sum(theMesh%elem%cellNodeParentNodeWeights(:,localCellnodeID))
enddo
!$OMP END PARALLEL DO
end function mesh_build_cellnodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
!> calculated as an average of four tetrahedals with three corners on the cell face
!> and one corner at the central ip.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipVolumes
use math, only: &
math_volTetrahedron, &
math_areaTriangle
implicit none
integer(pInt) :: e,t,g,c,i,m,f,n
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
do e = 1_pInt,theMesh%nElems ! loop over cpElems
select case (theMesh%elem%cellType)
case (1_pInt) ! 2D 3node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)))
case (2_pInt) ! 2D 4node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
mesh_cellnode(1:3,mesh_cell(1,i,e)))
case (3_pInt) ! 3D 4node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)))
case (4_pInt)
c = theMesh%elem%cellType ! 3D 8node
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
subvolume = 0.0_pReal
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
subvolume(n,f) = math_volTetrahedron(&
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
mesh_ipCoordinates(1:3,i,e))
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipVolumes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
! HAS TO BE CHANGED IN A LATER VERSION.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipCoordinates
implicit none
integer(pInt) :: e,c,i,n
real(pReal), dimension(3) :: myCoords
if (.not. allocated(mesh_ipCoordinates)) &
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(c,myCoords)
do e = 1_pInt,theMesh%nElems ! loop over cpElems
c = theMesh%elem%cellType
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
myCoords = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
enddo
mesh_ipCoordinates(1:3,i,e) = myCoords / real(FE_NcellnodesPerCell(c),pReal)
enddo
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell center coordinates.
!--------------------------------------------------------------------------------------------------
pure function mesh_cellCenterCoordinates(ip,el)
implicit none
integer(pInt), intent(in) :: el, & !< element number
ip !< integration point number
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
integer(pInt) :: c,n
c = theMesh%elem%cellType
mesh_cellCenterCoordinates = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
enddo
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / real(FE_NcellnodesPerCell(c),pReal)
end function mesh_cellCenterCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipAreas
use math, only: &
math_cross
implicit none
integer(pInt) :: e,t,g,c,i,f,n,m
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
real(pReal), dimension(3) :: normal
allocate(mesh_ipArea(theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
allocate(mesh_ipAreaNormal(3_pInt,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
do e = 1_pInt,theMesh%nElems ! loop over cpElems
c = theMesh%elem%cellType
select case (c)
case (1_pInt,2_pInt) ! 2D 3 or 4 node
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
normal(3) = 0.0_pReal
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
enddo
enddo
case (3_pInt) ! 3D 4node
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
enddo
enddo
case (4_pInt) ! 3D 8node
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
normals(1:3,n) = 0.5_pReal &
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
normal = 0.5_pReal * sum(normals,2)
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
enddo
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief get properties of different types of finite elements
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_subNodeOnIPFace
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_FEdata
implicit none
integer(pInt) :: me
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0_pInt)
! *** FE_cellface ***
me = 0_pInt
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
reshape(int([&
2,3, &
3,1, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
reshape(int([&
2,3, &
4,1, &
3,4, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
reshape(int([&
1,3,2, &
1,2,4, &
2,3,4, &
1,4,3 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
reshape(int([&
2,3,7,6, &
4,1,5,8, &
3,4,8,7, &
1,2,6,5, &
5,6,7,8, &
1,4,3,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
end subroutine mesh_build_FEdata
end module mesh