3633 lines
198 KiB
Fortran
3633 lines
198 KiB
Fortran
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!##############################################################
|
|
!* $Id$
|
|
!***************************************
|
|
!* Module: CRYSTALLITE *
|
|
!***************************************
|
|
!* contains: *
|
|
!* - _init *
|
|
!* - materialpoint_stressAndItsTangent *
|
|
!* - _partitionDeformation *
|
|
!* - _updateState *
|
|
!* - _stressAndItsTangent *
|
|
!* - _postResults *
|
|
!***************************************
|
|
|
|
module crystallite
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
implicit none
|
|
private :: crystallite_integrateStateFPI, &
|
|
crystallite_integrateStateEuler, &
|
|
crystallite_integrateStateAdaptiveEuler, &
|
|
crystallite_integrateStateRK4, &
|
|
crystallite_integrateStateRKCK45, &
|
|
crystallite_integrateStress, &
|
|
crystallite_stateJump
|
|
|
|
! ****************************************************************
|
|
! *** General variables for the crystallite calculation ***
|
|
! ****************************************************************
|
|
integer(pInt) crystallite_maxSizePostResults
|
|
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
|
|
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
|
|
character(len=64), dimension(:,:), allocatable :: crystallite_output !< name of each post result output
|
|
integer(pInt), dimension (:,:,:), allocatable :: &
|
|
crystallite_symmetryID !< crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
|
|
|
|
real(pReal), dimension (:,:,:), allocatable :: &
|
|
crystallite_dt, & !< requested time increment of each grain
|
|
crystallite_subdt, & !< substepped time increment of each grain
|
|
crystallite_subFrac, & !< already calculated fraction of increment
|
|
crystallite_subStep, & !< size of next integration step
|
|
crystallite_Temperature, & !< Temp of each grain
|
|
crystallite_partionedTemperature0, & !< Temp of each grain at start of homog inc
|
|
crystallite_subTemperature0, & !< Temp of each grain at start of crystallite inc
|
|
crystallite_dotTemperature !< evolution of Temperature of each grain
|
|
real(pReal), dimension (:,:,:,:), allocatable :: &
|
|
crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
|
crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
|
|
crystallite_partionedTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc
|
|
crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
|
crystallite_orientation, & !< orientation as quaternion
|
|
crystallite_orientation0, & !< initial orientation as quaternion
|
|
crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) in crystal reference frame
|
|
real(pReal), dimension (:,:,:,:,:), allocatable :: &
|
|
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
|
|
crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc
|
|
crystallite_Fp, & !< current plastic def grad (end of converged time step)
|
|
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
|
|
crystallite_Fp0, & !< plastic def grad at start of FE inc
|
|
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
|
|
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
|
|
crystallite_F0, & !< def grad at start of FE inc
|
|
crystallite_partionedF, & !< def grad to be reached at end of homog inc
|
|
crystallite_partionedF0, & !< def grad at start of homog inc
|
|
crystallite_subF, & !< def grad to be reached at end of crystallite inc
|
|
crystallite_subF0, & !< def grad at start of crystallite inc
|
|
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
|
|
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
|
|
crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc
|
|
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
|
|
crystallite_P, & !< 1st Piola-Kirchhoff stress per grain
|
|
crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs)
|
|
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
|
crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step)
|
|
crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc
|
|
crystallite_partioneddPdF0, & !< individual dPdF per grain at start of homog inc
|
|
crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction)
|
|
logical, dimension (:,:,:), allocatable :: &
|
|
crystallite_localPlasticity, & !< indicates this grain to have purely local constitutive law
|
|
crystallite_requested, & !< flag to request crystallite calculation
|
|
crystallite_todo, & !< flag to indicate need for further computation
|
|
crystallite_converged !< convergence flag
|
|
logical, dimension (:,:), allocatable :: &
|
|
crystallite_clearToWindForward, &
|
|
crystallite_clearToCutback, &
|
|
crystallite_syncSubFrac, &
|
|
crystallite_syncSubFracCompleted, &
|
|
crystallite_neighborEnforcedCutback
|
|
|
|
contains
|
|
|
|
|
|
!********************************************************************
|
|
! allocate and initialize per grain variables
|
|
!********************************************************************
|
|
subroutine crystallite_init(Temperature)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use debug, only: debug_info, &
|
|
debug_reset, &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic
|
|
use math, only: math_I3, &
|
|
math_EulerToR, &
|
|
math_inv33, &
|
|
math_transpose33, &
|
|
math_mul33xx33, &
|
|
math_mul33x33
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips, &
|
|
mesh_maxNipNeighbors
|
|
use IO
|
|
use material
|
|
use lattice, only: lattice_symmetryType
|
|
|
|
use constitutive, only: constitutive_microstructure
|
|
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
|
|
constitutive_phenopowerlaw_structure
|
|
use constitutive_titanmod, only: constitutive_titanmod_label, &
|
|
constitutive_titanmod_structure
|
|
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
|
|
constitutive_dislotwin_structure
|
|
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
|
|
constitutive_nonlocal_structure
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: myFile = 200_pInt, &
|
|
maxNchunks = 2_pInt
|
|
|
|
!*** input variables ***!
|
|
real(pReal) Temperature
|
|
|
|
!*** local variables ***!
|
|
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
|
integer(pInt) g, & ! grain number
|
|
i, & ! integration point number
|
|
e, & ! element number
|
|
gMax, & ! maximum number of grains
|
|
iMax, & ! maximum number of integration points
|
|
eMax, & ! maximum number of elements
|
|
nMax, & ! maximum number of ip neighbors
|
|
myNgrains, & ! number of grains in current IP
|
|
section, &
|
|
j, &
|
|
p, &
|
|
output, &
|
|
mySize, &
|
|
myStructure, & ! lattice structure
|
|
myPhase, &
|
|
myMat
|
|
character(len=64) tag
|
|
character(len=1024) line
|
|
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,*) '<<<+- crystallite init -+>>>'
|
|
write(6,*) '$Id$'
|
|
#include "compilation_info.f90"
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
|
|
gMax = homogenization_maxNgrains
|
|
iMax = mesh_maxNips
|
|
eMax = mesh_NcpElems
|
|
nMax = mesh_maxNipNeighbors
|
|
|
|
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
|
|
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
|
|
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
|
|
allocate(crystallite_dotTemperature(gMax,iMax,eMax)); crystallite_dotTemperature = 0.0_pReal
|
|
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
|
|
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
|
|
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
|
|
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
|
|
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
|
|
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
|
|
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
|
|
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
|
|
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
|
|
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
|
|
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
|
|
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
|
|
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
|
|
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
|
|
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
|
|
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
|
|
allocate(crystallite_subFe0(3,3,gMax,iMax,eMax)); crystallite_subFe0 = 0.0_pReal
|
|
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
|
|
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
|
|
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
|
|
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
|
|
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
|
|
allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF0 = 0.0_pReal
|
|
allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_partioneddPdF0 = 0.0_pReal
|
|
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
|
|
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
|
|
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
|
|
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
|
|
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
|
|
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
|
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal
|
|
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
|
|
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
|
|
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0_pInt
|
|
allocate(crystallite_localPlasticity(gMax,iMax,eMax)); crystallite_localPlasticity = .true.
|
|
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
|
|
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .false.
|
|
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
|
|
allocate(crystallite_clearToWindForward(iMax,eMax)); crystallite_clearToWindForward = .true.
|
|
allocate(crystallite_syncSubFrac(iMax,eMax)); crystallite_syncSubFrac = .false.
|
|
allocate(crystallite_syncSubFracCompleted(iMax,eMax)); crystallite_syncSubFracCompleted = .false.
|
|
allocate(crystallite_clearToCutback(iMax,eMax)); crystallite_clearToCutback = .true.
|
|
allocate(crystallite_neighborEnforcedCutback(iMax,eMax)); crystallite_neighborEnforcedCutback = .false.
|
|
allocate(crystallite_output(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite)) ; crystallite_output = ''
|
|
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
|
|
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
|
|
|
|
|
|
if (.not. IO_open_jobFile_stat(myFile,material_localFileExt)) then ! no local material configuration present...
|
|
call IO_open_file(myFile,material_configFile) ! ...open material.config file
|
|
endif
|
|
line = ''
|
|
section = 0_pInt
|
|
|
|
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
|
|
read(myFile,'(a1024)',END=100) line
|
|
enddo
|
|
|
|
do ! read thru sections of phase part
|
|
read(myFile,'(a1024)',END=100) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1_pInt
|
|
output = 0_pInt ! reset output counter
|
|
endif
|
|
if (section > 0_pInt) then
|
|
positions = IO_stringPos(line,maxNchunks)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
output = output + 1_pInt
|
|
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
end select
|
|
endif
|
|
enddo
|
|
|
|
100 close(myFile)
|
|
|
|
do i = 1_pInt,material_Ncrystallite ! sanity checks
|
|
enddo
|
|
|
|
do i = 1_pInt,material_Ncrystallite
|
|
do j = 1_pInt,crystallite_Noutput(i)
|
|
select case(crystallite_output(j,i))
|
|
case('phase','texture','volume','grainrotationx','grainrotationy','grainrotationz')
|
|
mySize = 1_pInt
|
|
case('orientation','grainrotation') ! orientation as quaternion, or deviation from initial grain orientation in axis-angle form (angle in degrees)
|
|
mySize = 4_pInt
|
|
case('eulerangles') ! Bunge (3-1-3) Euler angles
|
|
mySize = 3_pInt
|
|
case('defgrad','f','fe','fp','lp','e','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola')
|
|
mySize = 9_pInt
|
|
case('elasmatrix')
|
|
mySize = 36_pInt
|
|
case default
|
|
mySize = 0_pInt
|
|
end select
|
|
|
|
if (mySize > 0_pInt) then ! any meaningful output found
|
|
crystallite_sizePostResult(j,i) = mySize
|
|
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
crystallite_maxSizePostResults = 0_pInt
|
|
do j = 1_pInt,material_Nmicrostructure
|
|
if (microstructure_active(j)) &
|
|
crystallite_maxSizePostResults = max(crystallite_maxSizePostResults,&
|
|
crystallite_sizePostResults(microstructure_crystallite(j)))
|
|
enddo
|
|
|
|
! write description file for crystallite output
|
|
|
|
call IO_write_jobFile(myFile,'outputCrystallite')
|
|
|
|
do p = 1_pInt,material_Ncrystallite
|
|
write(myFile,*)
|
|
write(myFile,'(a)') '['//trim(crystallite_name(p))//']'
|
|
write(myFile,*)
|
|
do e = 1_pInt,crystallite_Noutput(p)
|
|
write(myFile,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
|
|
enddo
|
|
enddo
|
|
|
|
close(myFile)
|
|
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains)
|
|
crystallite_Fp0(1:3,1:3,g,i,e) = math_EulerToR(material_EulerAngles(1:3,g,i,e)) ! plastic def gradient reflects init orientation
|
|
crystallite_F0(1:3,1:3,g,i,e) = math_I3
|
|
crystallite_localPlasticity(g,i,e) = phase_localPlasticity(material_phase(g,i,e))
|
|
crystallite_Fe(1:3,1:3,g,i,e) = math_transpose33(crystallite_Fp0(1:3,1:3,g,i,e))
|
|
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
|
|
crystallite_requested(g,i,e) = .true.
|
|
endforall
|
|
enddo
|
|
crystallite_partionedTemperature0 = Temperature ! isothermal assumption
|
|
crystallite_partionedFp0 = crystallite_Fp0
|
|
crystallite_partionedF0 = crystallite_F0
|
|
crystallite_partionedF = crystallite_F0
|
|
|
|
|
|
! Initialize crystallite_symmetryID(g,i,e)
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1_pInt,myNgrains
|
|
myPhase = material_phase(g,i,e)
|
|
myMat = phase_plasticityInstance(myPhase)
|
|
select case (phase_plasticity(myPhase))
|
|
case (constitutive_phenopowerlaw_label)
|
|
myStructure = constitutive_phenopowerlaw_structure(myMat)
|
|
case (constitutive_titanmod_label)
|
|
myStructure = constitutive_titanmod_structure(myMat)
|
|
case (constitutive_dislotwin_label)
|
|
myStructure = constitutive_dislotwin_structure(myMat)
|
|
case (constitutive_nonlocal_label)
|
|
myStructure = constitutive_nonlocal_structure(myMat)
|
|
case default
|
|
myStructure = -1_pInt ! does this happen for j2 material?
|
|
end select
|
|
if (myStructure > 0_pInt) then
|
|
crystallite_symmetryID(g,i,e) = lattice_symmetryType(myStructure) ! structure = 1(fcc) or 2(bcc) => 1; 3(hex)=>2
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
call crystallite_orientations()
|
|
crystallite_orientation0 = crystallite_orientation ! Store initial orientations for calculation of grain rotations
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1_pInt,myNgrains
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
call crystallite_stressAndItsTangent(.true.,.false.) ! request elastic answers
|
|
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
|
|
|
|
! *** Output to MARC output file ***
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dotTemperature: ', shape(crystallite_dotTemperature)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
|
|
write(6,*)
|
|
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity)
|
|
flush(6)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
call debug_info
|
|
call debug_reset
|
|
|
|
end subroutine crystallite_init
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! calculate stress (P) and tangent (dPdF) for crystallites
|
|
!********************************************************************
|
|
subroutine crystallite_stressAndItsTangent(updateJaco,rate_sensitivity)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use numerics, only: subStepMinCryst, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst, &
|
|
pert_Fg, &
|
|
pert_method, &
|
|
nCryst, &
|
|
numerics_integrator, &
|
|
numerics_integrationMode, &
|
|
numerics_timeSyncing, &
|
|
relevantStrain, &
|
|
analyticJaco
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_CrystalliteLoopDistribution
|
|
use IO, only: IO_warning
|
|
use math, only: math_inv33, &
|
|
math_identity2nd, &
|
|
math_transpose33, &
|
|
math_mul33x33, &
|
|
math_mul66x6, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_I3, &
|
|
math_mul3333xx3333
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors, &
|
|
FE_geomtype
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeState, &
|
|
constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_state_backup, &
|
|
constitutive_subState0, &
|
|
constitutive_partionedState0, &
|
|
constitutive_homogenizedC, &
|
|
constitutive_dotState, &
|
|
constitutive_dotState_backup, &
|
|
constitutive_TandItsTangent
|
|
|
|
|
|
implicit none
|
|
!*** input variables ***!
|
|
logical, intent(in) :: updateJaco, rate_sensitivity ! flag indicating wehther we want to update the Jacobian (stiffness) or not
|
|
!*** local variables ***!
|
|
real(pReal) myPert, & ! perturbation with correct sign
|
|
formerSubStep, &
|
|
subFracIntermediate
|
|
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
|
|
Fe_guess, & ! guess for elastic deformation gradient
|
|
Tstar ! 2nd Piola-Kirchhoff stress tensor
|
|
real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
dPdF_perturbation1, &
|
|
dPdF_perturbation2
|
|
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
F_backup, &
|
|
Fp_backup, &
|
|
InvFp_backup, &
|
|
Fe_backup, &
|
|
Lp_backup, &
|
|
P_backup
|
|
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
Tstar_v_backup
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
Temperature_backup
|
|
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
k, &
|
|
l, &
|
|
n, &
|
|
neighboring_e, &
|
|
neighboring_i, &
|
|
o, &
|
|
p, &
|
|
perturbation , & ! loop counter for forward,backward perturbation mode
|
|
myNgrains
|
|
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
convergenceFlag_backup
|
|
! local variables used for calculating analytic Jacobian
|
|
real(pReal), dimension(3,3):: Fpinv_rate, &
|
|
FDot_inv, &
|
|
junk
|
|
real(pReal), dimension(3,3,3,3) :: dSdFe, &
|
|
dFedF, &
|
|
dFedFdot, &
|
|
dSdF, &
|
|
dSdFdot, &
|
|
dFp_invdFdot, &
|
|
junk2
|
|
real(pReal) :: counter
|
|
|
|
! --+>> INITIALIZE TO STARTING CONDITION <<+--
|
|
|
|
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt&
|
|
.and. debug_e > 0 .and. debug_e <= mesh_NcpElems &
|
|
.and. debug_i > 0 .and. debug_i <= mesh_maxNips &
|
|
.and. debug_g > 0 .and. debug_g <= homogenization_maxNgrains) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> crystallite start at el ip g ', debug_e, debug_i, debug_g
|
|
write(6,'(a,/,12x,f14.9)') '<< CRYST >> Temp0', crystallite_partionedTemperature0(debug_g,debug_i,debug_e)
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', &
|
|
math_transpose33(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', &
|
|
math_transpose33(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', &
|
|
math_transpose33(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
crystallite_subStep = 0.0_pReal
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains, crystallite_requested(g,i,e))
|
|
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
|
|
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
|
|
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_partionedFp0(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_partionedLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
|
|
crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
|
|
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad
|
|
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress
|
|
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), &
|
|
math_inv33(crystallite_subFp0(1:3,1:3,g,i,e))) ! only needed later on for stiffness calculation
|
|
crystallite_subFrac(g,i,e) = 0.0_pReal
|
|
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
|
|
crystallite_todo(g,i,e) = .true.
|
|
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
|
|
endforall
|
|
enddo
|
|
|
|
|
|
! --+>> CRYSTALLITE CUTBACK LOOP <<+--
|
|
|
|
NiterationCrystallite = 0_pInt
|
|
numerics_integrationMode = 1_pInt
|
|
do while (any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2)))) ! cutback loop for crystallites
|
|
|
|
if (any(.not. crystallite_localPlasticity) .and. numerics_timeSyncing) then
|
|
|
|
! Time synchronization can only be used for nonlocal calculations, and only there it makes sense.
|
|
! The idea is that in nonlocal calculations often the vast amjority of the ips
|
|
! converges in one iteration whereas a small fraction of ips has to do a lot of cutbacks.
|
|
! Hence, we try to minimize the computational effort by just doing a lot of cutbacks
|
|
! in the vicinity of the "bad" ips and leave the easily converged volume more or less as it is.
|
|
! However, some synchronization of the time step has to be done at the border between "bad" ips
|
|
! and the ones that immediately converged.
|
|
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> crystallite iteration ',NiterationCrystallite
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
if (any(crystallite_syncSubFrac)) then
|
|
|
|
! Just did a time synchronization.
|
|
! If all synchrnizers converged, then do nothing else than winding them forward.
|
|
! If any of the cynchronizers did not converge, something went completely wrong
|
|
! and its not clear how to fix this, so all nonlocals become terminally ill.
|
|
|
|
if (any(crystallite_syncSubFrac .and. .not. crystallite_converged(1,:,:))) then
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (crystallite_syncSubFrac(i,e) .and. .not. crystallite_converged(1,i,e)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,1x,i2)') '<< CRYST >> time synchronization: failed at el,ip ',e,i
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
enddo
|
|
enddo
|
|
endif
|
|
crystallite_syncSubFrac = .false.
|
|
where(.not. crystallite_localPlasticity)
|
|
crystallite_substep = 0.0_pReal
|
|
crystallite_todo = .false.
|
|
endwhere
|
|
else
|
|
crystallite_clearToWindForward = crystallite_localPlasticity(1,:,:) .or. crystallite_syncSubFrac
|
|
crystallite_clearToCutback = crystallite_localPlasticity(1,:,:)
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: wind forward'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
|
|
elseif (any(crystallite_syncSubFracCompleted)) then
|
|
|
|
! Just completed a time synchronization.
|
|
! Make sure that the ips that synchronized their time step start non-converged
|
|
|
|
where(crystallite_syncSubFracCompleted) &
|
|
crystallite_converged(1,:,:) = .false.
|
|
crystallite_syncSubFracCompleted = .false.
|
|
crystallite_clearToWindForward = crystallite_localPlasticity(1,:,:)
|
|
crystallite_clearToCutback = crystallite_localPlasticity(1,:,:) .or. .not. crystallite_converged(1,:,:)
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: done, proceed with cutback'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
else
|
|
|
|
! Normal calculation.
|
|
! If all converged and are at the end of the time increment, then just do a final wind forward.
|
|
! If all converged, but not all reached the end of the time increment, then we only wind
|
|
! those forward that are still on their way, all others have to wait.
|
|
! If some did not converge and all are still at the start of the time increment,
|
|
! then all non-convergers force their converged neighbors to also do a cutback.
|
|
! In case that some ips have already wound forward to an intermediate time (subfrac),
|
|
! then all those ips that converged in the first iteration, but now have a non-converged neighbor
|
|
! have to synchronize their time step to the same intermediate time. If such a synchronization
|
|
! takes place, all other ips have to wait and only the synchronizers do a cutback. In the next
|
|
! iteration those will do a wind forward while all others still wait.
|
|
|
|
crystallite_clearToWindForward = crystallite_localPlasticity(1,:,:)
|
|
crystallite_clearToCutback = crystallite_localPlasticity(1,:,:)
|
|
if (all(crystallite_localPlasticity .or. crystallite_converged)) then
|
|
if (all(crystallite_localPlasticity .or. crystallite_subStep + crystallite_subFrac >= 1.0_pReal)) then
|
|
crystallite_clearToWindForward = .true. ! final wind forward
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> final wind forward'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
else
|
|
crystallite_clearToWindForward = crystallite_localPlasticity(1,:,:) .or. crystallite_subStep(1,:,:) < 1.0_pReal
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> wind forward'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
else
|
|
subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity)
|
|
if (subFracIntermediate == 0.0_pReal) then
|
|
crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor
|
|
!$OMP PARALLEL DO PRIVATE(neighboring_e,neighboring_i)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_converged(1,i,e)) then
|
|
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
|
|
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
|
|
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
|
|
crystallite_neighborEnforcedCutback(i,e) = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ', neighboring_e,neighboring_i, &
|
|
' enforced cutback at ',e,i
|
|
#endif
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
where(crystallite_neighborEnforcedCutback) &
|
|
crystallite_converged(1,:,:) = .false.
|
|
else
|
|
crystallite_syncSubFrac = .false. ! look for ips that have to do a time synchronization because of a nonconverged neighbor
|
|
!$OMP PARALLEL DO PRIVATE(neighboring_e,neighboring_i)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_subFrac(1,i,e) == 0.0_pReal) then
|
|
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
|
|
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
|
|
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
|
|
crystallite_syncSubFrac(i,e) = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ',neighboring_e,neighboring_i, &
|
|
' enforced time synchronization at ',e,i
|
|
#endif
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
where(crystallite_syncSubFrac) &
|
|
crystallite_converged(1,:,:) = .false.
|
|
endif
|
|
where(.not. crystallite_localPlasticity .and. crystallite_subStep < 1.0_pReal) &
|
|
crystallite_converged = .false.
|
|
if (any(crystallite_syncSubFrac)) then ! have to do syncing now, so all wait except for the synchronizers which do a cutback
|
|
crystallite_clearToWindForward = crystallite_localPlasticity(1,:,:)
|
|
crystallite_clearToCutback = crystallite_localPlasticity(1,:,:) .or. crystallite_syncSubFrac
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: cutback'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
else
|
|
where(.not. crystallite_converged(1,:,:)) &
|
|
crystallite_clearToCutback = .true.
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i6)') '<< CRYST >> cutback'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
endif
|
|
endif
|
|
|
|
! Make sure that all cutbackers start with the same substep
|
|
|
|
where(.not. crystallite_localPlasticity .and. .not. crystallite_converged) &
|
|
crystallite_subStep = minval(crystallite_subStep, mask=.not. crystallite_localPlasticity &
|
|
.and. .not. crystallite_converged)
|
|
|
|
! Those that do neither wind forward nor cutback are not to do
|
|
|
|
where(.not. crystallite_clearToWindForward .and. .not. crystallite_clearToCutback) &
|
|
crystallite_todo(1,:,:) = .false.
|
|
|
|
endif
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,formerSubStep)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
|
|
! --- wind forward ---
|
|
|
|
if (crystallite_converged(g,i,e) .and. crystallite_clearToWindForward(i,e)) then
|
|
formerSubStep = crystallite_subStep(g,i,e)
|
|
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
|
|
!$OMP FLUSH(crystallite_subFrac)
|
|
crystallite_subStep(g,i,e) = min(1.0_pReal - crystallite_subFrac(g,i,e), &
|
|
stepIncreaseCryst * crystallite_subStep(g,i,e))
|
|
!$OMP FLUSH(crystallite_subStep)
|
|
if (crystallite_subStep(g,i,e) > 0.0_pReal) then
|
|
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
|
|
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad
|
|
!$OMP FLUSH(crystallite_subF0)
|
|
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation
|
|
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient
|
|
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
|
|
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress
|
|
if (crystallite_syncSubFrac(i,e)) then ! if we just did a synchronization of states, then we wind forward without any further time integration
|
|
crystallite_syncSubFracCompleted(i,e) = .true.
|
|
crystallite_syncSubFrac(i,e) = .false.
|
|
crystallite_todo(g,i,e) = .false.
|
|
else
|
|
crystallite_todo(g,i,e) = .true.
|
|
endif
|
|
!$OMP FLUSH(crystallite_todo)
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3)') '<< CRYST >> winding forward from ', &
|
|
crystallite_subFrac(g,i,e)-formerSubStep,' to current crystallite_subfrac ', &
|
|
crystallite_subFrac(g,i,e),' in crystallite_stressAndItsTangent at el ip g ',e,i,g
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
elseif (formerSubStep > 0.0_pReal) then ! this crystallite just converged for the entire timestep
|
|
crystallite_todo(g,i,e) = .false. ! so done here
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionCrystallite)
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = &
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt
|
|
!$OMP END CRITICAL (distributionCrystallite)
|
|
endif
|
|
endif
|
|
|
|
! --- cutback ---
|
|
|
|
elseif (.not. crystallite_converged(g,i,e) .and. crystallite_clearToCutback(i,e)) then
|
|
if (crystallite_syncSubFrac(i,e)) then ! synchronize time
|
|
crystallite_subStep(g,i,e) = subFracIntermediate
|
|
else
|
|
crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore...
|
|
endif
|
|
!$OMP FLUSH(crystallite_subStep)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
|
|
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_subFp0(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
!$OMP FLUSH(crystallite_Fp)
|
|
crystallite_invFp(1:3,1:3,g,i,e) = math_inv33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
!$OMP FLUSH(crystallite_invFp)
|
|
crystallite_Lp(1:3,1:3,g,i,e) = crystallite_subLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
|
|
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
|
|
crystallite_Tstar_v(1:6,g,i,e) = crystallite_subTstar0_v(1:6,g,i,e) ! ...2nd PK stress
|
|
! cant restore dotState here, since not yet calculated in first cutback after initialization
|
|
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
#ifndef _OPENMP
|
|
if(iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
if (crystallite_todo(g,i,e)) then
|
|
write(6,'(a,f12.8,a,i8,1x,i2,1x,i3)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent &
|
|
&with new crystallite_subStep: ',&
|
|
crystallite_subStep(g,i,e),' at el ip g ',e,i,g
|
|
else
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> reached minimum step size &
|
|
&in crystallite_stressAndItsTangent at el ip g ',e,i,g
|
|
endif
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
endif
|
|
|
|
! --- prepare for integration ---
|
|
|
|
if (crystallite_todo(g,i,e) .and. (crystallite_clearToWindForward(i,e) .or. crystallite_clearToCutback(i,e))) then
|
|
crystallite_subF(1:3,1:3,g,i,e) = crystallite_subF0(1:3,1:3,g,i,e) &
|
|
+ crystallite_subStep(g,i,e) &
|
|
* (crystallite_partionedF(1:3,1:3,g,i,e) - crystallite_partionedF0(1:3,1:3,g,i,e))
|
|
!$OMP FLUSH(crystallite_subF)
|
|
crystallite_Fe(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e))
|
|
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
|
|
crystallite_converged(g,i,e) = .false. ! start out non-converged
|
|
endif
|
|
|
|
enddo ! grains
|
|
enddo ! IPs
|
|
enddo ! elements
|
|
!$OMP END PARALLEL DO
|
|
|
|
if(numerics_timeSyncing) then
|
|
if (any(.not. crystallite_localPlasticity .and. .not. crystallite_todo .and. .not. crystallite_converged &
|
|
.and. crystallite_subStep <= subStepMinCryst)) then ! no way of rescuing a nonlocal ip that violated the lower time step limit, ...
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. crystallite_todo(g,i,e) &
|
|
.and. .not. crystallite_converged(g,i,e) .and. crystallite_subStep(g,i,e) <= subStepMinCryst) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> nonlocal violated minimum subStep at el,ip,g ',e,i,g
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
where(.not. crystallite_localPlasticity)
|
|
crystallite_todo = .false. ! ... so let all nonlocal ips die peacefully
|
|
crystallite_subStep = 0.0_pReal
|
|
endwhere
|
|
endif
|
|
endif
|
|
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,'(a,e12.5)') '<< CRYST >> min(subStep) ',minval(crystallite_subStep)
|
|
write(6,'(a,e12.5)') '<< CRYST >> max(subStep) ',maxval(crystallite_subStep)
|
|
write(6,'(a,e12.5)') '<< CRYST >> min(subFrac) ',minval(crystallite_subFrac)
|
|
write(6,'(a,e12.5)') '<< CRYST >> max(subFrac) ',maxval(crystallite_subFrac)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
! --- integrate --- requires fully defined state array (basic + dependent state)
|
|
|
|
if (any(crystallite_todo)) then
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt)
|
|
call crystallite_integrateStateFPI()
|
|
case(2_pInt)
|
|
call crystallite_integrateStateEuler()
|
|
case(3_pInt)
|
|
call crystallite_integrateStateAdaptiveEuler()
|
|
case(4_pInt)
|
|
call crystallite_integrateStateRK4()
|
|
case(5_pInt)
|
|
call crystallite_integrateStateRKCK45()
|
|
end select
|
|
endif
|
|
|
|
where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further
|
|
crystallite_todo = .true.
|
|
|
|
NiterationCrystallite = NiterationCrystallite + 1_pInt
|
|
|
|
enddo ! cutback loop
|
|
|
|
|
|
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
|
|
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> no convergence: respond fully elastic at el ip g ',e,i,g
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,g,i,e))
|
|
Fe_guess = math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp)
|
|
call constitutive_TandItsTangent(Tstar, junk2, Fe_guess,g,i,e)
|
|
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
|
|
endif
|
|
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp', math_transpose33(crystallite_Lp(1:3,1:3,g,i,e))
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
! --+>> STIFFNESS CALCULATION <<+--
|
|
|
|
if(updateJaco) then ! Jacobian required
|
|
|
|
if (.not. analyticJaco) then ! Calculate Jacobian using perturbations
|
|
|
|
numerics_integrationMode = 2_pInt
|
|
|
|
! --- BACKUP ---
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
|
|
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) ! remember unperturbed, converged state, ...
|
|
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
|
|
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) ! ... dotStates, ...
|
|
endforall
|
|
enddo
|
|
Temperature_backup = crystallite_Temperature ! ... Temperature, ...
|
|
F_backup = crystallite_subF ! ... and kinematics
|
|
Fp_backup = crystallite_Fp
|
|
InvFp_backup = crystallite_invFp
|
|
Fe_backup = crystallite_Fe
|
|
Lp_backup = crystallite_Lp
|
|
Tstar_v_backup = crystallite_Tstar_v
|
|
P_backup = crystallite_P
|
|
convergenceFlag_backup = crystallite_converged
|
|
|
|
|
|
! --- CALCULATE STATE AND STRESS FOR PERTURBATION ---
|
|
|
|
dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
do perturbation = 1,2 ! forward and backward perturbation
|
|
if (iand(pert_method,perturbation) > 0_pInt) then ! mask for desired direction
|
|
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
|
|
do k = 1,3; do l = 1,3 ! ...alter individual components
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,2(1x,i1),1x,a)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
|
|
! --- INITIALIZE UNPERTURBED STATE ---
|
|
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt) ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
|
|
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e))
|
|
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
|
|
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
|
|
endforall
|
|
enddo
|
|
crystallite_Temperature = Temperature_backup
|
|
crystallite_Fp = Fp_backup
|
|
crystallite_invFp = InvFp_backup
|
|
crystallite_Fe = Fe_backup
|
|
crystallite_Lp = Lp_backup
|
|
crystallite_Tstar_v = Tstar_v_backup
|
|
case(2_pInt,3_pInt) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step
|
|
case(4_pInt,5_pInt) ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
|
|
constitutive_subState0(g,i,e)%p(1:constitutive_sizeState(g,i,e))
|
|
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
|
|
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
|
|
endforall
|
|
enddo
|
|
crystallite_Temperature = crystallite_subTemperature0
|
|
crystallite_Fp = crystallite_subFp0
|
|
crystallite_Fe = crystallite_subFe0
|
|
crystallite_Lp = crystallite_subLp0
|
|
crystallite_Tstar_v = crystallite_subTstar0_v
|
|
end select
|
|
|
|
|
|
! --- PERTURB EITHER FORWARD OR BACKWARD ---
|
|
|
|
crystallite_subF = F_backup
|
|
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert
|
|
|
|
crystallite_converged = convergenceFlag_backup
|
|
crystallite_todo = crystallite_requested .and. crystallite_converged
|
|
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
|
|
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt)
|
|
call crystallite_integrateStateFPI()
|
|
case(2_pInt)
|
|
call crystallite_integrateStateEuler()
|
|
case(3_pInt)
|
|
call crystallite_integrateStateAdaptiveEuler()
|
|
case(4_pInt)
|
|
call crystallite_integrateStateRK4()
|
|
case(5_pInt)
|
|
call crystallite_integrateStateRKCK45()
|
|
end select
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
select case(perturbation)
|
|
case(1_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
|
|
dPdF_perturbation1(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
case(2_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
|
|
dPdF_perturbation2(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
end select
|
|
enddo
|
|
|
|
enddo; enddo ! k,l component perturbation loop
|
|
|
|
endif
|
|
enddo ! perturbation direction
|
|
|
|
|
|
! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE ---
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
select case(pert_method)
|
|
case(1_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 1: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e)
|
|
case(2_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 2: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e)
|
|
case(3_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 3: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) &
|
|
+ dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e))
|
|
end select
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) ! for any pertubation mode: if central solution did not converge...
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! ...use (elastic) fallback
|
|
endforall
|
|
enddo
|
|
|
|
|
|
! --- RESTORE ---
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
|
|
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e))
|
|
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
|
|
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
|
|
endforall
|
|
enddo
|
|
crystallite_Temperature = Temperature_backup
|
|
crystallite_subF = F_backup
|
|
crystallite_Fp = Fp_backup
|
|
crystallite_invFp = InvFp_backup
|
|
crystallite_Fe = Fe_backup
|
|
crystallite_Lp = Lp_backup
|
|
crystallite_Tstar_v = Tstar_v_backup
|
|
crystallite_P = P_backup
|
|
crystallite_converged = convergenceFlag_backup
|
|
|
|
else ! Calculate Jacobian using analytical expression
|
|
|
|
! --- CALCULATE ANALYTIC dPdF ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(dFedF,dSdF,dSdFe,myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1_pInt,myNgrains
|
|
dFedF = 0.0_pReal
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
dFedF(p,o,o,1:3) = crystallite_invFp(1:3,p,g,i,e) ! dFe^T_ij/dF_kl = delta_jk * (Fp current^-1)_li
|
|
enddo; enddo
|
|
call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
|
|
dSdF = math_mul3333xx3333(dSdFe,dFedF) ! dS/dF = dS/dFe * dFe/dF
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
crystallite_dPdF(1:3,1:3,o,p,g,i,e) = math_mul33x33(math_mul33x33(dFedF(1:3,1:3,o,p),&
|
|
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(&
|
|
crystallite_invFp(1:3,1:3,g,i,e))) & ! dP/dF = dFe/dF * S * Fp^-T...
|
|
+ math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e),&
|
|
math_mul33x33(dSdF(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))) ! + Fe * dS/dF * Fp^-T
|
|
enddo; enddo
|
|
enddo; enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
endif
|
|
|
|
if (rate_sensitivity) then
|
|
!$OMP PARALLEL DO PRIVATE(dFedFdot,dSdFdot,dSdFe,Fpinv_rate,FDot_inv,counter,dFp_invdFdot,myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1_pInt,myNgrains
|
|
Fpinv_rate = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e),crystallite_Lp(1:3,1:3,g,i,e)) ! dFp^-1 = dFp^-1/dt *dt... dFp may overshoot dF by small ammount as
|
|
FDot_inv = crystallite_subF(1:3,1:3,g,i,e) - crystallite_F0(1:3,1:3,g,i,e)
|
|
counter = 0.0_pReal
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
if (abs(FDot_inv(o,p)) < relevantStrain) then
|
|
FDot_inv(o,p) = 0.0_pReal
|
|
else
|
|
counter = counter + 1.0_pReal
|
|
FDot_inv(o,p) = crystallite_dt(g,i,e)/FDot_inv(o,p)
|
|
endif
|
|
enddo; enddo
|
|
if (counter > 0.0_pReal) FDot_inv = FDot_inv/counter
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
dFp_invdFdot(o,p,1:3,1:3) = Fpinv_rate(o,p)*FDot_inv
|
|
enddo; enddo
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
dFedFdot(1:3,1:3,o,p) = math_transpose33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
|
dFp_invdFdot(1:3,1:3,o,p)))
|
|
enddo; enddo
|
|
call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
|
|
dSdFdot = math_mul3333xx3333(dSdFe,dFedFdot)
|
|
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
|
|
crystallite_dPdF(1:3,1:3,o,p,g,i,e) = crystallite_dPdF(1:3,1:3,o,p,g,i,e) - &
|
|
(math_mul33x33(math_mul33x33(dFedFdot(1:3,1:3,o,p), &
|
|
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33( &
|
|
crystallite_invFp(1:3,1:3,g,i,e))) + & ! dP/dFdot = dFe/dFdot * S * Fp^-T...
|
|
math_mul33x33(math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), &
|
|
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(dFp_invdFdot(1:3,1:3,o,p))) & ! + Fe * S * dFp^-T/dFdot...
|
|
+ math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), &
|
|
math_mul33x33(dSdFdot(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))) ! + Fe * dS/dFdot * Fp^-T
|
|
enddo; enddo
|
|
enddo; enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
endif
|
|
endif ! jacobian calculation
|
|
|
|
end subroutine crystallite_stressAndItsTangent
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 4h order explicit Runge Kutta method
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateRK4(gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use numerics, only: numerics_integrationMode
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_RK4dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_deltaState, &
|
|
constitutive_collectDeltaState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), parameter :: timeStepFraction = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
|
|
real(pReal), dimension(4), parameter :: weight = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal] ! weight of slope used for Runge Kutta integration
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
n, &
|
|
mySizeDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(1:2,ee) = ii
|
|
gIter(1:2,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --- FIRST RUNGE KUTTA STEP ---
|
|
|
|
RK4dotTemperature = 0.0_pReal ! initialize Runge-Kutta dotTemperature
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
constitutive_RK4dotState(g,i,e)%p = 0.0_pReal ! initialize Runge-Kutta dotState
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
|
|
|
|
do n = 1_pInt,4_pInt
|
|
|
|
! --- state update ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
if (n < 4) then
|
|
constitutive_RK4dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p + weight(n)*constitutive_dotState(g,i,e)%p
|
|
RK4dotTemperature(g,i,e) = RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)
|
|
elseif (n == 4) then
|
|
constitutive_dotState(g,i,e)%p = (constitutive_RK4dotState(g,i,e)%p + &
|
|
weight(n)*constitutive_dotState(g,i,e)%p) / 6.0_pReal ! use weighted RKdotState for final integration
|
|
crystallite_dotTemperature(g,i,e) = (RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)) / 6.0_pReal
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
if (n == 4) then ! final integration step
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- state jump ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
|
|
if (n < 4) then
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
endif
|
|
!$OMP END PARALLEL
|
|
|
|
enddo
|
|
|
|
|
|
! --- SET CONVERGENCE FLAG ---
|
|
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(4,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
|
|
|
|
! --- CHECK NONLOCAL CONVERGENCE ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateRK4
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 5th order Runge-Kutta Cash-Karp method with adaptive step size
|
|
! (use 5th order solution to advance = "local extrapolation")
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateRKCK45(gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: rTol_crystalliteState, &
|
|
rTol_crystalliteTemperature, &
|
|
numerics_integrationMode
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_aTolState, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_RKCK45dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_deltaState, &
|
|
constitutive_collectDeltaState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
!*** input variables ***!
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
n, & ! stage index in integration stage loop
|
|
mySizeDotState, & ! size of dot State
|
|
s ! state index
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
RKCK45dotTemperature ! evolution of Temperature of each grain for Runge Kutta Cash Karp integration
|
|
real(pReal), dimension(5,5) :: a ! coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
|
|
real(pReal), dimension(6) :: b, db ! coefficients in Butcher tableau (used for final integration and error estimate)
|
|
real(pReal), dimension(5) :: c ! coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in micrstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
temperatureResiduum, & ! residuum from evolution in temperature
|
|
relTemperatureResiduum ! relative residuum from evolution in temperature
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
! --- FILL BUTCHER TABLEAU ---
|
|
|
|
a = 0.0_pReal
|
|
b = 0.0_pReal
|
|
db = 0.0_pReal
|
|
c = 0.0_pReal
|
|
|
|
a(1,1) = 0.2_pReal
|
|
a(1,2) = 0.075_pReal
|
|
a(2,2) = 0.225_pReal
|
|
a(1,3) = 0.3_pReal
|
|
a(2,3) = -0.9_pReal
|
|
a(3,3) = 1.2_pReal
|
|
a(1,4) = -11.0_pReal / 54.0_pReal
|
|
a(2,4) = 2.5_pReal
|
|
a(3,4) = -70.0_pReal / 27.0_pReal
|
|
a(4,4) = 35.0_pReal / 27.0_pReal
|
|
a(1,5) = 1631.0_pReal / 55296.0_pReal
|
|
a(2,5) = 175.0_pReal / 512.0_pReal
|
|
a(3,5) = 575.0_pReal / 13824.0_pReal
|
|
a(4,5) = 44275.0_pReal / 110592.0_pReal
|
|
a(5,5) = 253.0_pReal / 4096.0_pReal
|
|
|
|
b(1) = 37.0_pReal / 378.0_pReal
|
|
b(3) = 250.0_pReal / 621.0_pReal
|
|
b(4) = 125.0_pReal / 594.0_pReal
|
|
b(6) = 512.0_pReal / 1771.0_pReal
|
|
|
|
db(1) = b(1) - 2825.0_pReal / 27648.0_pReal
|
|
db(3) = b(3) - 18575.0_pReal / 48384.0_pReal
|
|
db(4) = b(4) - 13525.0_pReal / 55296.0_pReal
|
|
db(5) = - 277.0_pReal / 14336.0_pReal
|
|
db(6) = b(6) - 0.25_pReal
|
|
|
|
c(1) = 0.2_pReal
|
|
c(2) = 0.3_pReal
|
|
c(3) = 0.6_pReal
|
|
c(4) = 1.0_pReal
|
|
c(5) = 0.875_pReal
|
|
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(1:2,ee) = ii
|
|
gIter(1:2,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
|
|
! --- FIRST RUNGE KUTTA STEP ---
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,1x,i1)') '<< CRYST >> RUNGE KUTTA STEP',1
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
|
|
|
|
do n = 1_pInt,5_pInt
|
|
|
|
! --- state update ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_RKCK45dotState(n,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
|
|
RKCK45dotTemperature(n,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (n == 1) then ! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION (CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE)
|
|
constitutive_dotState(g,i,e)%p = a(1,1) * constitutive_RKCK45dotState(1,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = a(1,1) * RKCK45dotTemperature(1,g,i,e)
|
|
elseif (n == 2) then
|
|
constitutive_dotState(g,i,e)%p = a(1,2) * constitutive_RKCK45dotState(1,g,i,e)%p &
|
|
+ a(2,2) * constitutive_RKCK45dotState(2,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = a(1,2) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ a(2,2) * RKCK45dotTemperature(2,g,i,e)
|
|
elseif (n == 3) then
|
|
constitutive_dotState(g,i,e)%p = a(1,3) * constitutive_RKCK45dotState(1,g,i,e)%p &
|
|
+ a(2,3) * constitutive_RKCK45dotState(2,g,i,e)%p &
|
|
+ a(3,3) * constitutive_RKCK45dotState(3,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = a(1,3) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ a(2,3) * RKCK45dotTemperature(2,g,i,e) &
|
|
+ a(3,3) * RKCK45dotTemperature(3,g,i,e)
|
|
elseif (n == 4) then
|
|
constitutive_dotState(g,i,e)%p = a(1,4) * constitutive_RKCK45dotState(1,g,i,e)%p &
|
|
+ a(2,4) * constitutive_RKCK45dotState(2,g,i,e)%p &
|
|
+ a(3,4) * constitutive_RKCK45dotState(3,g,i,e)%p &
|
|
+ a(4,4) * constitutive_RKCK45dotState(4,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = a(1,4) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ a(2,4) * RKCK45dotTemperature(2,g,i,e) &
|
|
+ a(3,4) * RKCK45dotTemperature(3,g,i,e) &
|
|
+ a(4,4) * RKCK45dotTemperature(4,g,i,e)
|
|
elseif (n == 5) then
|
|
constitutive_dotState(g,i,e)%p = a(1,5) * constitutive_RKCK45dotState(1,g,i,e)%p &
|
|
+ a(2,5) * constitutive_RKCK45dotState(2,g,i,e)%p &
|
|
+ a(3,5) * constitutive_RKCK45dotState(3,g,i,e)%p &
|
|
+ a(4,5) * constitutive_RKCK45dotState(4,g,i,e)%p &
|
|
+ a(5,5) * constitutive_RKCK45dotState(5,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = a(1,5) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ a(2,5) * RKCK45dotTemperature(2,g,i,e) &
|
|
+ a(3,5) * RKCK45dotTemperature(3,g,i,e) &
|
|
+ a(4,5) * RKCK45dotTemperature(4,g,i,e) &
|
|
+ a(5,5) * RKCK45dotTemperature(5,g,i,e)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- state jump ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,c(n)) ! fraction of original time step
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',n+1_pInt
|
|
endif
|
|
#endif
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), c(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
enddo
|
|
|
|
|
|
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE AND TEMPERATURE ---
|
|
|
|
relStateResiduum = 0.0_pReal
|
|
relTemperatureResiduum = 0.0_pReal
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_RKCK45dotState(6,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
|
|
RKCK45dotTemperature(6,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
|
|
! --- absolute residuum in state and temperature ---
|
|
! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION
|
|
! CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE
|
|
|
|
stateResiduum(1:mySizeDotState,g,i,e) = &
|
|
( db(1) * constitutive_RKCK45dotState(1,g,i,e)%p(1:mySizeDotState) &
|
|
+ db(2) * constitutive_RKCK45dotState(2,g,i,e)%p(1:mySizeDotState) &
|
|
+ db(3) * constitutive_RKCK45dotState(3,g,i,e)%p(1:mySizeDotState) &
|
|
+ db(4) * constitutive_RKCK45dotState(4,g,i,e)%p(1:mySizeDotState) &
|
|
+ db(5) * constitutive_RKCK45dotState(5,g,i,e)%p(1:mySizeDotState) &
|
|
+ db(6) * constitutive_RKCK45dotState(6,g,i,e)%p(1:mySizeDotState)) &
|
|
* crystallite_subdt(g,i,e)
|
|
temperatureResiduum(g,i,e) = ( db(1) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ db(2) * RKCK45dotTemperature(2,g,i,e) &
|
|
+ db(3) * RKCK45dotTemperature(3,g,i,e) &
|
|
+ db(4) * RKCK45dotTemperature(4,g,i,e) &
|
|
+ db(5) * RKCK45dotTemperature(5,g,i,e) &
|
|
+ db(6) * RKCK45dotTemperature(6,g,i,e)) &
|
|
* crystallite_subdt(g,i,e)
|
|
|
|
! --- dot state and dot temperature ---
|
|
|
|
constitutive_dotState(g,i,e)%p = b(1) * constitutive_RKCK45dotState(1,g,i,e)%p &
|
|
+ b(2) * constitutive_RKCK45dotState(2,g,i,e)%p &
|
|
+ b(3) * constitutive_RKCK45dotState(3,g,i,e)%p &
|
|
+ b(4) * constitutive_RKCK45dotState(4,g,i,e)%p &
|
|
+ b(5) * constitutive_RKCK45dotState(5,g,i,e)%p &
|
|
+ b(6) * constitutive_RKCK45dotState(6,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = b(1) * RKCK45dotTemperature(1,g,i,e) &
|
|
+ b(2) * RKCK45dotTemperature(2,g,i,e) &
|
|
+ b(3) * RKCK45dotTemperature(3,g,i,e) &
|
|
+ b(4) * RKCK45dotTemperature(4,g,i,e) &
|
|
+ b(5) * RKCK45dotTemperature(5,g,i,e) &
|
|
+ b(6) * RKCK45dotTemperature(6,g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- state and temperature update ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- relative residui and state convergence ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
|
|
if (crystallite_Temperature(g,i,e) > 0) then
|
|
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
|
|
endif
|
|
!$OMP FLUSH(relStateResiduum,relTemperatureResiduum)
|
|
|
|
crystallite_todo(g,i,e) = &
|
|
( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
|
|
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) ) &
|
|
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature )
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt&
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i3,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', &
|
|
stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', &
|
|
relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- SET CONVERGENCE FLAG ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(6,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- nonlocal convergence check ---
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateRKCK45
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 1nd order Euler method with adaptive step size
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: rTol_crystalliteState, &
|
|
rTol_crystalliteTemperature, &
|
|
numerics_integrationMode
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_aTolState, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
mySizeDotState, & ! size of dot State
|
|
s ! state index
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in micrstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
temperatureResiduum, & ! residuum from evolution in temperature
|
|
relTemperatureResiduum ! relative residuum from evolution in temperature
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(1:2,ee) = ii
|
|
gIter(1:2,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
stateResiduum = 0.0_pReal
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
|
|
if (numerics_integrationMode == 1_pInt) then
|
|
|
|
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE UPDATE (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
stateResiduum(1:mySizeDotState,g,i,e) = - 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
|
|
temperatureResiduum(g,i,e) = - 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
endif
|
|
|
|
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
if (numerics_integrationMode == 1_pInt) then
|
|
|
|
! --- DOT STATE AND TEMPERATURE (HEUN METHOD) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- ERROR ESTIMATE FOR STATE AND TEMPERATURE (HEUN METHOD) ---
|
|
|
|
!$OMP SINGLE
|
|
relStateResiduum = 0.0_pReal
|
|
relTemperatureResiduum = 0.0_pReal
|
|
!$OMP END SINGLE
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
|
|
|
|
! --- contribution of heun step to absolute residui ---
|
|
|
|
stateResiduum(1:mySizeDotState,g,i,e) = stateResiduum(1:mySizeDotState,g,i,e) &
|
|
+ 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
|
|
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) &
|
|
+ 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
!$OMP FLUSH(stateResiduum,temperatureResiduum)
|
|
|
|
! --- relative residui ---
|
|
|
|
forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
|
|
if (crystallite_Temperature(g,i,e) > 0_pInt) then
|
|
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
|
|
endif
|
|
!$OMP FLUSH(relStateResiduum,relTemperatureResiduum)
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', &
|
|
stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', &
|
|
relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) &
|
|
- 2.0_pReal * stateResiduum(1:mySizeDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
|
|
! --- converged ? ---
|
|
|
|
if ( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
|
|
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState)) &
|
|
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature ) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
elseif (numerics_integrationMode > 1) then ! stiffness calculation
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
endif
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- NONLOCAL CONVERGENCE CHECK ---
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateAdaptiveEuler
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 1st order explicit Euler method
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateEuler(gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use numerics, only: numerics_integrationMode, &
|
|
numerics_timeSyncing
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
!*** input variables ***!
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
mySizeDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(1:2,ee) = ii
|
|
gIter(1:2,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
!$OMP PARALLEL
|
|
|
|
if (numerics_integrationMode == 1_pInt) then
|
|
|
|
! --- DOT STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. numerics_timeSyncing) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO PRIVATE(mySizeDotState)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
|
|
.and. .not. numerics_timeSyncing) then
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
endif
|
|
|
|
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
|
|
.and. .not. numerics_timeSyncing) then
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- SET CONVERGENCE FLAG ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(1,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- CHECK NON-LOCAL CONVERGENCE ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity) & ! any non-local not yet converged (or broken)...
|
|
.and. .not. numerics_timeSyncing) then
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateEuler
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! adaptive 1st order explicit Euler method
|
|
! using Fixed Point Iteration to adapt the stepsize
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateFPI(gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use debug, only: debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_level,&
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: nState, &
|
|
numerics_integrationMode, &
|
|
rTol_crystalliteState, &
|
|
rTol_crystalliteTemperature
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_subState0, &
|
|
constitutive_state, &
|
|
constitutive_sizeDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure, &
|
|
constitutive_previousDotState, &
|
|
constitutive_previousDotState2, &
|
|
constitutive_aTolState
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) NiterationState, & ! number of iterations in state loop
|
|
e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
mySizeDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal) dot_prod12, &
|
|
dot_prod22, &
|
|
stateDamper, & ! damper for integration of state
|
|
temperatureResiduum
|
|
real(pReal), dimension(constitutive_maxSizeDotState) :: &
|
|
stateResiduum, &
|
|
tempState
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
singleRun = present(ee) .and. present(ii) .and. present(gg)
|
|
if (singleRun) then
|
|
eIter = ee
|
|
iIter(1:2,ee) = ii
|
|
gIter(1:2,ee) = gg
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
endif
|
|
|
|
|
|
! --+>> PREGUESS FOR STATE <<+--
|
|
|
|
!$OMP PARALLEL
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
|
|
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- DOT STATES ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken)
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! broken one was local...
|
|
crystallite_todo(g,i,e) = .false. ! ... done (and broken)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO PRIVATE(mySizeDotState)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --+>> STATE LOOP <<+--
|
|
|
|
NiterationState = 0_pInt
|
|
do while (any(crystallite_todo .and. .not. crystallite_converged) .and. NiterationState < nState ) ! convergence loop for crystallite
|
|
NiterationState = NiterationState + 1_pInt
|
|
|
|
!$OMP PARALLEL
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p ! remember previous dotState
|
|
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p ! remember current dotState
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration'
|
|
endif
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
|
|
|
|
! --- DOT STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
crystallite_todo(g,i,e) = .false. ! ... skip me next time
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO PRIVATE(dot_prod12,dot_prod22,statedamper,mySizeDotState,stateResiduum,temperatureResiduum,tempState)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
|
|
! --- state damper ---
|
|
|
|
dot_prod12 = dot_product( constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p, &
|
|
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
|
|
dot_prod22 = dot_product( constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p, &
|
|
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) then
|
|
statedamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
statedamper = 1.0_pReal
|
|
endif
|
|
|
|
! --- get residui ---
|
|
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
stateResiduum(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
|
|
- constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
- (constitutive_dotState(g,i,e)%p * statedamper &
|
|
+ constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper)) * crystallite_subdt(g,i,e)
|
|
temperatureResiduum = crystallite_Temperature(g,i,e) &
|
|
- crystallite_subTemperature0(g,i,e) &
|
|
- crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
|
|
! --- correct state and temperature with residuum ---
|
|
|
|
tempState(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) - stateResiduum(1:mySizeDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
|
|
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - temperatureResiduum
|
|
!$OMP FLUSH(crystallite_Temperature)
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,f6.1)') '<< CRYST >> statedamper ',statedamper
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> state residuum',stateResiduum(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state',tempState(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
|
|
! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp)
|
|
|
|
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p * statedamper &
|
|
+ constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper)
|
|
|
|
|
|
! --- converged ? ---
|
|
|
|
if ( all( abs(stateResiduum(1:mySizeDotState)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) &
|
|
.or. abs(stateResiduum(1:mySizeDotState)) < rTol_crystalliteState &
|
|
* abs(tempState(1:mySizeDotState)) ) &
|
|
.and. (abs(temperatureResiduum) < rTol_crystalliteTemperature * crystallite_Temperature(g,i,e) &
|
|
.or. crystallite_Temperature(g,i,e) == 0.0_pReal) ) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = tempState(1:mySizeDotState) ! copy local backup to global pointer
|
|
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive...
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
|
|
crystallite_converged(g,i,e) = .false.
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL(write2out)
|
|
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
|
|
' grains converged after state integration no. ', NiterationState
|
|
write(6,*)
|
|
!$OMP END CRITICAL(write2out)
|
|
endif
|
|
|
|
|
|
! --- NON-LOCAL CONVERGENCE CHECK ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
!$OMP CRITICAL(write2out)
|
|
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)),' grains converged after non-local check'
|
|
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after state integration no. ',&
|
|
NiterationState
|
|
write(6,*)
|
|
!$OMP END CRITICAL(write2out)
|
|
endif
|
|
|
|
enddo ! crystallite convergence loop
|
|
|
|
|
|
end subroutine crystallite_integrateStateFPI
|
|
|
|
|
|
|
|
!***********************************************************
|
|
!* calculates a jump in the state according to the current *
|
|
!* state and the current stress *
|
|
!***********************************************************
|
|
function crystallite_stateJump(g,i,e)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_deltaState, &
|
|
constitutive_collectDeltaState, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
|
|
!*** output variables ***!
|
|
logical crystallite_stateJump
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) mySizeDotState
|
|
|
|
|
|
crystallite_stateJump = .false.
|
|
|
|
call constitutive_collectDeltaState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Temperature(g,i,e), g,i,e)
|
|
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= constitutive_deltaState(g,i,e)%p(1:mySizeDotState))) then
|
|
return
|
|
endif
|
|
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_deltaState(g,i,e)%p(1:mySizeDotState)
|
|
|
|
#ifndef _OPENMP
|
|
if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= 0.0_pReal) &
|
|
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> deltaState', constitutive_deltaState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
|
|
crystallite_stateJump = .true.
|
|
|
|
end function crystallite_stateJump
|
|
|
|
|
|
|
|
!***********************************************************************
|
|
!*** calculation of stress (P) with time integration ***
|
|
!*** based on a residuum in Lp and intermediate ***
|
|
!*** acceleration of the Newton-Raphson correction ***
|
|
!***********************************************************************
|
|
function crystallite_integrateStress(&
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e,& ! element number
|
|
timeFraction &
|
|
)
|
|
|
|
|
|
use prec, only: pLongInt
|
|
use numerics, only: nStress, &
|
|
aTol_crystalliteStress, &
|
|
rTol_crystalliteStress, &
|
|
iJacoLpresiduum, &
|
|
numerics_integrationMode
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_cumLpCalls, &
|
|
debug_cumLpTicks, &
|
|
debug_StressLoopDistribution
|
|
use constitutive, only: constitutive_LpAndItsTangent, &
|
|
constitutive_TandItsTangent, &
|
|
constitutive_homogenizedC
|
|
use math, only: math_mul33x33, &
|
|
math_mul33xx33, &
|
|
math_mul66x6, &
|
|
math_mul99x99, &
|
|
math_transpose33, &
|
|
math_inv33, &
|
|
math_invert33, &
|
|
math_invert, &
|
|
math_det33, &
|
|
math_norm33, &
|
|
math_I3, &
|
|
math_identity2nd, &
|
|
math_Mandel66to3333, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_Plain3333to99, &
|
|
math_Plain33to9, &
|
|
math_Plain9to33
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
|
|
|
|
!*** output variables ***!
|
|
logical crystallite_integrateStress ! flag indicating if integration suceeded
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
|
|
Fp_current, & ! plastic deformation gradient at start of timestep
|
|
Fp_new, & ! plastic deformation gradient at end of timestep
|
|
Fe_new, & ! elastic deformation gradient at end of timestep
|
|
invFp_new, & ! inverse of Fp_new
|
|
invFp_current, & ! inverse of Fp_current
|
|
Lpguess, & ! current guess for plastic velocity gradient
|
|
Lpguess_old, & ! known last good guess for plastic velocity gradient
|
|
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
|
|
residuum, & ! current residuum of plastic velocity gradient
|
|
residuum_old, & ! last residuum of plastic velocity gradient
|
|
deltaLp, & ! direction of next guess
|
|
Tstar,& ! 2nd Piola-Kirchhoff Stress
|
|
A,&
|
|
B, &
|
|
Fe ! elastic deformation gradient
|
|
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
|
|
real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK
|
|
integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK
|
|
real(pReal), dimension(9,9) :: dLp_dT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
|
|
dT_dFe_constitutive, & ! partial derivative of 2nd Piola-Kirchhoff stress calculated by constitutive law
|
|
dFe_dLp, & ! partial derivative of elastic deformation gradient
|
|
dR_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
|
dR_dLp2 ! working copy of dRdLp
|
|
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
|
dFe_dLp3333 ! partial derivative of elastic deformation gradient
|
|
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
|
|
det, & ! determinant
|
|
steplength0, &
|
|
steplength, &
|
|
dt, & ! time increment
|
|
aTol
|
|
logical error ! flag indicating an error
|
|
integer(pInt) NiterationStress, & ! number of stress integrations
|
|
ierr, & ! error indicator for LAPACK
|
|
n, &
|
|
o, &
|
|
p, &
|
|
jacoCounter ! counter to check for Jacobian update
|
|
integer(pLongInt) tick, &
|
|
tock, &
|
|
tickrate, &
|
|
maxticks
|
|
|
|
|
|
!* be pessimistic
|
|
|
|
crystallite_integrateStress = .false.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip g ',e,i,g
|
|
endif
|
|
#endif
|
|
|
|
|
|
!* only integrate over fraction of timestep?
|
|
|
|
if (present(timeFraction)) then
|
|
dt = crystallite_subdt(g,i,e) * timeFraction
|
|
Fg_new = crystallite_subF0(1:3,1:3,g,i,e) + (crystallite_subF(1:3,1:3,g,i,e) - crystallite_subF0(1:3,1:3,g,i,e)) * timeFraction
|
|
else
|
|
dt = crystallite_subdt(g,i,e)
|
|
Fg_new = crystallite_subF(1:3,1:3,g,i,e)
|
|
endif
|
|
|
|
|
|
!* feed local variables
|
|
|
|
Fp_current = crystallite_subFp0(1:3,1:3,g,i,e) ! "Fp_current" is only used as temp var here...
|
|
Lpguess_old = crystallite_Lp(1:3,1:3,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
|
|
Lpguess = crystallite_Lp(1:3,1:3,g,i,e) ! ... and take it as first guess
|
|
|
|
|
|
!* inversion of Fp_current...
|
|
|
|
invFp_current = math_inv33(Fp_current)
|
|
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el ip g ',e,i,g
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) then
|
|
write(6,*)
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fp_current(1:3,1:3))
|
|
endif
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
|
|
|
|
|
|
!* start LpLoop with normal step length
|
|
|
|
NiterationStress = 0_pInt
|
|
jacoCounter = 0_pInt
|
|
steplength0 = 1.0_pReal
|
|
steplength = steplength0
|
|
residuum_old = 0.0_pReal
|
|
|
|
LpLoop: do
|
|
NiterationStress = NiterationStress + 1_pInt
|
|
|
|
|
|
!* too many loops required ?
|
|
|
|
if (NiterationStress > nStress) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i3,a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress reached loop limit',nStress,' at el ip g ',e,i,g
|
|
write(6,*)
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
|
|
|
|
!* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law
|
|
|
|
B = math_I3 - dt*Lpguess
|
|
Fe = math_mul33x33(A,B) ! current elastic deformation tensor
|
|
call constitutive_TandItsTangent(Tstar, dT_dFe3333, Fe, g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
|
|
Tstar_v = math_Mandel33to6(Tstar)
|
|
p_hydro = sum(Tstar_v(1:3)) / 3.0_pReal
|
|
forall(n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
|
|
|
|
|
|
!* calculate plastic velocity gradient and its tangent from constitutive law
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
|
|
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
|
|
|
|
call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
|
|
!$OMP CRITICAL (debugTimingLpTangent)
|
|
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
|
|
debug_cumLpTicks = debug_cumLpTicks + tock-tick
|
|
!$OMP FLUSH (debug_cumLpTicks)
|
|
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
|
|
!$OMP END CRITICAL (debugTimingLpTangent)
|
|
endif
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i3)') '<< CRYST >> iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive', math_transpose33(Lp_constitutive)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess', math_transpose33(Lpguess)
|
|
endif
|
|
#endif
|
|
|
|
|
|
!* update current residuum and check for convergence of loop
|
|
|
|
aTol = max(rTol_crystalliteStress * max(math_norm33(Lpguess),math_norm33(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
|
|
aTol_crystalliteStress) ! minimum lower cutoff
|
|
residuum = Lpguess - Lp_constitutive
|
|
|
|
if (any(residuum /= residuum)) then ! NaN in residuum...
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el ip g ',e,i,g,&
|
|
' ; iteration ', NiterationStress,&
|
|
' >> returning..!'
|
|
endif
|
|
#endif
|
|
return ! ...me = .false. to inform integrator about problem
|
|
elseif (math_norm33(residuum) < aTol) then ! converged if below absolute tolerance
|
|
exit LpLoop ! ...leave iteration loop
|
|
elseif (math_norm33(residuum) < math_norm33(residuum_old) .or. NiterationStress == 1_pInt ) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
|
|
residuum_old = residuum ! ...remember old values and...
|
|
Lpguess_old = Lpguess
|
|
steplength = steplength0 ! ...proceed with normal step length (calculate new search direction)
|
|
else ! not converged and residuum not improved...
|
|
steplength = 0.5_pReal * steplength ! ...try with smaller step length in same direction
|
|
Lpguess = Lpguess_old + steplength * deltaLp
|
|
cycle LpLoop
|
|
endif
|
|
|
|
|
|
!* calculate Jacobian for correction term
|
|
|
|
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
|
|
dFe_dLp3333 = 0.0_pReal
|
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
dFe_dLp3333(p,o,1:3,p) = A(o,1:3) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) delta(j,l)
|
|
enddo; enddo
|
|
dFe_dLp3333 = -dt * dFe_dLp3333
|
|
dFe_dLp = math_Plain3333to99(dFe_dLp3333)
|
|
dT_dFe_constitutive = math_Plain3333to99(dT_dFe3333)
|
|
dR_dLp = math_identity2nd(9_pInt) - &
|
|
math_mul99x99(dLp_dT_constitutive, math_mul99x99(dT_dFe_constitutive , dFe_dLp))
|
|
dR_dLp2 = dR_dLp ! will be overwritten in first call to LAPACK routine
|
|
work = math_plain33to9(residuum)
|
|
#if(FLOAT==8)
|
|
call dgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp
|
|
#elif(FLOAT==4)
|
|
call sgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp
|
|
#endif
|
|
if (ierr /= 0_pInt) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el ip g ',e,i,g
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,*)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dR_dLp)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(dFe_dLp)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(dT_dFe_constitutive)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(dLp_dT_constitutive)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',math_transpose33(A)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',math_transpose33(B)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',math_transpose33(Lp_constitutive)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',math_transpose33(Lpguess)
|
|
endif
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
deltaLp = - math_plain9to33(work)
|
|
endif
|
|
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
|
|
|
|
Lpguess = Lpguess + steplength * deltaLp
|
|
|
|
enddo LpLoop
|
|
|
|
|
|
!* calculate new plastic and elastic deformation gradient
|
|
|
|
invFp_new = math_mul33x33(invFp_current,B)
|
|
invFp_new = invFp_new/math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
|
|
call math_invert33(invFp_new,Fp_new,det,error)
|
|
if (error .or. any(Fp_new/=Fp_new)) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip g ',&
|
|
e,i,g, ' ; iteration ', NiterationStress
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,*)
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',math_transpose33(invFp_new)
|
|
endif
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
|
|
|
|
|
|
!* add volumetric component to 2nd Piola-Kirchhoff stress and calculate 1st Piola-Kirchhoff stress
|
|
|
|
forall (n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) + p_hydro
|
|
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_new, math_mul33x33(math_Mandel6to33(Tstar_v), math_transpose33(invFp_new)))
|
|
|
|
|
|
!* store local values in global variables
|
|
|
|
crystallite_Lp(1:3,1:3,g,i,e) = Lpguess
|
|
crystallite_Tstar_v(1:6,g,i,e) = Tstar_v
|
|
crystallite_Fp(1:3,1:3,g,i,e) = Fp_new
|
|
crystallite_Fe(1:3,1:3,g,i,e) = Fe_new
|
|
crystallite_invFp(1:3,1:3,g,i,e) = invFp_new
|
|
|
|
|
|
!* set return flag to true
|
|
|
|
crystallite_integrateStress = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', &
|
|
math_mul33x33(crystallite_P(1:3,1:3,g,i,e), math_transpose33(Fg_new)) / 1.0e6_pReal / math_det33(Fg_new)
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', &
|
|
math_transpose33(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,g,i,e), math_inv33(Fe_new)))) ! transpose to get correct print out order
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
endif
|
|
#endif
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionStress)
|
|
debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) = &
|
|
debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionStress)
|
|
endif
|
|
|
|
end function crystallite_integrateStress
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! calculates orientations and disorientations (in case of single grain ips)
|
|
!********************************************************************
|
|
subroutine crystallite_orientations
|
|
|
|
!*** variables and functions from other modules ***!
|
|
|
|
use math, only: math_pDecomposition, &
|
|
math_RtoQuaternion, &
|
|
math_QuaternionDisorientation, &
|
|
math_qConj
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use IO, only: IO_warning
|
|
use material, only: material_phase, &
|
|
homogenization_Ngrains, &
|
|
phase_localPlasticity, &
|
|
phase_plasticityInstance
|
|
use mesh, only: mesh_element, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors, &
|
|
FE_geomtype
|
|
use constitutive_nonlocal, only: constitutive_nonlocal_structure, &
|
|
constitutive_nonlocal_updateCompatibility
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
n, & ! neighbor index
|
|
neighboring_e, & ! element index of my neighbor
|
|
neighboring_i, & ! integration point index of my neighbor
|
|
myPhase, & ! phase
|
|
neighboringPhase, &
|
|
myInstance, & ! instance of plasticity
|
|
neighboringInstance, &
|
|
myStructure, & ! lattice structure
|
|
neighboringStructure
|
|
real(pReal), dimension(3,3) :: U, R
|
|
real(pReal), dimension(4) :: orientation
|
|
logical error
|
|
|
|
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(error,U,R,orientation)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
|
|
|
|
call math_pDecomposition(crystallite_Fe(1:3,1:3,g,i,e), U, R, error) ! polar decomposition of Fe
|
|
if (error) then
|
|
call IO_warning(650_pInt, e, i, g)
|
|
orientation = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! fake orientation
|
|
else
|
|
orientation = math_RtoQuaternion(transpose(R))
|
|
endif
|
|
crystallite_rotation(1:4,g,i,e) = math_QuaternionDisorientation(crystallite_orientation0(1:4,g,i,e), & ! active rotation from ori0
|
|
orientation, & ! to current orientation
|
|
0_pInt ) ! we don't want symmetry here
|
|
crystallite_orientation(1:4,g,i,e) = orientation
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
|
|
! --- we use crystallite_orientation from above, so need a seperate loop
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myPhase,myInstance,myStructure,neighboring_e,neighboring_i,neighboringPhase,&
|
|
!$OMP neighboringInstance,neighboringStructure)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
myPhase = material_phase(1,i,e) ! get my phase
|
|
if (.not. phase_localPlasticity(myPhase)) then ! if nonlocal model
|
|
myInstance = phase_plasticityInstance(myPhase)
|
|
myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure
|
|
|
|
|
|
! --- calculate disorientation between me and my neighbor ---
|
|
|
|
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e))) ! loop through my neighbors
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
|
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
|
|
if (.not. phase_localPlasticity(neighboringPhase)) then ! neighbor got also nonlocal plasticity
|
|
neighboringInstance = phase_plasticityInstance(neighboringPhase)
|
|
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure
|
|
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
|
|
crystallite_disorientation(:,n,1,i,e) = &
|
|
math_QuaternionDisorientation( crystallite_orientation(1:4,1,i,e), &
|
|
crystallite_orientation(1:4,1,neighboring_i,neighboring_e), &
|
|
crystallite_symmetryID(1,i,e)) ! calculate disorientation
|
|
else ! for neighbor with different phase
|
|
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
|
|
endif
|
|
else ! for neighbor with local plasticity
|
|
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
|
endif
|
|
else ! no existing neighbor
|
|
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
|
endif
|
|
enddo
|
|
|
|
|
|
! --- calculate compatibility and transmissivity between me and my neighbor ---
|
|
|
|
call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e)
|
|
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine crystallite_orientations
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! return results of particular grain
|
|
!********************************************************************
|
|
function crystallite_postResults(&
|
|
dt,& ! time increment
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e & ! element number
|
|
)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use math, only: math_QuaternionToEuler, &
|
|
math_QuaternionToAxisAngle, &
|
|
math_mul33x33, &
|
|
math_transpose33, &
|
|
math_det33, &
|
|
math_I3, &
|
|
inDeg, &
|
|
math_Mandel6to33, &
|
|
math_qMul, &
|
|
math_qConj
|
|
use mesh, only: mesh_element, &
|
|
mesh_ipVolume
|
|
use material, only: microstructure_crystallite, &
|
|
crystallite_Noutput, &
|
|
material_phase, &
|
|
material_texture, &
|
|
homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizePostResults, &
|
|
constitutive_postResults, &
|
|
constitutive_homogenizedC
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
real(pReal), intent(in):: dt ! time increment
|
|
|
|
!*** output variables ***!
|
|
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
|
|
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(3,3) :: Ee
|
|
real(pReal), dimension(4) :: rotation
|
|
real(pReal) detF
|
|
integer(pInt) o,c,crystID,mySize
|
|
|
|
crystID = microstructure_crystallite(mesh_element(4,e))
|
|
|
|
crystallite_postResults = 0.0_pReal
|
|
c = 0_pInt
|
|
crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst
|
|
c = c + 1_pInt
|
|
|
|
do o = 1_pInt,crystallite_Noutput(crystID)
|
|
mySize = 0_pInt
|
|
select case(crystallite_output(o,crystID))
|
|
case ('phase')
|
|
mySize = 1_pInt
|
|
crystallite_postResults(c+1) = real(material_phase(g,i,e),pReal) ! phaseID of grain
|
|
case ('texture')
|
|
mySize = 1_pInt
|
|
crystallite_postResults(c+1) = real(material_texture(g,i,e),pReal) ! textureID of grain
|
|
case ('volume')
|
|
mySize = 1_pInt
|
|
detF = math_det33(crystallite_partionedF(1:3,1:3,g,i,e)) ! V_current = det(F) * V_reference
|
|
crystallite_postResults(c+1) = detF * mesh_ipVolume(i,e) / homogenization_Ngrains(mesh_element(3,e)) ! grain volume (not fraction but absolute)
|
|
case ('orientation')
|
|
mySize = 4_pInt
|
|
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,g,i,e) ! grain orientation as quaternion
|
|
case ('eulerangles')
|
|
mySize = 3_pInt
|
|
crystallite_postResults(c+1:c+mySize) = inDeg * math_QuaternionToEuler(crystallite_orientation(1:4,g,i,e)) ! grain orientation as Euler angles in degree
|
|
case ('grainrotation')
|
|
mySize = 4_pInt
|
|
crystallite_postResults(c+1:c+mySize) = math_QuaternionToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle in crystal reference coordinates
|
|
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
|
|
case ('grainrotationx')
|
|
mySize = 1_pInt
|
|
rotation = math_QuaternionToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
|
|
crystallite_rotation(1:4,g,i,e)), &
|
|
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(1) * rotation(4) ! angle in degree
|
|
case ('grainrotationy')
|
|
mySize = 1_pInt
|
|
rotation = math_QuaternionToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
|
|
crystallite_rotation(1:4,g,i,e)), &
|
|
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(2) * rotation(4) ! angle in degree
|
|
case ('grainrotationz')
|
|
mySize = 1_pInt
|
|
rotation = math_QuaternionToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
|
|
crystallite_rotation(1:4,g,i,e)), &
|
|
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(3) * rotation(4) ! angle in degree
|
|
|
|
! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33
|
|
! thus row index i is slow, while column index j is fast. reminder: "row is slow"
|
|
|
|
case ('defgrad','f')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)),[mySize])
|
|
case ('e')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( &
|
|
math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)), &
|
|
crystallite_partionedF(1:3,1:3,g,i,e)) - math_I3),[mySize])
|
|
case ('fe')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)),[mySize])
|
|
case ('ee')
|
|
Ee = 0.5_pReal * (math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)), crystallite_Fe(1:3,1:3,g,i,e)) - math_I3)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize])
|
|
case ('fp')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fp(1:3,1:3,g,i,e)),[mySize])
|
|
case ('lp')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Lp(1:3,1:3,g,i,e)),[mySize])
|
|
case ('p','firstpiola','1stpiola')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_P(1:3,1:3,g,i,e)),[mySize])
|
|
case ('s','tstar','secondpiola','2ndpiola')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)),[mySize])
|
|
case ('elasmatrix')
|
|
mySize = 36_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(g,i,e),(/mySize/))
|
|
end select
|
|
c = c + mySize
|
|
enddo
|
|
|
|
crystallite_postResults(c+1) = real(constitutive_sizePostResults(g,i,e),pReal) ! size of constitutive results
|
|
c = c + 1_pInt
|
|
if (constitutive_sizePostResults(g,i,e) > 0_pInt) &
|
|
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = constitutive_postResults(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Temperature(g,i,e), &
|
|
dt, g, i, e)
|
|
c = c + constitutive_sizePostResults(g,i,e)
|
|
|
|
end function crystallite_postResults
|
|
|
|
|
|
END MODULE
|
|
!##############################################################
|
|
|