1888 lines
109 KiB
Fortran
1888 lines
109 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
! $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author David Cereceda, Lawrence Livermore National Laboratory
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief material subroutine incoprorating dislocation and twinning physics
|
|
!> @details to be done
|
|
!--------------------------------------------------------------------------------------------------
|
|
module plastic_disloKMC
|
|
use prec, only: &
|
|
pReal, &
|
|
pInt
|
|
|
|
implicit none
|
|
private
|
|
integer(pInt), dimension(:), allocatable, public, protected :: &
|
|
plastic_disloKMC_sizePostResults !< cumulative size of post results
|
|
|
|
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
|
plastic_disloKMC_sizePostResult !< size of each post result output
|
|
|
|
character(len=64), dimension(:,:), allocatable, target, public :: &
|
|
plastic_disloKMC_output !< name of each post result output
|
|
|
|
character(len=12), dimension(3), parameter, private :: &
|
|
plastic_disloKMC_listBasicSlipStates = &
|
|
['rhoEdge ', 'rhoEdgeDip ', 'accshearslip']
|
|
|
|
character(len=12), dimension(2), parameter, private :: &
|
|
plastic_disloKMC_listBasicTwinStates = &
|
|
['twinFraction', 'accsheartwin']
|
|
|
|
character(len=17), dimension(4), parameter, private :: &
|
|
plastic_disloKMC_listDependentSlipStates = &
|
|
['invLambdaSlip ', 'invLambdaSlipTwin', 'meanFreePathSlip ', 'tauSlipThreshold ']
|
|
|
|
character(len=16), dimension(4), parameter, private :: &
|
|
plastic_disloKMC_listDependentTwinStates = &
|
|
['invLambdaTwin ', 'meanFreePathTwin', 'tauTwinThreshold', 'twinVolume ']
|
|
|
|
real(pReal), parameter, private :: &
|
|
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
|
|
|
integer(pInt), dimension(:), allocatable, target, public :: &
|
|
plastic_disloKMC_Noutput !< number of outputs per instance of this plasticity
|
|
|
|
integer(pInt), dimension(:), allocatable, public, protected :: &
|
|
plastic_disloKMC_totalNslip, & !< total number of active slip systems for each instance
|
|
plastic_disloKMC_totalNtwin !< total number of active twin systems for each instance
|
|
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
plastic_disloKMC_Nslip, & !< number of active slip systems for each family and instance
|
|
plastic_disloKMC_Ntwin !< number of active twin systems for each family and instance
|
|
|
|
real(pReal), dimension(:), allocatable, private :: &
|
|
plastic_disloKMC_CAtomicVolume, & !< atomic volume in Bugers vector unit
|
|
plastic_disloKMC_D0, & !< prefactor for self-diffusion coefficient
|
|
plastic_disloKMC_Qsd, & !< activation energy for dislocation climb
|
|
plastic_disloKMC_GrainSize, & !< grain size
|
|
plastic_disloKMC_MaxTwinFraction, & !< maximum allowed total twin volume fraction
|
|
plastic_disloKMC_CEdgeDipMinDistance, & !<
|
|
plastic_disloKMC_Cmfptwin, & !<
|
|
plastic_disloKMC_Cthresholdtwin, & !<
|
|
plastic_disloKMC_SolidSolutionStrength, & !< Strength due to elements in solid solution
|
|
plastic_disloKMC_L0, & !< Length of twin nuclei in Burgers vectors
|
|
plastic_disloKMC_xc, & !< critical distance for formation of twin nucleus
|
|
plastic_disloKMC_VcrossSlip, & !< cross slip volume
|
|
plastic_disloKMC_SFE_0K, & !< stacking fault energy at zero K
|
|
plastic_disloKMC_dSFE_dT, & !< temperature dependance of stacking fault energy
|
|
plastic_disloKMC_dipoleFormationFactor, & !< scaling factor for dipole formation: 0: off, 1: on. other values not useful
|
|
plastic_disloKMC_aTolRho, & !< absolute tolerance for integration of dislocation density
|
|
plastic_disloKMC_aTolTwinFrac !< absolute tolerance for integration of twin volume fraction
|
|
|
|
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
|
plastic_disloKMC_Ctwin66 !< twin elasticity matrix in Mandel notation for each instance
|
|
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
|
plastic_disloKMC_Ctwin3333 !< twin elasticity matrix for each instance
|
|
real(pReal), dimension(:,:), allocatable, private :: &
|
|
plastic_disloKMC_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance
|
|
plastic_disloKMC_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance
|
|
plastic_disloKMC_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance
|
|
plastic_disloKMC_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance
|
|
plastic_disloKMC_burgersPerTwinFamily, & !< absolute length of burgers vector [m] for each twin family and instance
|
|
plastic_disloKMC_burgersPerTwinSystem, & !< absolute length of burgers vector [m] for each twin system and instance
|
|
plastic_disloKMC_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance
|
|
plastic_disloKMC_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance
|
|
plastic_disloKMC_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance
|
|
plastic_disloKMC_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily, & !< Peierls stress [Pa] for each family and instance
|
|
plastic_disloKMC_Ndot0PerTwinFamily, & !< twin nucleation rate [1/m³s] for each twin family and instance
|
|
plastic_disloKMC_Ndot0PerTwinSystem, & !< twin nucleation rate [1/m³s] for each twin system and instance
|
|
plastic_disloKMC_tau_r, & !< stress to bring partial close together for each twin system and instance
|
|
plastic_disloKMC_twinsizePerTwinFamily, & !< twin thickness [m] for each twin family and instance
|
|
plastic_disloKMC_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance
|
|
plastic_disloKMC_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
|
plastic_disloKMC_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
|
plastic_disloKMC_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
|
|
plastic_disloKMC_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
|
|
plastic_disloKMC_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance
|
|
plastic_disloKMC_interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
|
|
plastic_disloKMC_pPerSlipFamily, & !< p-exponent in glide velocity
|
|
plastic_disloKMC_qPerSlipFamily, & !< q-exponent in glide velocity
|
|
plastic_disloKMC_uPerSlipFamily, & !< u-exponent in glide velocity
|
|
plastic_disloKMC_sPerSlipFamily, & !< self-hardening in glide velocity
|
|
plastic_disloKMC_rPerTwinFamily, & !< r-exponent in twin nucleation rate
|
|
plastic_disloKMC_nonSchmidCoeff !< non-Schmid coefficients (bcc)
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
plastic_disloKMC_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance
|
|
plastic_disloKMC_interactionMatrix_SlipTwin, & !< interaction matrix of slip systems with twin systems for each instance
|
|
plastic_disloKMC_interactionMatrix_TwinSlip, & !< interaction matrix of twin systems with slip systems for each instance
|
|
plastic_disloKMC_interactionMatrix_TwinTwin, & !< interaction matrix of the different twin systems for each instance
|
|
plastic_disloKMC_forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance
|
|
|
|
enum, bind(c)
|
|
enumerator :: undefined_ID, &
|
|
edge_density_ID, &
|
|
dipole_density_ID, &
|
|
shear_rate_slip_ID, &
|
|
accumulated_shear_slip_ID, &
|
|
mfp_slip_ID, &
|
|
resolved_stress_slip_ID, &
|
|
threshold_stress_slip_ID, &
|
|
edge_dipole_distance_ID, &
|
|
stress_exponent_ID, &
|
|
twin_fraction_ID, &
|
|
shear_rate_twin_ID, &
|
|
accumulated_shear_twin_ID, &
|
|
mfp_twin_ID, &
|
|
resolved_stress_twin_ID, &
|
|
threshold_stress_twin_ID
|
|
end enum
|
|
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
|
plastic_disloKMC_outputID !< ID of each post result output
|
|
|
|
|
|
public :: &
|
|
plastic_disloKMC_init, &
|
|
plastic_disloKMC_homogenizedC, &
|
|
plastic_disloKMC_microstructure, &
|
|
plastic_disloKMC_LpAndItsTangent, &
|
|
plastic_disloKMC_dotState, &
|
|
plastic_disloKMC_postResults
|
|
private :: &
|
|
plastic_disloKMC_stateInit, &
|
|
plastic_disloKMC_aTolState
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_init(fileUnit)
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use debug, only: &
|
|
debug_level,&
|
|
debug_constitutive,&
|
|
debug_levelBasic
|
|
use math, only: &
|
|
math_Mandel3333to66, &
|
|
math_Voigt66to3333, &
|
|
math_mul3x3
|
|
use mesh, only: &
|
|
mesh_NcpElems
|
|
use IO, only: &
|
|
IO_read, &
|
|
IO_lc, &
|
|
IO_getTag, &
|
|
IO_isBlank, &
|
|
IO_stringPos, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_intValue, &
|
|
IO_warning, &
|
|
IO_error, &
|
|
IO_timeStamp, &
|
|
IO_EOF
|
|
use material, only: &
|
|
phase_plasticity, &
|
|
phase_plasticityInstance, &
|
|
phase_Noutput, &
|
|
PLASTICITY_DISLOKMC_label, &
|
|
PLASTICITY_DISLOKMC_ID, &
|
|
material_phase, &
|
|
plasticState, &
|
|
MATERIAL_partPhase
|
|
use lattice
|
|
use numerics,only: &
|
|
worldrank, &
|
|
numerics_integrator
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: fileUnit
|
|
|
|
integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt
|
|
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
|
|
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,&
|
|
f,instance,j,k,l,m,n,o,p,q,r,s,ns,nt, &
|
|
Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, &
|
|
Nchunks_SlipFamilies, Nchunks_TwinFamilies, Nchunks_nonSchmid, &
|
|
offset_slip, index_myFamily, index_otherFamily
|
|
integer(pInt) :: sizeState, sizeDotState
|
|
integer(pInt) :: NofMyPhase
|
|
character(len=65536) :: &
|
|
tag = '', &
|
|
line = ''
|
|
real(pReal), dimension(:), allocatable :: tempPerSlip, tempPerTwin
|
|
|
|
mainProcess: if (worldrank == 0) then
|
|
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOKMC_label//' init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
endif mainProcess
|
|
|
|
maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOKMC_ID),pInt)
|
|
if (maxNinstance == 0_pInt) return
|
|
|
|
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
|
|
|
allocate(plastic_disloKMC_sizePostResults(maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
|
|
allocate(plastic_disloKMC_output(maxval(phase_Noutput),maxNinstance))
|
|
plastic_disloKMC_output = ''
|
|
allocate(plastic_disloKMC_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
|
|
allocate(plastic_disloKMC_Noutput(maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_totalNslip(maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_totalNtwin(maxNinstance), source=0_pInt)
|
|
allocate(plastic_disloKMC_CAtomicVolume(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_D0(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Qsd(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_GrainSize(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_MaxTwinFraction(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Cmfptwin(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Cthresholdtwin(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_SolidSolutionStrength(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_L0(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_xc(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_VcrossSlip(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_aTolRho(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_aTolTwinFrac(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_SFE_0K(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_dSFE_dT(maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_dipoleFormationFactor(maxNinstance), source=1.0_pReal) !should be on by default
|
|
allocate(plastic_disloKMC_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_tau_peierlsPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(plastic_disloKMC_pPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_qPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_uPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_sPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(plastic_disloKMC_rPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance),source=0.0_pReal)
|
|
allocate(plastic_disloKMC_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), source=0.0_pReal)
|
|
|
|
|
|
rewind(fileUnit)
|
|
phase = 0_pInt
|
|
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
|
|
line = IO_read(fileUnit)
|
|
enddo
|
|
|
|
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
|
|
line = IO_read(fileUnit)
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
|
|
line = IO_read(fileUnit, .true.) ! reset IO_read
|
|
exit
|
|
endif
|
|
if (IO_getTag(line,'[',']') /= '') then ! next phase section
|
|
phase = phase + 1_pInt ! advance phase section counter
|
|
if (phase_plasticity(phase) == PLASTICITY_DISLOKMC_ID) then
|
|
Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt)
|
|
Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt)
|
|
Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase))
|
|
Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase))
|
|
Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase))
|
|
Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase))
|
|
Nchunks_nonSchmid = lattice_NnonSchmid(phase)
|
|
if(allocated(tempPerSlip)) deallocate(tempPerSlip)
|
|
if(allocated(tempPerTwin)) deallocate(tempPerTwin)
|
|
allocate(tempPerSlip(Nchunks_SlipFamilies))
|
|
allocate(tempPerTwin(Nchunks_TwinFamilies))
|
|
endif
|
|
cycle ! skip to next line
|
|
endif
|
|
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_DISLOKMC_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
|
|
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
|
|
positions = IO_stringPos(line,MAXNCHUNKS)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
|
|
case ('edge_density')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = edge_density_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('dipole_density')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = dipole_density_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('shear_rate_slip')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = shear_rate_slip_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('accumulated_shear_slip')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = accumulated_shear_slip_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('mfp_slip')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = mfp_slip_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('resolved_stress_slip')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = resolved_stress_slip_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('threshold_stress_slip')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = threshold_stress_slip_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('edge_dipole_distance')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = edge_dipole_distance_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('stress_exponent')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = stress_exponent_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('twin_fraction')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = twin_fraction_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('shear_rate_twin')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = shear_rate_twin_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('accumulated_shear_twin')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = accumulated_shear_twin_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('mfp_twin')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = mfp_twin_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('resolved_stress_twin')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = resolved_stress_twin_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('threshold_stress_twin')
|
|
plastic_disloKMC_Noutput(instance) = plastic_disloKMC_Noutput(instance) + 1_pInt
|
|
plastic_disloKMC_outputID(plastic_disloKMC_Noutput(instance),instance) = threshold_stress_twin_ID
|
|
plastic_disloKMC_output(plastic_disloKMC_Noutput(instance),instance) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
end select
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on number of slip system families
|
|
case ('nslip')
|
|
if (positions(1) < Nchunks_SlipFamilies + 1_pInt) &
|
|
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (positions(1) > Nchunks_SlipFamilies + 1_pInt) &
|
|
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
Nchunks_SlipFamilies = positions(1) - 1_pInt
|
|
do j = 1_pInt, Nchunks_SlipFamilies
|
|
plastic_disloKMC_Nslip(j,instance) = IO_intValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('rhoedge0','rhoedgedip0','slipburgers','qedge','v0','clambdaslip','tau_peierls','p_slip','q_slip',&
|
|
'u_slip','s_slip')
|
|
do j = 1_pInt, Nchunks_SlipFamilies
|
|
tempPerSlip(j) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
select case(tag)
|
|
case ('rhoedge0')
|
|
plastic_disloKMC_rhoEdge0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('rhoedgedip0')
|
|
plastic_disloKMC_rhoEdgeDip0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('slipburgers')
|
|
plastic_disloKMC_burgersPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('qedge')
|
|
plastic_disloKMC_QedgePerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('v0')
|
|
plastic_disloKMC_v0PerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('clambdaslip')
|
|
plastic_disloKMC_CLambdaSlipPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('tau_peierls')
|
|
if (lattice_structure(phase) /= LATTICE_bcc_ID) &
|
|
call IO_warning(42_pInt,ext_msg=trim(tag)//' for non-bcc ('//PLASTICITY_DISLOKMC_label//')')
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('p_slip')
|
|
plastic_disloKMC_pPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('q_slip')
|
|
plastic_disloKMC_qPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('u_slip')
|
|
plastic_disloKMC_uPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
case ('s_slip')
|
|
plastic_disloKMC_sPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
|
end select
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on slip number of twin families
|
|
case ('ntwin')
|
|
if (positions(1) < Nchunks_TwinFamilies + 1_pInt) &
|
|
call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (positions(1) > Nchunks_TwinFamilies + 1_pInt) &
|
|
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
Nchunks_TwinFamilies = positions(1) - 1_pInt
|
|
do j = 1_pInt, Nchunks_TwinFamilies
|
|
plastic_disloKMC_Ntwin(j,instance) = IO_intValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('ndot0','twinsize','twinburgers','r_twin')
|
|
do j = 1_pInt, Nchunks_TwinFamilies
|
|
tempPerTwin(j) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
select case(tag)
|
|
case ('ndot0')
|
|
if (lattice_structure(phase) == LATTICE_fcc_ID) &
|
|
call IO_warning(42_pInt,ext_msg=trim(tag)//' for fcc ('//PLASTICITY_DISLOKMC_label//')')
|
|
plastic_disloKMC_Ndot0PerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
|
case ('twinsize')
|
|
plastic_disloKMC_twinsizePerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
|
case ('twinburgers')
|
|
plastic_disloKMC_burgersPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
|
case ('r_twin')
|
|
plastic_disloKMC_rPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
|
end select
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters depending on number of interactions
|
|
case ('interaction_slipslip','interactionslipslip')
|
|
if (positions(1) < 1_pInt + Nchunks_SlipSlip) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
do j = 1_pInt, Nchunks_SlipSlip
|
|
plastic_disloKMC_interaction_SlipSlip(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('interaction_sliptwin','interactionsliptwin')
|
|
if (positions(1) < 1_pInt + Nchunks_SlipTwin) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
do j = 1_pInt, Nchunks_SlipTwin
|
|
plastic_disloKMC_interaction_SlipTwin(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('interaction_twinslip','interactiontwinslip')
|
|
if (positions(1) < 1_pInt + Nchunks_TwinSlip) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
do j = 1_pInt, Nchunks_TwinSlip
|
|
plastic_disloKMC_interaction_TwinSlip(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('interaction_twintwin','interactiontwintwin')
|
|
if (positions(1) < 1_pInt + Nchunks_TwinTwin) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
do j = 1_pInt, Nchunks_TwinTwin
|
|
plastic_disloKMC_interaction_TwinTwin(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
case ('nonschmid_coefficients')
|
|
if (positions(1) < 1_pInt + Nchunks_nonSchmid) &
|
|
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOKMC_label//')')
|
|
do j = 1_pInt,Nchunks_nonSchmid
|
|
plastic_disloKMC_nonSchmidCoeff(j,instance) = IO_floatValue(line,positions,1_pInt+j)
|
|
enddo
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parameters independent of number of slip/twin systems
|
|
case ('grainsize')
|
|
plastic_disloKMC_GrainSize(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('maxtwinfraction')
|
|
plastic_disloKMC_MaxTwinFraction(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('d0')
|
|
plastic_disloKMC_D0(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('qsd')
|
|
plastic_disloKMC_Qsd(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_rho')
|
|
plastic_disloKMC_aTolRho(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_twinfrac')
|
|
plastic_disloKMC_aTolTwinFrac(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('cmfptwin')
|
|
plastic_disloKMC_Cmfptwin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('cthresholdtwin')
|
|
plastic_disloKMC_Cthresholdtwin(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('solidsolutionstrength')
|
|
plastic_disloKMC_SolidSolutionStrength(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('l0')
|
|
plastic_disloKMC_L0(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('xc')
|
|
plastic_disloKMC_xc(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('vcrossslip')
|
|
plastic_disloKMC_VcrossSlip(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('cedgedipmindistance')
|
|
plastic_disloKMC_CEdgeDipMinDistance(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('catomicvolume')
|
|
plastic_disloKMC_CAtomicVolume(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('sfe_0k')
|
|
plastic_disloKMC_SFE_0K(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('dsfe_dt')
|
|
plastic_disloKMC_dSFE_dT(instance) = IO_floatValue(line,positions,2_pInt)
|
|
case ('dipoleformationfactor')
|
|
plastic_disloKMC_dipoleFormationFactor(instance) = IO_floatValue(line,positions,2_pInt)
|
|
end select
|
|
endif; endif
|
|
enddo parsingFile
|
|
|
|
sanityChecks: do phase = 1_pInt, size(phase_plasticity)
|
|
myPhase: if (phase_plasticity(phase) == PLASTICITY_disloKMC_ID) then
|
|
instance = phase_plasticityInstance(phase)
|
|
if (sum(plastic_disloKMC_Nslip(:,instance)) < 0_pInt) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='Nslip ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (sum(plastic_disloKMC_Ntwin(:,instance)) < 0_pInt) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='Ntwin ('//PLASTICITY_DISLOKMC_label//')')
|
|
do f = 1_pInt,lattice_maxNslipFamily
|
|
if (plastic_disloKMC_Nslip(f,instance) > 0_pInt) then
|
|
if (plastic_disloKMC_rhoEdge0(f,instance) < 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_rhoEdgeDip0(f,instance) < 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_burgersPerSlipFamily(f,instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='slipBurgers ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_v0PerSlipFamily(f,instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='v0 ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance) < 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='tau_peierls ('//PLASTICITY_DISLOKMC_label//')')
|
|
endif
|
|
enddo
|
|
do f = 1_pInt,lattice_maxNtwinFamily
|
|
if (plastic_disloKMC_Ntwin(f,instance) > 0_pInt) then
|
|
if (plastic_disloKMC_burgersPerTwinFamily(f,instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='twinburgers ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_Ndot0PerTwinFamily(f,instance) < 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='ndot0 ('//PLASTICITY_DISLOKMC_label//')')
|
|
endif
|
|
enddo
|
|
if (plastic_disloKMC_CAtomicVolume(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_D0(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_Qsd(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (sum(plastic_disloKMC_Ntwin(:,instance)) > 0_pInt) then
|
|
if (plastic_disloKMC_SFE_0K(instance) == 0.0_pReal .and. &
|
|
plastic_disloKMC_dSFE_dT(instance) == 0.0_pReal .and. &
|
|
lattice_structure(phase) == LATTICE_fcc_ID) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_aTolRho(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOKMC_label//')')
|
|
if (plastic_disloKMC_aTolTwinFrac(instance) <= 0.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOKMC_label//')')
|
|
endif
|
|
if (plastic_disloKMC_dipoleFormationFactor(instance) /= 0.0_pReal .and. &
|
|
plastic_disloKMC_dipoleFormationFactor(instance) /= 1.0_pReal) &
|
|
call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOKMC_label//')')
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Determine total number of active slip or twin systems
|
|
plastic_disloKMC_Nslip(:,instance) = min(lattice_NslipSystem(:,phase),plastic_disloKMC_Nslip(:,instance))
|
|
plastic_disloKMC_Ntwin(:,instance) = min(lattice_NtwinSystem(:,phase),plastic_disloKMC_Ntwin(:,instance))
|
|
plastic_disloKMC_totalNslip(instance) = sum(plastic_disloKMC_Nslip(:,instance))
|
|
plastic_disloKMC_totalNtwin(instance) = sum(plastic_disloKMC_Ntwin(:,instance))
|
|
endif myPhase
|
|
enddo sanityChecks
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocation of variables whose size depends on the total number of active slip systems
|
|
maxTotalNslip = maxval(plastic_disloKMC_totalNslip)
|
|
maxTotalNtwin = maxval(plastic_disloKMC_totalNtwin)
|
|
|
|
allocate(plastic_disloKMC_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_tau_r(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal)
|
|
|
|
allocate(plastic_disloKMC_interactionMatrix_SlipSlip(maxval(plastic_disloKMC_totalNslip),& ! slip resistance from slip activity
|
|
maxval(plastic_disloKMC_totalNslip),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interactionMatrix_SlipTwin(maxval(plastic_disloKMC_totalNslip),& ! slip resistance from twin activity
|
|
maxval(plastic_disloKMC_totalNtwin),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interactionMatrix_TwinSlip(maxval(plastic_disloKMC_totalNtwin),& ! twin resistance from slip activity
|
|
maxval(plastic_disloKMC_totalNslip),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_interactionMatrix_TwinTwin(maxval(plastic_disloKMC_totalNtwin),& ! twin resistance from twin activity
|
|
maxval(plastic_disloKMC_totalNtwin),&
|
|
maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), &
|
|
source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
|
allocate(plastic_disloKMC_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
|
|
|
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
|
myPhase2: if (phase_plasticity(phase) == PLASTICITY_disloKMC_ID) then
|
|
NofMyPhase=count(material_phase==phase)
|
|
instance = phase_plasticityInstance(phase)
|
|
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Determine size of postResults array
|
|
outputs: do o = 1_pInt,plastic_disloKMC_Noutput(instance)
|
|
select case(plastic_disloKMC_outputID(o,instance))
|
|
case(edge_density_ID, &
|
|
dipole_density_ID, &
|
|
shear_rate_slip_ID, &
|
|
accumulated_shear_slip_ID, &
|
|
mfp_slip_ID, &
|
|
resolved_stress_slip_ID, &
|
|
threshold_stress_slip_ID, &
|
|
edge_dipole_distance_ID, &
|
|
stress_exponent_ID &
|
|
)
|
|
mySize = ns
|
|
case(twin_fraction_ID, &
|
|
shear_rate_twin_ID, &
|
|
accumulated_shear_twin_ID, &
|
|
mfp_twin_ID, &
|
|
resolved_stress_twin_ID, &
|
|
threshold_stress_twin_ID &
|
|
)
|
|
mySize = nt
|
|
end select
|
|
|
|
if (mySize > 0_pInt) then ! any meaningful output found
|
|
plastic_disloKMC_sizePostResult(o,instance) = mySize
|
|
plastic_disloKMC_sizePostResults(instance) = plastic_disloKMC_sizePostResults(instance) + mySize
|
|
endif
|
|
enddo outputs
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate state arrays
|
|
sizeDotState = int(size(plastic_disloKMC_listBasicSlipStates),pInt) * ns &
|
|
+ int(size(plastic_disloKMC_listBasicTwinStates),pInt) * nt
|
|
sizeState = sizeDotState &
|
|
+ int(size(plastic_disloKMC_listDependentSlipStates),pInt) * ns &
|
|
+ int(size(plastic_disloKMC_listDependentTwinStates),pInt) * nt
|
|
|
|
plasticState(phase)%sizeState = sizeState
|
|
plasticState(phase)%sizeDotState = sizeDotState
|
|
plasticState(phase)%sizePostResults = plastic_disloKMC_sizePostResults(instance)
|
|
plasticState(phase)%nSlip = plastic_disloKMC_totalNslip(instance)
|
|
plasticState(phase)%nTwin = 0_pInt
|
|
plasticState(phase)%nTrans= 0_pInt
|
|
allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
|
|
|
|
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
if (any(numerics_integrator == 1_pInt)) then
|
|
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
allocate(plasticState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
endif
|
|
if (any(numerics_integrator == 4_pInt)) &
|
|
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
|
if (any(numerics_integrator == 5_pInt)) &
|
|
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
|
|
offset_slip = 2_pInt*plasticState(phase)%nSlip
|
|
plasticState(phase)%slipRate => &
|
|
plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase)
|
|
plasticState(phase)%accumulatedSlip => &
|
|
plasticState(phase)%state (offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase)
|
|
!* Process slip related parameters ------------------------------------------------
|
|
|
|
mySlipFamilies: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(plastic_disloKMC_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list
|
|
mySlipSystems: do j = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
|
|
!* Burgers vector,
|
|
! dislocation velocity prefactor,
|
|
! mean free path prefactor,
|
|
! and minimum dipole distance
|
|
|
|
plastic_disloKMC_burgersPerSlipSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_burgersPerSlipFamily(f,instance)
|
|
|
|
plastic_disloKMC_QedgePerSlipSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_QedgePerSlipFamily(f,instance)
|
|
|
|
plastic_disloKMC_v0PerSlipSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_v0PerSlipFamily(f,instance)
|
|
|
|
plastic_disloKMC_CLambdaSlipPerSlipSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_CLambdaSlipPerSlipFamily(f,instance)
|
|
|
|
!* Calculation of forest projections for edge dislocations
|
|
!* Interaction matrices
|
|
|
|
otherSlipFamilies: do o = 1_pInt,lattice_maxNslipFamily
|
|
index_otherFamily = sum(plastic_disloKMC_Nslip(1:o-1_pInt,instance))
|
|
otherSlipSystems: do k = 1_pInt,plastic_disloKMC_Nslip(o,instance)
|
|
plastic_disloKMC_forestProjectionEdge(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,phase))+j,phase), &
|
|
lattice_st(:,sum(lattice_NslipSystem(1:o-1,phase))+k,phase)))
|
|
plastic_disloKMC_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
plastic_disloKMC_interaction_SlipSlip(lattice_interactionSlipSlip( &
|
|
sum(lattice_NslipSystem(1:f-1,phase))+j, &
|
|
sum(lattice_NslipSystem(1:o-1,phase))+k, &
|
|
phase), instance )
|
|
enddo otherSlipSystems; enddo otherSlipFamilies
|
|
|
|
otherTwinFamilies: do o = 1_pInt,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(plastic_disloKMC_Ntwin(1:o-1_pInt,instance))
|
|
otherTwinSystems: do k = 1_pInt,plastic_disloKMC_Ntwin(o,instance)
|
|
plastic_disloKMC_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
plastic_disloKMC_interaction_SlipTwin(lattice_interactionSlipTwin( &
|
|
sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo otherTwinSystems; enddo otherTwinFamilies
|
|
|
|
enddo mySlipSystems
|
|
enddo mySlipFamilies
|
|
|
|
!* Process twin related parameters ------------------------------------------------
|
|
|
|
myTwinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(plastic_disloKMC_Ntwin(1:f-1_pInt,instance)) ! index in truncated twin system list
|
|
myTwinSystems: do j = 1_pInt,plastic_disloKMC_Ntwin(f,instance)
|
|
|
|
!* Burgers vector,
|
|
! nucleation rate prefactor,
|
|
! and twin size
|
|
|
|
plastic_disloKMC_burgersPerTwinSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_burgersPerTwinFamily(f,instance)
|
|
|
|
plastic_disloKMC_Ndot0PerTwinSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_Ndot0PerTwinFamily(f,instance)
|
|
|
|
plastic_disloKMC_twinsizePerTwinSystem(index_myFamily+j,instance) = &
|
|
plastic_disloKMC_twinsizePerTwinFamily(f,instance)
|
|
|
|
!* Rotate twin elasticity matrices
|
|
|
|
index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! index in full lattice twin list
|
|
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
|
do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt
|
|
plastic_disloKMC_Ctwin3333(l,m,n,o,index_myFamily+j,instance) = &
|
|
plastic_disloKMC_Ctwin3333(l,m,n,o,index_myFamily+j,instance) + &
|
|
lattice_C3333(p,q,r,s,instance) * &
|
|
lattice_Qtwin(l,p,index_otherFamily+j,phase) * &
|
|
lattice_Qtwin(m,q,index_otherFamily+j,phase) * &
|
|
lattice_Qtwin(n,r,index_otherFamily+j,phase) * &
|
|
lattice_Qtwin(o,s,index_otherFamily+j,phase)
|
|
enddo; enddo; enddo; enddo
|
|
enddo; enddo; enddo; enddo
|
|
plastic_disloKMC_Ctwin66(1:6,1:6,index_myFamily+j,instance) = &
|
|
math_Mandel3333to66(plastic_disloKMC_Ctwin3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance))
|
|
|
|
!* Interaction matrices
|
|
otherSlipFamilies2: do o = 1_pInt,lattice_maxNslipFamily
|
|
index_otherFamily = sum(plastic_disloKMC_Nslip(1:o-1_pInt,instance))
|
|
otherSlipSystems2: do k = 1_pInt,plastic_disloKMC_Nslip(o,instance)
|
|
plastic_disloKMC_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
plastic_disloKMC_interaction_TwinSlip(lattice_interactionTwinSlip( &
|
|
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo otherSlipSystems2; enddo otherSlipFamilies2
|
|
|
|
otherTwinFamilies2: do o = 1_pInt,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(plastic_disloKMC_Ntwin(1:o-1_pInt,instance))
|
|
otherTwinSystems2: do k = 1_pInt,plastic_disloKMC_Ntwin(o,instance)
|
|
plastic_disloKMC_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
|
plastic_disloKMC_interaction_TwinTwin(lattice_interactionTwinTwin( &
|
|
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
|
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
|
phase), instance )
|
|
enddo otherTwinSystems2; enddo otherTwinFamilies2
|
|
|
|
enddo myTwinSystems
|
|
enddo myTwinFamilies
|
|
call plastic_disloKMC_stateInit(phase,instance)
|
|
call plastic_disloKMC_aTolState(phase,instance)
|
|
endif myPhase2
|
|
|
|
enddo initializeInstances
|
|
|
|
end subroutine plastic_disloKMC_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the relevant state values for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_stateInit(ph,instance)
|
|
use math, only: &
|
|
pi
|
|
use lattice, only: &
|
|
lattice_maxNslipFamily, &
|
|
lattice_mu
|
|
use material, only: &
|
|
plasticState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
instance, & !< number specifying the instance of the plasticity
|
|
ph
|
|
|
|
real(pReal), dimension(plasticState(ph)%sizeState) :: tempState
|
|
|
|
integer(pInt) :: i,j,f,ns,nt, index_myFamily
|
|
real(pReal), dimension(plastic_disloKMC_totalNslip(instance)) :: &
|
|
rhoEdge0, &
|
|
rhoEdgeDip0, &
|
|
invLambdaSlip0, &
|
|
MeanFreePathSlip0, &
|
|
tauSlipThreshold0
|
|
real(pReal), dimension(plastic_disloKMC_totalNtwin(instance)) :: &
|
|
MeanFreePathTwin0,TwinVolume0
|
|
tempState = 0.0_pReal
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize basic slip state variables
|
|
do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(plastic_disloKMC_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list
|
|
rhoEdge0(index_myFamily+1_pInt: &
|
|
index_myFamily+plastic_disloKMC_Nslip(f,instance)) = &
|
|
plastic_disloKMC_rhoEdge0(f,instance)
|
|
rhoEdgeDip0(index_myFamily+1_pInt: &
|
|
index_myFamily+plastic_disloKMC_Nslip(f,instance)) = &
|
|
plastic_disloKMC_rhoEdgeDip0(f,instance)
|
|
enddo
|
|
|
|
tempState(1_pInt:ns) = rhoEdge0
|
|
tempState(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize dependent slip microstructural variables
|
|
forall (i = 1_pInt:ns) &
|
|
invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloKMC_forestProjectionEdge(1:ns,i,instance)))/ &
|
|
plastic_disloKMC_CLambdaSlipPerSlipSystem(i,instance)
|
|
tempState(3_pInt*ns+2_pInt*nt+1:4_pInt*ns+2_pInt*nt) = invLambdaSlip0
|
|
|
|
forall (i = 1_pInt:ns) &
|
|
MeanFreePathSlip0(i) = &
|
|
plastic_disloKMC_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*plastic_disloKMC_GrainSize(instance))
|
|
tempState(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = MeanFreePathSlip0
|
|
|
|
forall (i = 1_pInt:ns) &
|
|
tauSlipThreshold0(i) = &
|
|
lattice_mu(ph)*plastic_disloKMC_burgersPerSlipSystem(i,instance) * &
|
|
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloKMC_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
|
|
|
tempState(6_pInt*ns+4_pInt*nt+1:7_pInt*ns+4_pInt*nt) = tauSlipThreshold0
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize dependent twin microstructural variables
|
|
forall (j = 1_pInt:nt) &
|
|
MeanFreePathTwin0(j) = plastic_disloKMC_GrainSize(instance)
|
|
tempState(6_pInt*ns+3_pInt*nt+1_pInt:6_pInt*ns+4_pInt*nt) = MeanFreePathTwin0
|
|
|
|
forall (j = 1_pInt:nt) &
|
|
TwinVolume0(j) = &
|
|
(pi/4.0_pReal)*plastic_disloKMC_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal)
|
|
tempState(7_pInt*ns+5_pInt*nt+1_pInt:7_pInt*ns+6_pInt*nt) = TwinVolume0
|
|
|
|
plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
|
|
|
end subroutine plastic_disloKMC_stateInit
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the relevant state values for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_aTolState(ph,instance)
|
|
use material, only: &
|
|
plasticState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ph, &
|
|
instance ! number specifying the current instance of the plasticity
|
|
|
|
! Tolerance state for dislocation densities
|
|
plasticState(ph)%aTolState(1_pInt:2_pInt*plastic_disloKMC_totalNslip(instance)) = &
|
|
plastic_disloKMC_aTolRho(instance)
|
|
|
|
! Tolerance state for accumulated shear due to slip
|
|
plasticState(ph)%aTolState(2_pInt*plastic_disloKMC_totalNslip(instance)+1_pInt: &
|
|
3_pInt*plastic_disloKMC_totalNslip(instance))=1e6_pReal
|
|
|
|
|
|
! Tolerance state for twin volume fraction
|
|
plasticState(ph)%aTolState(3_pInt*plastic_disloKMC_totalNslip(instance)+1_pInt: &
|
|
3_pInt*plastic_disloKMC_totalNslip(instance)+&
|
|
plastic_disloKMC_totalNtwin(instance)) = &
|
|
plastic_disloKMC_aTolTwinFrac(instance)
|
|
|
|
! Tolerance state for accumulated shear due to twin
|
|
plasticState(ph)%aTolState(3_pInt*plastic_disloKMC_totalNslip(instance)+ &
|
|
plastic_disloKMC_totalNtwin(instance)+1_pInt: &
|
|
3_pInt*plastic_disloKMC_totalNslip(instance)+ &
|
|
2_pInt*plastic_disloKMC_totalNtwin(instance)) = 1e6_pReal
|
|
|
|
end subroutine plastic_disloKMC_aTolState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns the homogenized elasticity matrix
|
|
!--------------------------------------------------------------------------------------------------
|
|
function plastic_disloKMC_homogenizedC(ipc,ip,el)
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
phase_plasticityInstance, &
|
|
plasticState, &
|
|
mappingConstitutive
|
|
use lattice, only: &
|
|
lattice_C66
|
|
|
|
implicit none
|
|
real(pReal), dimension(6,6) :: &
|
|
plastic_disloKMC_homogenizedC
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
integer(pInt) :: instance,ns,nt,i, &
|
|
ph, &
|
|
of
|
|
real(pReal) :: sumf
|
|
|
|
!* Shortened notation
|
|
of = mappingConstitutive(1,ipc,ip,el)
|
|
ph = mappingConstitutive(2,ipc,ip,el)
|
|
instance = phase_plasticityInstance(ph)
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
!* Total twin volume fraction
|
|
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt),of)) ! safe for nt == 0
|
|
!* Homogenized elasticity matrix
|
|
plastic_disloKMC_homogenizedC = (1.0_pReal-sumf)*lattice_C66(1:6,1:6,ph)
|
|
do i=1_pInt,nt
|
|
plastic_disloKMC_homogenizedC = plastic_disloKMC_homogenizedC &
|
|
+ plasticState(ph)%state(3_pInt*ns+i, of)*plastic_disloKMC_Ctwin66(1:6,1:6,i,instance)
|
|
enddo
|
|
|
|
end function plastic_disloKMC_homogenizedC
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates derived quantities from state
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_microstructure(temperature,ipc,ip,el)
|
|
use math, only: &
|
|
pi
|
|
use material, only: &
|
|
material_phase, &
|
|
phase_plasticityInstance, &
|
|
plasticState, &
|
|
mappingConstitutive
|
|
use lattice, only: &
|
|
lattice_mu, &
|
|
lattice_nu
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
real(pReal), intent(in) :: &
|
|
temperature !< temperature at IP
|
|
|
|
integer(pInt) :: &
|
|
instance, &
|
|
ns,nt,s,t, &
|
|
ph, &
|
|
of
|
|
real(pReal) :: &
|
|
sumf,sfe,x0
|
|
real(pReal), dimension(plastic_disloKMC_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize
|
|
|
|
!* Shortened notation
|
|
of = mappingConstitutive(1,ipc,ip,el)
|
|
ph = mappingConstitutive(2,ipc,ip,el)
|
|
instance = phase_plasticityInstance(ph)
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
!* State: 1 : ns rho_edge
|
|
!* State: ns+1 : 2*ns rho_dipole
|
|
!* State: 2*ns+1 : 3*ns accumulated shear due to slip
|
|
!* State: 3*ns+1 : 3*ns+nt f
|
|
!* State: 3*ns+nt+1 : 3*ns+2*nt accumulated shear due to twin
|
|
!* State: 3*ns+2*nt+1 : 4*ns+2*nt 1/lambda_slip
|
|
!* State: 4*ns+2*nt+1 : 5*ns+2*nt 1/lambda_sliptwin
|
|
!* State: 5*ns+2*nt+1 : 5*ns+3*nt 1/lambda_twin
|
|
!* State: 5*ns+3*nt+1 : 6*ns+3*nt mfp_slip
|
|
!* State: 6*ns+3*nt+1 : 6*ns+4*nt mfp_twin
|
|
!* State: 6*ns+4*nt+1 : 7*ns+4*nt threshold_stress_slip
|
|
!* State: 7*ns+4*nt+1 : 7*ns+5*nt threshold_stress_twin
|
|
!* State: 7*ns+5*nt+1 : 7*ns+6*nt twin volume
|
|
|
|
!* Total twin volume fraction
|
|
sumf = sum(plasticState(ph)%state((3*ns+1):(3*ns+nt), of)) ! safe for nt == 0
|
|
|
|
!* Stacking fault energy
|
|
sfe = plastic_disloKMC_SFE_0K(instance) + &
|
|
plastic_disloKMC_dSFE_dT(instance) * Temperature
|
|
|
|
!* rescaled twin volume fraction for topology
|
|
forall (t = 1_pInt:nt) &
|
|
fOverStacksize(t) = &
|
|
plasticState(ph)%state(3_pInt*ns+t, of)/plastic_disloKMC_twinsizePerTwinSystem(t,instance)
|
|
|
|
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
|
forall (s = 1_pInt:ns) &
|
|
plasticState(ph)%state(3_pInt*ns+2_pInt*nt+s, of) = &
|
|
sqrt(dot_product((plasticState(ph)%state(1:ns,of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns,of)),&
|
|
plastic_disloKMC_forestProjectionEdge(1:ns,s,instance)))/ &
|
|
plastic_disloKMC_CLambdaSlipPerSlipSystem(s,instance)
|
|
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
|
!$OMP CRITICAL (evilmatmul)
|
|
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+2_pInt*nt), of) = 0.0_pReal
|
|
if (nt > 0_pInt .and. ns > 0_pInt) &
|
|
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+1):(5_pInt*ns+2_pInt*nt), of) = &
|
|
matmul(plastic_disloKMC_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
|
!$OMP END CRITICAL (evilmatmul)
|
|
|
|
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
|
!$OMP CRITICAL (evilmatmul)
|
|
if (nt > 0_pInt) &
|
|
plasticState(ph)%state((5_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+3_pInt*nt), of) = &
|
|
matmul(plastic_disloKMC_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
|
!$OMP END CRITICAL (evilmatmul)
|
|
|
|
!* mean free path between 2 obstacles seen by a moving dislocation
|
|
do s = 1_pInt,ns
|
|
if (nt > 0_pInt) then
|
|
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+s, of) = &
|
|
plastic_disloKMC_GrainSize(instance)/(1.0_pReal+plastic_disloKMC_GrainSize(instance)*&
|
|
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+s, of)+plasticState(ph)%state(4_pInt*ns+2_pInt*nt+s, of)))
|
|
else
|
|
plasticState(ph)%state(5_pInt*ns+s, of) = &
|
|
plastic_disloKMC_GrainSize(instance)/&
|
|
(1.0_pReal+plastic_disloKMC_GrainSize(instance)*(plasticState(ph)%state(3_pInt*ns+s, of)))
|
|
endif
|
|
enddo
|
|
|
|
!* mean free path between 2 obstacles seen by a growing twin
|
|
forall (t = 1_pInt:nt) &
|
|
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+t, of) = &
|
|
(plastic_disloKMC_Cmfptwin(instance)*plastic_disloKMC_GrainSize(instance))/&
|
|
(1.0_pReal+plastic_disloKMC_GrainSize(instance)*plasticState(ph)%state(5_pInt*ns+2_pInt*nt+t, of))
|
|
|
|
!* threshold stress for dislocation motion
|
|
forall (s = 1_pInt:ns) &
|
|
plasticState(ph)%state(6_pInt*ns+4_pInt*nt+s, of) = &
|
|
lattice_mu(ph)*plastic_disloKMC_burgersPerSlipSystem(s,instance)*&
|
|
sqrt(dot_product((plasticState(ph)%state(1:ns, of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)),&
|
|
plastic_disloKMC_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
|
|
|
!* threshold stress for growing twin
|
|
forall (t = 1_pInt:nt) &
|
|
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+t, of) = &
|
|
plastic_disloKMC_Cthresholdtwin(instance)*&
|
|
(sfe/(3.0_pReal*plastic_disloKMC_burgersPerTwinSystem(t,instance))+&
|
|
3.0_pReal*plastic_disloKMC_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
|
(plastic_disloKMC_L0(instance)*plastic_disloKMC_burgersPerSlipSystem(t,instance)))
|
|
|
|
!* final twin volume after growth
|
|
forall (t = 1_pInt:nt) &
|
|
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+t, of) = &
|
|
(pi/4.0_pReal)*plastic_disloKMC_twinsizePerTwinSystem(t,instance)*plasticState(ph)%state(6*ns+3*nt+t, of)**(2.0_pReal)
|
|
|
|
!* equilibrium seperation of partial dislocations
|
|
do t = 1_pInt,nt
|
|
x0 = lattice_mu(ph)*plastic_disloKMC_burgersPerTwinSystem(t,instance)**(2.0_pReal)/&
|
|
(sfe*8.0_pReal*pi)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
|
plastic_disloKMC_tau_r(t,instance)= &
|
|
lattice_mu(ph)*plastic_disloKMC_burgersPerTwinSystem(t,instance)/(2.0_pReal*pi)*&
|
|
(1/(x0+plastic_disloKMC_xc(instance))+cos(pi/3.0_pReal)/x0) !!! used where??
|
|
enddo
|
|
|
|
end subroutine plastic_disloKMC_microstructure
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates plastic velocity gradient and its tangent
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature,ipc,ip,el)
|
|
use prec, only: &
|
|
tol_math_check
|
|
use math, only: &
|
|
math_Plain3333to99, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_spectralDecompositionSym33, &
|
|
math_tensorproduct, &
|
|
math_symmetric33, &
|
|
math_mul33x3
|
|
use material, only: &
|
|
material_phase, &
|
|
phase_plasticityInstance, &
|
|
plasticState, &
|
|
mappingConstitutive
|
|
use lattice, only: &
|
|
lattice_Sslip, &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin, &
|
|
lattice_Stwin_v, &
|
|
lattice_maxNslipFamily,&
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_NnonSchmid, &
|
|
lattice_shearTwin, &
|
|
lattice_structure, &
|
|
lattice_fcc_twinNucleationSlipPair, &
|
|
LATTICE_fcc_ID
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: ipc,ip,el
|
|
real(pReal), intent(in) :: Temperature
|
|
real(pReal), dimension(6), intent(in) :: Tstar_v
|
|
real(pReal), dimension(3,3), intent(out) :: Lp
|
|
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
|
|
|
integer(pInt) :: instance,ph,of,ns,nt,f,i,j,k,l,m,n,index_myFamily,s1,s2
|
|
real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0, &
|
|
StressRatio_u,StressRatio_uminus1,tau_slip_pos,tau_slip_neg,vel_slip,dvel_slip,&
|
|
dgdot_dtauslip_pos,dgdot_dtauslip_neg,dgdot_dtautwin,tau_twin,gdot_twin,stressRatio
|
|
real(pReal), dimension(3,3,2) :: &
|
|
nonSchmid_tensor
|
|
real(pReal), dimension(3,3,3,3) :: &
|
|
dLp_dTstar3333
|
|
real(pReal), dimension(plastic_disloKMC_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip_pos,gdot_slip_neg
|
|
|
|
!* Shortened notation
|
|
of = mappingConstitutive(1,ipc,ip,el)
|
|
ph = mappingConstitutive(2,ipc,ip,el)
|
|
instance = phase_plasticityInstance(ph)
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
Lp = 0.0_pReal
|
|
dLp_dTstar3333 = 0.0_pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Dislocation glide part
|
|
gdot_slip_pos = 0.0_pReal
|
|
gdot_slip_neg = 0.0_pReal
|
|
dgdot_dtauslip_pos = 0.0_pReal
|
|
dgdot_dtauslip_neg = 0.0_pReal
|
|
|
|
j = 0_pInt
|
|
slipFamilies: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
slipSystems: do i = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
j = j+1_pInt
|
|
!* Boltzmann ratio
|
|
BoltzmannRatio = plastic_disloKMC_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
|
!* Initial shear rates
|
|
DotGamma0 = &
|
|
plasticState(ph)%state(j, of)*plastic_disloKMC_burgersPerSlipSystem(j,instance)*&
|
|
plastic_disloKMC_v0PerSlipSystem(j,instance)
|
|
!* Resolved shear stress on slip system
|
|
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
|
tau_slip_neg = tau_slip_pos
|
|
nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
|
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
|
|
nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph)
|
|
tau_slip_pos = tau_slip_pos + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
|
tau_slip_neg = tau_slip_neg + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
|
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + plastic_disloKMC_nonSchmidCoeff(k,instance)*&
|
|
lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,ph)
|
|
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + plastic_disloKMC_nonSchmidCoeff(k,instance)*&
|
|
lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph)
|
|
enddo nonSchmidSystems
|
|
|
|
significantPostitiveStress: if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_pminus1 = stressRatio**(plastic_disloKMC_pPerSlipFamily(f,instance)-1.0_pReal)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
stressRatio_uminus1 = stressRatio**(plastic_disloKMC_uPerSlipFamily(f,instance)-1.0_pReal)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_pos(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_pos)
|
|
|
|
!* Derivatives of shear rates
|
|
dvel_slip = &
|
|
(abs(exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))&
|
|
*BoltzmannRatio*plastic_disloKMC_pPerSlipFamily(f,instance)&
|
|
*plastic_disloKMC_qPerSlipFamily(f,instance)/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))*&
|
|
StressRatio_pminus1*(1.0_pReal-StressRatio_p)**(plastic_disloKMC_qPerSlipFamily(f,instance)-1.0_pReal) )&
|
|
*(1.0_pReal - 2.0_pReal*plastic_disloKMC_sPerSlipFamily(f,instance)&
|
|
*abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance))))
|
|
|
|
dgdot_dtauslip_pos = DotGamma0 * &
|
|
( plastic_disloKMC_uPerSlipFamily(f,instance)*StressRatio_uminus1 &
|
|
/(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))&
|
|
* vel_slip &
|
|
+ StressRatio_u * dvel_slip)
|
|
endif significantPostitiveStress
|
|
significantNegativeStress: if((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_pminus1 = stressRatio**(plastic_disloKMC_pPerSlipFamily(f,instance)-1.0_pReal)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
stressRatio_uminus1 = stressRatio**(plastic_disloKMC_uPerSlipFamily(f,instance)-1.0_pReal)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_neg(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_neg)
|
|
|
|
!* Derivatives of shear rates
|
|
dvel_slip = &
|
|
(abs(exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))&
|
|
*BoltzmannRatio*plastic_disloKMC_pPerSlipFamily(f,instance)&
|
|
*plastic_disloKMC_qPerSlipFamily(f,instance)/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))*&
|
|
StressRatio_pminus1*(1.0_pReal-StressRatio_p)**(plastic_disloKMC_qPerSlipFamily(f,instance)-1.0_pReal) )&
|
|
*(1.0_pReal - 2.0_pReal*plastic_disloKMC_sPerSlipFamily(f,instance)&
|
|
*abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance))))
|
|
|
|
dgdot_dtauslip_neg = DotGamma0 * &
|
|
( plastic_disloKMC_uPerSlipFamily(f,instance)*StressRatio_uminus1 &
|
|
/(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))&
|
|
* vel_slip &
|
|
+ StressRatio_u * dvel_slip)
|
|
endif significantNegativeStress
|
|
!* Plastic velocity gradient for dislocation glide
|
|
Lp = Lp + (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)
|
|
!* Calculation of the tangent of Lp
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar3333(k,l,m,n) = &
|
|
dLp_dTstar3333(k,l,m,n) + (dgdot_dtauslip_pos*nonSchmid_tensor(m,n,1)+&
|
|
dgdot_dtauslip_neg*nonSchmid_tensor(m,n,2))*0.5_pReal*&
|
|
lattice_Sslip(k,l,1,index_myFamily+i,ph)
|
|
enddo slipSystems
|
|
enddo slipFamilies
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! correct Lp and dLp_dTstar3333 for twinned fraction
|
|
!* Total twin volume fraction
|
|
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
|
Lp = Lp * (1.0_pReal - sumf)
|
|
dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Mechanical twinning part
|
|
gdot_twin = 0.0_pReal
|
|
dgdot_dtautwin = 0.0_pReal
|
|
j = 0_pInt
|
|
twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
twinSystems: do i = 1_pInt,plastic_disloKMC_Ntwin(f,instance)
|
|
j = j+1_pInt
|
|
!* Resolved shear stress on twin system
|
|
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
|
|
|
!* Stress ratios
|
|
if (tau_twin > tol_math_check) then
|
|
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+j, of)/tau_twin)**plastic_disloKMC_rPerTwinFamily(f,instance)
|
|
!* Shear rates and their derivatives due to twin
|
|
select case(lattice_structure(ph))
|
|
case (LATTICE_fcc_ID)
|
|
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
|
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
|
if (tau_twin < plastic_disloKMC_tau_r(j,instance)) then
|
|
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2,of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive gdot_slip_pos (= gdot_slip_neg)
|
|
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1,of)+plasticState(ph)%state(ns+s1, of)))/&
|
|
(plastic_disloKMC_L0(instance)*plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
(1.0_pReal-exp(-plastic_disloKMC_VcrossSlip(instance)/(kB*Temperature)*&
|
|
(plastic_disloKMC_tau_r(j,instance)-tau_twin)))
|
|
else
|
|
Ndot0=0.0_pReal
|
|
end if
|
|
case default
|
|
Ndot0=plastic_disloKMC_Ndot0PerTwinSystem(j,instance)
|
|
end select
|
|
gdot_twin = &
|
|
(plastic_disloKMC_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
|
plasticState(ph)%state(7*ns+5*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
|
dgdot_dtautwin = ((gdot_twin*plastic_disloKMC_rPerTwinFamily(f,instance))/tau_twin)*StressRatio_r
|
|
endif
|
|
|
|
!* Plastic velocity gradient for mechanical twinning
|
|
Lp = Lp + gdot_twin*lattice_Stwin(1:3,1:3,index_myFamily+i,ph)
|
|
|
|
!* Calculation of the tangent of Lp
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar3333(k,l,m,n) = &
|
|
dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin*&
|
|
lattice_Stwin(k,l,index_myFamily+i,ph)*&
|
|
lattice_Stwin(m,n,index_myFamily+i,ph)
|
|
enddo twinSystems
|
|
enddo twinFamilies
|
|
|
|
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
|
|
|
end subroutine plastic_disloKMC_LpAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates the rate of change of microstructure
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine plastic_disloKMC_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|
use prec, only: &
|
|
tol_math_check
|
|
use math, only: &
|
|
pi
|
|
use material, only: &
|
|
material_phase, &
|
|
phase_plasticityInstance, &
|
|
plasticState, &
|
|
mappingConstitutive
|
|
use lattice, only: &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin_v, &
|
|
lattice_Sslip, &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_NnonSchmid, &
|
|
lattice_sheartwin, &
|
|
lattice_mu, &
|
|
lattice_structure, &
|
|
lattice_fcc_twinNucleationSlipPair, &
|
|
LATTICE_fcc_ID
|
|
|
|
implicit none
|
|
real(pReal), dimension(6), intent(in):: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
real(pReal), intent(in) :: &
|
|
temperature !< temperature at integration point
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
integer(pInt) :: instance,ns,nt,f,i,j,k,index_myFamily,s1,s2, &
|
|
ph, &
|
|
of
|
|
real(pReal) :: &
|
|
sumf, &
|
|
stressRatio_p,&
|
|
BoltzmannRatio,&
|
|
DotGamma0,&
|
|
stressRatio_u,&
|
|
stressRatio, &
|
|
EdgeDipMinDistance,&
|
|
AtomicVolume,&
|
|
VacancyDiffusion,&
|
|
StressRatio_r,&
|
|
Ndot0,&
|
|
tau_slip_pos,&
|
|
tau_slip_neg,&
|
|
DotRhoMultiplication,&
|
|
EdgeDipDistance, &
|
|
DotRhoEdgeDipAnnihilation, &
|
|
DotRhoEdgeEdgeAnnihilation, &
|
|
ClimbVelocity, &
|
|
DotRhoEdgeDipClimb, &
|
|
DotRhoDipFormation, &
|
|
tau_twin, &
|
|
vel_slip, &
|
|
gdot_slip
|
|
real(pReal), dimension(plastic_disloKMC_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip_pos, gdot_slip_neg
|
|
|
|
!* Shortened notation
|
|
of = mappingConstitutive(1,ipc,ip,el)
|
|
ph = mappingConstitutive(2,ipc,ip,el)
|
|
instance = phase_plasticityInstance(ph)
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
!* Total twin volume fraction
|
|
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
|
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
|
|
|
!* Dislocation density evolution
|
|
gdot_slip_pos = 0.0_pReal
|
|
gdot_slip_neg = 0.0_pReal
|
|
j = 0_pInt
|
|
slipFamilies: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
slipSystems: do i = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
j = j+1_pInt
|
|
!* Boltzmann ratio
|
|
BoltzmannRatio = plastic_disloKMC_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
|
!* Initial shear rates
|
|
DotGamma0 = &
|
|
plasticState(ph)%state(j, of)*plastic_disloKMC_burgersPerSlipSystem(j,instance)*&
|
|
plastic_disloKMC_v0PerSlipSystem(j,instance)
|
|
!* Resolved shear stress on slip system
|
|
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph))
|
|
tau_slip_neg = tau_slip_pos
|
|
|
|
nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph)
|
|
tau_slip_pos = tau_slip_pos + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph))
|
|
tau_slip_neg = tau_slip_neg + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
|
enddo nonSchmidSystems
|
|
|
|
significantPositiveStress: if((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_pos)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_pos(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_pos)
|
|
endif significantPositiveStress
|
|
significantNegativeStress: if((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_neg)-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_neg(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_neg)
|
|
endif significantNegativeStress
|
|
gdot_slip = (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal
|
|
!* Multiplication
|
|
DotRhoMultiplication = abs(gdot_slip)/&
|
|
(plastic_disloKMC_burgersPerSlipSystem(j,instance)* &
|
|
plasticState(ph)%state(5*ns+3*nt+j, of))
|
|
|
|
!* Dipole formation
|
|
EdgeDipMinDistance = &
|
|
plastic_disloKMC_CEdgeDipMinDistance(instance)*plastic_disloKMC_burgersPerSlipSystem(j,instance)
|
|
if (tau_slip_pos == 0.0_pReal) then
|
|
DotRhoDipFormation = 0.0_pReal
|
|
else
|
|
EdgeDipDistance = &
|
|
(3.0_pReal*lattice_mu(ph)*plastic_disloKMC_burgersPerSlipSystem(j,instance))/&
|
|
(16.0_pReal*pi*abs(tau_slip_pos))
|
|
if (EdgeDipDistance>plasticState(ph)%state(5*ns+3*nt+j, of)) EdgeDipDistance=plasticState(ph)%state(5*ns+3*nt+j, of)
|
|
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
|
DotRhoDipFormation = &
|
|
((2.0_pReal*EdgeDipDistance)/plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
plasticState(ph)%state(j, of)*abs(gdot_slip)*plastic_disloKMC_dipoleFormationFactor(instance)
|
|
endif
|
|
|
|
!* Spontaneous annihilation of 2 single edge dislocations
|
|
DotRhoEdgeEdgeAnnihilation = &
|
|
((2.0_pReal*EdgeDipMinDistance)/plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
plasticState(ph)%state(j, of)*abs(gdot_slip)
|
|
|
|
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
|
DotRhoEdgeDipAnnihilation = &
|
|
((2.0_pReal*EdgeDipMinDistance)/plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
plasticState(ph)%state(ns+j, of)*abs(gdot_slip)
|
|
|
|
!* Dislocation dipole climb
|
|
AtomicVolume = &
|
|
plastic_disloKMC_CAtomicVolume(instance)*plastic_disloKMC_burgersPerSlipSystem(j,instance)**(3.0_pReal)
|
|
VacancyDiffusion = &
|
|
plastic_disloKMC_D0(instance)*exp(-plastic_disloKMC_Qsd(instance)/(kB*Temperature))
|
|
if (tau_slip_pos == 0.0_pReal) then
|
|
DotRhoEdgeDipClimb = 0.0_pReal
|
|
else
|
|
ClimbVelocity = &
|
|
((3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*&
|
|
(1/(EdgeDipDistance+EdgeDipMinDistance))
|
|
DotRhoEdgeDipClimb = &
|
|
(4.0_pReal*ClimbVelocity*plasticState(ph)%state(ns+j, of))/(EdgeDipDistance-EdgeDipMinDistance)
|
|
endif
|
|
|
|
!* Edge dislocation density rate of change
|
|
plasticState(ph)%dotState(j, of) = &
|
|
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
|
|
|
!* Edge dislocation dipole density rate of change
|
|
plasticState(ph)%dotState(ns+j, of) = &
|
|
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
|
|
|
!* Dotstate for accumulated shear due to slip
|
|
plasticState(ph)%dotState(2_pInt*ns+j, of) = gdot_slip
|
|
|
|
enddo slipSystems
|
|
enddo slipFamilies
|
|
|
|
!* Twin volume fraction evolution
|
|
j = 0_pInt
|
|
twinFamilies: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
twinSystems: do i = 1_pInt,plastic_disloKMC_Ntwin(f,instance)
|
|
j = j+1_pInt
|
|
!* Resolved shear stress on twin system
|
|
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
|
!* Stress ratios
|
|
if (tau_twin > tol_math_check) then
|
|
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+j, of)/tau_twin)**plastic_disloKMC_rPerTwinFamily(f,instance)
|
|
!* Shear rates and their derivatives due to twin
|
|
|
|
select case(lattice_structure(ph))
|
|
case (LATTICE_fcc_ID)
|
|
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
|
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
|
if (tau_twin < plastic_disloKMC_tau_r(j,instance)) then
|
|
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2, of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
|
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1, of)+plasticState(ph)%state(ns+s1, of)))/&
|
|
(plastic_disloKMC_L0(instance)*plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
(1.0_pReal-exp(-plastic_disloKMC_VcrossSlip(instance)/(kB*Temperature)*&
|
|
(plastic_disloKMC_tau_r(j,instance)-tau_twin)))
|
|
else
|
|
Ndot0=0.0_pReal
|
|
end if
|
|
case default
|
|
Ndot0=plastic_disloKMC_Ndot0PerTwinSystem(j,instance)
|
|
end select
|
|
|
|
plasticState(ph)%dotState(3_pInt*ns+j, of) = &
|
|
(plastic_disloKMC_MaxTwinFraction(instance)-sumf)*&
|
|
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
|
!* Dotstate for accumulated shear due to twin
|
|
plasticState(ph)%dotState(3_pInt*ns+nt+j, of) = plasticState(ph)%dotState(3_pInt*ns+j, of) * &
|
|
lattice_sheartwin(index_myfamily+i,ph)
|
|
endif
|
|
enddo twinSystems
|
|
enddo twinFamilies
|
|
|
|
end subroutine plastic_disloKMC_dotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of constitutive results
|
|
!--------------------------------------------------------------------------------------------------
|
|
function plastic_disloKMC_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|
use prec, only: &
|
|
tol_math_check
|
|
use math, only: &
|
|
pi
|
|
use material, only: &
|
|
material_phase, &
|
|
phase_plasticityInstance,&
|
|
plasticState, &
|
|
mappingConstitutive
|
|
use lattice, only: &
|
|
lattice_Sslip_v, &
|
|
lattice_Stwin_v, &
|
|
lattice_Sslip, &
|
|
lattice_maxNslipFamily, &
|
|
lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem, &
|
|
lattice_NtwinSystem, &
|
|
lattice_NnonSchmid, &
|
|
lattice_shearTwin, &
|
|
lattice_mu, &
|
|
lattice_structure, &
|
|
lattice_fcc_twinNucleationSlipPair, &
|
|
LATTICE_fcc_ID
|
|
|
|
implicit none
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
real(pReal), intent(in) :: &
|
|
temperature !< temperature at integration point
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
real(pReal), dimension(plastic_disloKMC_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
plastic_disloKMC_postResults
|
|
|
|
integer(pInt) :: &
|
|
instance,&
|
|
ns,nt,&
|
|
f,o,i,c,j,k,index_myFamily,&
|
|
s1,s2, &
|
|
ph, &
|
|
of
|
|
real(pReal) :: sumf,tau_twin,StressRatio_p,StressRatio_pminus1,&
|
|
BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0,stressRatio
|
|
real(pReal) :: dvel_slip, vel_slip
|
|
real(pReal) :: StressRatio_u,StressRatio_uminus1
|
|
real(pReal), dimension(plastic_disloKMC_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg
|
|
|
|
!* Shortened notation
|
|
of = mappingConstitutive(1,ipc,ip,el)
|
|
ph = mappingConstitutive(2,ipc,ip,el)
|
|
instance = phase_plasticityInstance(ph)
|
|
ns = plastic_disloKMC_totalNslip(instance)
|
|
nt = plastic_disloKMC_totalNtwin(instance)
|
|
|
|
!* Total twin volume fraction
|
|
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
|
|
|
!* Required output
|
|
c = 0_pInt
|
|
plastic_disloKMC_postResults = 0.0_pReal
|
|
|
|
do o = 1_pInt,plastic_disloKMC_Noutput(instance)
|
|
select case(plastic_disloKMC_outputID(o,instance))
|
|
|
|
case (edge_density_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+ns) = plasticState(ph)%state(1_pInt:ns, of)
|
|
c = c + ns
|
|
case (dipole_density_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+ns) = plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)
|
|
c = c + ns
|
|
case (shear_rate_slip_ID,shear_rate_twin_ID,stress_exponent_ID)
|
|
gdot_slip_pos = 0.0_pReal
|
|
gdot_slip_neg = 0.0_pReal
|
|
dgdot_dtauslip_pos = 0.0_pReal
|
|
dgdot_dtauslip_neg = 0.0_pReal
|
|
j = 0_pInt
|
|
slipFamilies: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
slipSystems: do i = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
j = j + 1_pInt
|
|
!* Boltzmann ratio
|
|
BoltzmannRatio = plastic_disloKMC_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
|
!* Initial shear rates
|
|
DotGamma0 = &
|
|
plasticState(ph)%state(j, of)*plastic_disloKMC_burgersPerSlipSystem(j,instance)*&
|
|
plastic_disloKMC_v0PerSlipSystem(j,instance)
|
|
!* Resolved shear stress on slip system
|
|
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
|
tau_slip_neg(j) = tau_slip_pos(j)
|
|
|
|
nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph)
|
|
tau_slip_pos = tau_slip_pos + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph))
|
|
tau_slip_neg = tau_slip_neg + plastic_disloKMC_nonSchmidCoeff(k,instance)* &
|
|
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph))
|
|
enddo nonSchmidSystems
|
|
|
|
significantPostitiveStress: if((abs(tau_slip_pos(j))-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_pos(j))-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_pminus1 = stressRatio**(plastic_disloKMC_pPerSlipFamily(f,instance)-1.0_pReal)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
stressRatio_uminus1 = stressRatio**(plastic_disloKMC_uPerSlipFamily(f,instance)-1.0_pReal)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_pos(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_pos(j))
|
|
!* Derivatives of shear rates
|
|
dvel_slip = &
|
|
(abs(exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))&
|
|
*BoltzmannRatio*plastic_disloKMC_pPerSlipFamily(f,instance)&
|
|
*plastic_disloKMC_qPerSlipFamily(f,instance)/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))*&
|
|
StressRatio_pminus1*(1.0_pReal-StressRatio_p)**(plastic_disloKMC_qPerSlipFamily(f,instance)-1.0_pReal) )&
|
|
*(1.0_pReal - 2.0_pReal*plastic_disloKMC_sPerSlipFamily(f,instance)&
|
|
*abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance))))
|
|
|
|
dgdot_dtauslip_pos(j) = DotGamma0 * &
|
|
( plastic_disloKMC_uPerSlipFamily(f,instance)*StressRatio_uminus1 &
|
|
/(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))&
|
|
* vel_slip &
|
|
+ StressRatio_u * dvel_slip)
|
|
endif significantPostitiveStress
|
|
significantNegativeStress: if((abs(tau_slip_neg(j))-plasticState(ph)%state(6*ns+4*nt+j, of)) > tol_math_check) then
|
|
!* Stress ratios
|
|
stressRatio = ((abs(tau_slip_neg(j))-plasticState(ph)%state(6*ns+4*nt+j, of))/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+&
|
|
plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance)))
|
|
stressRatio_p = stressRatio** plastic_disloKMC_pPerSlipFamily(f,instance)
|
|
stressRatio_pminus1 = stressRatio**(plastic_disloKMC_pPerSlipFamily(f,instance)-1.0_pReal)
|
|
stressRatio_u = stressRatio** plastic_disloKMC_uPerSlipFamily(f,instance)
|
|
stressRatio_uminus1 = stressRatio**(plastic_disloKMC_uPerSlipFamily(f,instance)-1.0_pReal)
|
|
!* Shear rates due to slip
|
|
vel_slip = exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)) &
|
|
* (1.0_pReal-plastic_disloKMC_sPerSlipFamily(f,instance) &
|
|
* exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))
|
|
|
|
gdot_slip_neg(j) = DotGamma0 &
|
|
* StressRatio_u * vel_slip &
|
|
* sign(1.0_pReal,tau_slip_neg(j))
|
|
!* Derivatives of shear rates
|
|
dvel_slip = &
|
|
(abs(exp(-BoltzmannRatio*(1.0_pReal-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance)))&
|
|
*BoltzmannRatio*plastic_disloKMC_pPerSlipFamily(f,instance)&
|
|
*plastic_disloKMC_qPerSlipFamily(f,instance)/&
|
|
(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))*&
|
|
StressRatio_pminus1*(1.0_pReal-StressRatio_p)**(plastic_disloKMC_qPerSlipFamily(f,instance)-1.0_pReal) )&
|
|
*(1.0_pReal - 2.0_pReal*plastic_disloKMC_sPerSlipFamily(f,instance)&
|
|
*abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloKMC_qPerSlipFamily(f,instance))))
|
|
|
|
dgdot_dtauslip_neg(j) = DotGamma0 * &
|
|
( plastic_disloKMC_uPerSlipFamily(f,instance)*StressRatio_uminus1 &
|
|
/(plastic_disloKMC_SolidSolutionStrength(instance)+plastic_disloKMC_tau_peierlsPerSlipFamily(f,instance))&
|
|
* vel_slip &
|
|
+ StressRatio_u * dvel_slip)
|
|
endif significantNegativeStress
|
|
enddo slipSystems
|
|
enddo slipFamilies
|
|
|
|
if (plastic_disloKMC_outputID(o,instance) == shear_rate_slip_ID) then
|
|
plastic_disloKMC_postResults(c+1:c+ns) = (gdot_slip_pos + gdot_slip_neg)*0.5_pReal
|
|
c = c + ns
|
|
elseif (plastic_disloKMC_outputID(o,instance) == shear_rate_twin_ID) then
|
|
if (nt > 0_pInt) then
|
|
j = 0_pInt
|
|
twinFamilies1: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
twinSystems1: do i = 1,plastic_disloKMC_Ntwin(f,instance)
|
|
j = j + 1_pInt
|
|
|
|
!* Resolved shear stress on twin system
|
|
tau_twin = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
|
!* Stress ratios
|
|
StressRatio_r = (plasticState(ph)%state(7_pInt*ns+4_pInt*nt+j, of)/ &
|
|
tau_twin)**plastic_disloKMC_rPerTwinFamily(f,instance)
|
|
|
|
!* Shear rates due to twin
|
|
if ( tau_twin > 0.0_pReal ) then
|
|
select case(lattice_structure(ph))
|
|
case (LATTICE_fcc_ID)
|
|
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
|
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
|
if (tau_twin < plastic_disloKMC_tau_r(j,instance)) then
|
|
Ndot0=(abs(gdot_slip_pos(s1))*(plasticState(ph)%state(s2, of)+plasticState(ph)%state(ns+s2, of))+& !no non-Schmid behavior for fcc, just take the not influenced positive slip (gdot_slip_pos = gdot_slip_neg)
|
|
abs(gdot_slip_pos(s2))*(plasticState(ph)%state(s1, of)+plasticState(ph)%state(ns+s1, of)))/&
|
|
(plastic_disloKMC_L0(instance)*&
|
|
plastic_disloKMC_burgersPerSlipSystem(j,instance))*&
|
|
(1.0_pReal-exp(-plastic_disloKMC_VcrossSlip(instance)/(kB*Temperature)*&
|
|
(plastic_disloKMC_tau_r(j,instance)-tau_twin)))
|
|
else
|
|
Ndot0=0.0_pReal
|
|
end if
|
|
|
|
case default
|
|
Ndot0=plastic_disloKMC_Ndot0PerTwinSystem(j,instance)
|
|
end select
|
|
plastic_disloKMC_postResults(c+j) = &
|
|
(plastic_disloKMC_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
|
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+j, of)*Ndot0*exp(-StressRatio_r)
|
|
endif
|
|
enddo twinSystems1
|
|
enddo twinFamilies1
|
|
endif
|
|
c = c + nt
|
|
elseif(plastic_disloKMC_outputID(o,instance) == stress_exponent_ID) then
|
|
do j = 1_pInt, ns
|
|
if ((gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal==0.0_pReal) then
|
|
plastic_disloKMC_postResults(c+j) = 0.0_pReal
|
|
else
|
|
plastic_disloKMC_postResults(c+j) = (tau_slip_pos(j)+tau_slip_neg(j))/&
|
|
(gdot_slip_pos(j)+gdot_slip_neg(j))*&
|
|
(dgdot_dtauslip_pos(j)+dgdot_dtauslip_neg(j))* 0.5_pReal
|
|
endif
|
|
enddo
|
|
c = c + ns
|
|
endif
|
|
|
|
case (accumulated_shear_slip_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+ns) = &
|
|
plasticState(ph)%state((2_pInt*ns+1_pInt):(3_pInt*ns), of)
|
|
c = c + ns
|
|
case (mfp_slip_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+ns) =&
|
|
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+3_pInt*nt), of)
|
|
c = c + ns
|
|
case (resolved_stress_slip_ID)
|
|
j = 0_pInt
|
|
slipFamilies1: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
slipSystems1: do i = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
j = j + 1_pInt
|
|
plastic_disloKMC_postResults(c+j) =&
|
|
dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
|
enddo slipSystems1; enddo slipFamilies1
|
|
c = c + ns
|
|
case (threshold_stress_slip_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+ns) = &
|
|
plasticState(ph)%state((6_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+4_pInt*nt), of)
|
|
c = c + ns
|
|
case (edge_dipole_distance_ID)
|
|
j = 0_pInt
|
|
slipFamilies2: do f = 1_pInt,lattice_maxNslipFamily
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
slipSystems2: do i = 1_pInt,plastic_disloKMC_Nslip(f,instance)
|
|
j = j + 1_pInt
|
|
plastic_disloKMC_postResults(c+j) = &
|
|
(3.0_pReal*lattice_mu(ph)*plastic_disloKMC_burgersPerSlipSystem(j,instance))/&
|
|
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
|
plastic_disloKMC_postResults(c+j)=min(plastic_disloKMC_postResults(c+j),&
|
|
plasticState(ph)%state(5*ns+3*nt+j, of))
|
|
enddo slipSystems2; enddo slipFamilies2
|
|
c = c + ns
|
|
case (twin_fraction_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+nt) = plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)
|
|
c = c + nt
|
|
|
|
case (accumulated_shear_twin_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
|
state((3_pInt*ns+nt+1_pInt) :(3_pInt*ns+2_pInt*nt), of)
|
|
c = c + nt
|
|
case (mfp_twin_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
|
state((6_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+4_pInt*nt), of)
|
|
c = c + nt
|
|
case (resolved_stress_twin_ID)
|
|
if (nt > 0_pInt) then
|
|
j = 0_pInt
|
|
twinFamilies2: do f = 1_pInt,lattice_maxNtwinFamily
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
twinSystems2: do i = 1_pInt,plastic_disloKMC_Ntwin(f,instance)
|
|
j = j + 1_pInt
|
|
plastic_disloKMC_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
|
enddo twinSystems2; enddo twinFamilies2
|
|
endif
|
|
c = c + nt
|
|
case (threshold_stress_twin_ID)
|
|
plastic_disloKMC_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
|
state((7_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+5_pInt*nt), of)
|
|
c = c + nt
|
|
end select
|
|
enddo
|
|
end function plastic_disloKMC_postResults
|
|
|
|
end module plastic_disloKMC
|