546 lines
20 KiB
Python
546 lines
20 KiB
Python
from queue import Queue
|
|
import re
|
|
|
|
import h5py
|
|
import numpy as np
|
|
|
|
from . import util
|
|
|
|
# ------------------------------------------------------------------
|
|
class DADF5():
|
|
"""
|
|
Read and write to DADF5 files.
|
|
|
|
DADF5 files contain DAMASK results.
|
|
"""
|
|
|
|
# ------------------------------------------------------------------
|
|
def __init__(self,filename):
|
|
"""
|
|
Opens an existing DADF5 file.
|
|
|
|
Parameters
|
|
----------
|
|
filename : str
|
|
name of the DADF5 file to be openend.
|
|
|
|
"""
|
|
with h5py.File(filename,'r') as f:
|
|
|
|
if f.attrs['DADF5-major'] != 0 or f.attrs['DADF5-minor'] != 2:
|
|
raise TypeError('Unsupported DADF5 version {} '.format(f.attrs['DADF5-version']))
|
|
|
|
self.structured = 'grid' in f['geometry'].attrs.keys()
|
|
|
|
if self.structured:
|
|
self.grid = f['geometry'].attrs['grid']
|
|
self.size = f['geometry'].attrs['size']
|
|
|
|
r=re.compile('inc[0-9]+')
|
|
self.increments = [{'inc': int(u[3:]),
|
|
'time': round(f[u].attrs['time/s'],12),
|
|
} for u in f.keys() if r.match(u)]
|
|
|
|
self.Nmaterialpoints, self.Nconstituents = np.shape(f['mapping/cellResults/constituent'])
|
|
self.materialpoints = [m.decode() for m in np.unique(f['mapping/cellResults/materialpoint']['Name'])]
|
|
self.constituents = [c.decode() for c in np.unique(f['mapping/cellResults/constituent'] ['Name'])]
|
|
|
|
|
|
self.c_output_types = []
|
|
for c in self.constituents:
|
|
for o in f['inc{:05}/constituent/{}'.format(self.increments[0]['inc'],c)].keys():
|
|
self.c_output_types.append(o)
|
|
self.c_output_types = list(set(self.c_output_types)) # make unique
|
|
|
|
self.m_output_types = []
|
|
for m in self.materialpoints:
|
|
for o in f['inc{:05}/materialpoint/{}'.format(self.increments[0]['inc'],m)].keys():
|
|
self.m_output_types.append(o)
|
|
self.m_output_types = list(set(self.m_output_types)) # make unique
|
|
|
|
self.visible= {'increments': self.increments, # ToDo:simplify, activity only positions that translate into (no complex types)
|
|
'constituents': self.constituents,
|
|
'materialpoints': self.materialpoints,
|
|
'constituent': range(self.Nconstituents), # ToDo: stupid naming
|
|
'c_output_types': self.c_output_types,
|
|
'm_output_types': self.m_output_types}
|
|
|
|
self.filename = filename
|
|
|
|
def __visible_set(self,output,t,p):
|
|
valid = set(p)
|
|
choice = [output] if isinstance(output,str) else output
|
|
self.visible[t] = list(valid.intersection(choice))
|
|
|
|
|
|
def __visible_add(self,output,t,p):
|
|
choice = [output] if isinstance(output,str) else output
|
|
valid = set(p).intersection(choice)
|
|
existing = set(self.visible[t])
|
|
self.visible[t] = list(existing.add(valid))
|
|
|
|
|
|
def __visible_del(self,output,t):
|
|
choice = [output] if isinstance(output,str) else output
|
|
existing = set(self.visible[t])
|
|
self.visible[t] = list(existing.remove(choice))
|
|
|
|
|
|
def __visible_iter(self,t):
|
|
a = self.visible[t]
|
|
last_a = a.copy()
|
|
for i in a:
|
|
if last_a != self.visible[t]:
|
|
self.__visible_set(a,t,a)
|
|
raise Exception
|
|
self.__visible_set(i,t,a)
|
|
last_a = self.visible[t]
|
|
yield i
|
|
self.__visible_set(a,t,a)
|
|
|
|
|
|
def constituent_output_iter(self):
|
|
return self.__visible_iter('c_output_types')
|
|
|
|
|
|
def constituent_output_set(self,output):
|
|
self.__visible_set(output,'c_output_types',self.c_output_types)
|
|
|
|
|
|
def constituent_output_add(self,output):
|
|
self.__visible_add(output,'c_output_types',self.c_output_types)
|
|
|
|
|
|
def constituent_output_del(self,output):
|
|
self.__visible_del(output,'c_output_types')
|
|
|
|
|
|
def materialpoint_output_iter(self):
|
|
return self.__visible_iter('m_output_types')
|
|
|
|
|
|
def materialpoint_output_set(self,output):
|
|
self.__visible_set(output,'m_output_types',self.m_output_types)
|
|
|
|
|
|
def materialpoint_output_add(self,output):
|
|
self.__visible_add(output,'m_output_types',self.m_output_types)
|
|
|
|
|
|
def materialpoint_output_del(self,output):
|
|
self.__visible_del(output,'m_output_types')
|
|
|
|
|
|
def constituent_iter(self):
|
|
return self.__visible_iter('constituents')
|
|
|
|
|
|
def constituent_set(self,output):
|
|
self.__visible_set(output,'constituents',self.constituents)
|
|
|
|
|
|
def constituent_add(self,output):
|
|
self.__visible_add(output,'constituents',self.constituents)
|
|
|
|
|
|
def constituent_del(self,output):
|
|
self.__visible_del(output,'constituents')
|
|
|
|
|
|
def materialpoint_iter(self):
|
|
return self.__visible_iter('materialpoints')
|
|
|
|
|
|
def materialpoint_set(self,output):
|
|
self.__visible_set(output,'materialpoints',self.materialpoints)
|
|
|
|
|
|
def materialpoint_add(self,output):
|
|
self.__visible_add(output,'materialpoints',self.materialpoints)
|
|
|
|
|
|
def materialpoint_del(self,output):
|
|
self.__visible_del(output,'materialpoints')
|
|
|
|
|
|
|
|
# ToDo: store increments, select icrements (trivial), position, and time
|
|
|
|
|
|
|
|
def get_groups(self,l): #group_with_data(datasets)
|
|
"""
|
|
Get groups that contain all requested datasets.
|
|
|
|
Parameters
|
|
----------
|
|
l : list of str
|
|
Names of datasets that need to be located in the group.
|
|
|
|
"""
|
|
groups = []
|
|
if type(l) is not list:
|
|
raise TypeError('Candidates should be given as a list')
|
|
with h5py.File(self.filename,'r') as f:
|
|
for g in self.get_active_groups():
|
|
if set(l).issubset(f[g].keys()): groups.append(g)
|
|
return groups
|
|
|
|
|
|
def get_active_groups(self): # rename: get_groups needed? merge with datasets and have [] and ['*']
|
|
"""Get groups that are currently considered for evaluation."""
|
|
groups = []
|
|
for i in self.visible['increments']:
|
|
group_inc = 'inc{:05}'.format(i['inc']) #ToDo: Merge path only once at the end '/'.join(listE)
|
|
for c in self.visible['constituents']:
|
|
for t in self.visible['c_output_types']:
|
|
groups.append('/'.join([group_inc,'constituent',c,t]))
|
|
for m in self.visible['materialpoints']:
|
|
for t in self.visible['m_output_types']:
|
|
groups.append('/'.join([group_inc,'materialpoint',m,t]))
|
|
return groups
|
|
|
|
|
|
def list_data(self): # print_datasets and have [] and ['*'], loop over all increment, soll auf anderen basieren (get groups with sternchen)
|
|
"""Shows information on all active datasets in the file."""
|
|
with h5py.File(self.filename,'r') as f:
|
|
group_inc = 'inc{:05}'.format(self.visible['increments'][0]['inc']) #ToDo: Merge path only once at the end '/'.join(listE)
|
|
for c in self.visible['constituents']:
|
|
print('\n'+c)
|
|
group_constituent = group_inc+'/constituent/'+c
|
|
for t in self.visible['c_output_types']:
|
|
print(' {}'.format(t))
|
|
group_output_types = group_constituent+'/'+t
|
|
try:
|
|
for x in f[group_output_types].keys():
|
|
print(' {} ({})'.format(x,f[group_output_types+'/'+x].attrs['Description'].decode()))
|
|
except KeyError:
|
|
pass
|
|
for m in self.visible['materialpoints']:
|
|
group_materialpoint = group_inc+'/materialpoint/'+m
|
|
for t in self.visible['m_output_types']:
|
|
print(' {}'.format(t))
|
|
group_output_types = group_materialpoint+'/'+t
|
|
try:
|
|
for x in f[group_output_types].keys():
|
|
print(' {} ({})'.format(x,f[group_output_types+'/'+x].attrs['Description'].decode()))
|
|
except KeyError:
|
|
pass
|
|
|
|
|
|
def get_dataset_location(self,label): # names
|
|
"""Returns the location of all active datasets with given label.""" #ToDo: Merge path only once at the end '/'.join(listE)
|
|
path = []
|
|
with h5py.File(self.filename,'r') as f:
|
|
for i in self.visible['increments']:
|
|
group_inc = 'inc{:05}'.format(i['inc'])
|
|
|
|
for c in self.visible['constituents']:
|
|
for t in self.visible['c_output_types']:
|
|
try:
|
|
p = '/'.join([group_inc,'constituent',c,t,label])
|
|
f[p]
|
|
path.append(p)
|
|
except KeyError as e:
|
|
print('unable to locate constituents dataset: '+ str(e))
|
|
|
|
for m in self.visible['materialpoints']:
|
|
for t in self.visible['m_output_types']:
|
|
try:
|
|
p = '/'.join([group_inc,'materialpoint',m,t,label])
|
|
f[p]
|
|
path.append(p)
|
|
except KeyError as e:
|
|
print('unable to locate materialpoints dataset: '+ str(e))
|
|
|
|
return path
|
|
|
|
|
|
def read_dataset(self,path,c):
|
|
"""
|
|
Dataset for all points/cells.
|
|
|
|
If more than one path is given, the dataset is composed of the individual contributions
|
|
"""
|
|
with h5py.File(self.filename,'r') as f:
|
|
shape = (self.Nmaterialpoints,) + np.shape(f[path[0]])[1:]
|
|
if len(shape) == 1: shape = shape +(1,)
|
|
dataset = np.full(shape,np.nan)
|
|
for pa in path:
|
|
label = pa.split('/')[2]
|
|
|
|
p = np.where(f['mapping/cellResults/constituent'][:,c]['Name'] == str.encode(label))[0]
|
|
if len(p)>0:
|
|
u = (f['mapping/cellResults/constituent'][p,c]['Position'])
|
|
a = np.array(f[pa])
|
|
if len(a.shape) == 1:
|
|
a=a.reshape([a.shape[0],1])
|
|
dataset[p,:] = a[u,:]
|
|
|
|
p = np.where(f['mapping/cellResults/materialpoint']['Name'] == str.encode(label))[0]
|
|
if len(p)>0:
|
|
u = (f['mapping/cellResults/materialpoint'][p.tolist()]['Position'])
|
|
a = np.array(f[pa])
|
|
if len(a.shape) == 1:
|
|
a=a.reshape([a.shape[0],1])
|
|
dataset[p,:] = a[u,:]
|
|
|
|
return dataset
|
|
|
|
|
|
def add_Cauchy(self,P='P',F='F'):
|
|
"""
|
|
Adds Cauchy stress calculated from 1st Piola-Kirchhoff stress and deformation gradient.
|
|
|
|
Resulting tensor is symmetrized as the Cauchy stress should be symmetric.
|
|
"""
|
|
def Cauchy(F,P):
|
|
sigma = np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F['data']),P['data'],F['data'])
|
|
sigma = (sigma + np.einsum('ikj',sigma))*0.5 # enforce symmetry
|
|
return {
|
|
'data' : sigma,
|
|
'label' : 'sigma',
|
|
'meta' : {
|
|
'Unit' : P['meta']['Unit'],
|
|
'Description' : 'Cauchy stress calculated from {} ({}) '.format(P['label'],P['meta']['Description'])+\
|
|
'and deformation gradient {} ({})'.format(F['label'],P['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_Cauchy vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':F,'arg':'F'},
|
|
{'label':P,'arg':'P'} ]
|
|
|
|
self.__add_generic_pointwise(Cauchy,requested)
|
|
|
|
|
|
def add_Mises(self,x):
|
|
"""Adds the equivalent Mises stress or strain of a tensor."""
|
|
def deviator(x):
|
|
|
|
if x['meta']['Unit'] == 'Pa': #ToDo: Should we use this? Then add_Cauchy and add_strain_tensors also should perform sanity checks
|
|
factor = 3.0/2.0
|
|
elif x['meta']['Unit'] == '-':
|
|
factor = 2.0/3.0
|
|
else:
|
|
ValueError
|
|
|
|
d = x['data']
|
|
dev = d - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[d.shape[0],3,3]),np.trace(d,axis1=1,axis2=2)/3.0)
|
|
#dev_sym = (dev + np.einsum('ikj',dev))*0.5 # ToDo: this is not needed (only if the input is not symmetric, but then the whole concept breaks down)
|
|
|
|
return {
|
|
'data' : np.sqrt(np.einsum('ijk->i',dev**2)*factor),
|
|
'label' : 'Mises({})'.format(x['label']),
|
|
'meta' : {
|
|
'Unit' : x['meta']['Unit'],
|
|
'Description' : 'Mises equivalent stress of {} ({})'.format(x['label'],x['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_Mises_stress vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':x,'arg':'x'}]
|
|
|
|
self.__add_generic_pointwise(deviator,requested)
|
|
|
|
|
|
def add_norm(self,x,ord=None):
|
|
"""
|
|
Adds norm of vector or tensor or magnitude of a scalar.
|
|
|
|
See numpy.linalg.norm manual for details.
|
|
"""
|
|
|
|
|
|
def norm(x,ord):
|
|
|
|
o = ord
|
|
if len(x['data'].shape) == 1:
|
|
axis = 0
|
|
t = 'scalar'
|
|
if o is None: o = 2
|
|
elif len(x['data'].shape) == 2:
|
|
axis = 1
|
|
t = 'vector'
|
|
if o is None: o = 2
|
|
elif len(x['data'].shape) == 3:
|
|
axis = (1,2)
|
|
t = 'tensor'
|
|
if o is None: o = 'fro'
|
|
else:
|
|
raise ValueError
|
|
|
|
return {
|
|
'data' : np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
|
'label' : '|{}|_{}'.format(x['label'],ord),
|
|
'meta' : {
|
|
'Unit' : x['meta']['Unit'],
|
|
'Description' : '{}-Norm of {} {} ({})'.format(ord,t,x['label'],x['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_norm vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':x,'arg':'x'}]
|
|
|
|
self.__add_generic_pointwise(norm,requested,{'ord':ord})
|
|
|
|
|
|
def add_determinant(self,x):
|
|
"""Adds the determinant component of a tensor."""
|
|
def determinant(x):
|
|
|
|
return {
|
|
'data' : np.linalg.det(x['data']),
|
|
'label' : 'det({})'.format(x['label']),
|
|
'meta' : {
|
|
'Unit' : x['meta']['Unit'],
|
|
'Description' : 'Determinant of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_determinant vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':x,'arg':'x'}]
|
|
|
|
self.__add_generic_pointwise(determinant,requested)
|
|
|
|
|
|
def add_spherical(self,x):
|
|
"""Adds the spherical component of a tensor."""
|
|
def spherical(x):
|
|
|
|
if not np.all(np.array(x['data'].shape[1:]) == np.array([3,3])):
|
|
raise ValueError
|
|
|
|
return {
|
|
'data' : np.trace(x['data'],axis1=1,axis2=2)/3.0,
|
|
'label' : 'sph({})'.format(x['label']),
|
|
'meta' : {
|
|
'Unit' : x['meta']['Unit'],
|
|
'Description' : 'Spherical component of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_spherical vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':x,'arg':'x'}]
|
|
|
|
self.__add_generic_pointwise(spherical,requested)
|
|
|
|
|
|
def add_deviator(self,x):
|
|
"""Adds the deviator of a tensor."""
|
|
def deviator(x):
|
|
d = x['data']
|
|
|
|
if not np.all(np.array(d.shape[1:]) == np.array([3,3])):
|
|
raise ValueError
|
|
|
|
return {
|
|
'data' : d - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[d.shape[0],3,3]),np.trace(d,axis1=1,axis2=2)/3.0),
|
|
'label' : 'dev({})'.format(x['label']),
|
|
'meta' : {
|
|
'Unit' : x['meta']['Unit'],
|
|
'Description' : 'Deviator of tensor {} ({})'.format(x['label'],x['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_deviator vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':x,'arg':'x'}]
|
|
|
|
self.__add_generic_pointwise(deviator,requested)
|
|
|
|
|
|
def add_strain_tensor(self,t,ord,defgrad='F'): #ToDo: Use t and ord
|
|
"""Adds the a strain tensor."""
|
|
def strain_tensor(defgrad,t,ord):
|
|
# def operator(stretch,strain,eigenvalues):
|
|
#"""Albrecht Bertram: Elasticity and Plasticity of Large Deformations An Introduction (3rd Edition, 2012), p. 102"""
|
|
#return {
|
|
# 'V#ln': np.log(eigenvalues) ,
|
|
# 'U#ln': np.log(eigenvalues) ,
|
|
# 'V#Biot': ( np.ones(3,'d') - 1.0/eigenvalues ) ,
|
|
# 'U#Biot': ( eigenvalues - np.ones(3,'d') ) ,
|
|
# 'V#Green': ( np.ones(3,'d') - 1.0/eigenvalues/eigenvalues) *0.5,
|
|
# 'U#Green': ( eigenvalues*eigenvalues - np.ones(3,'d')) *0.5,
|
|
# }[stretch+'#'+strain]
|
|
(U,S,Vh) = np.linalg.svd(defgrad['data']) # singular value decomposition
|
|
R_inv = np.einsum('ikj',np.matmul(U,Vh)) # inverse rotation of polar decomposition
|
|
U = np.matmul(R_inv,defgrad['data']) # F = RU
|
|
(D,V) = np.linalg.eigh((U+np.einsum('ikj',U))*.5) # eigen decomposition (of symmetric(ed) matrix)
|
|
|
|
neg = np.where(D < 0.0) # find negative eigenvalues ...
|
|
D[neg[0],neg[1]] = D[neg[0],neg[1]]* -1 # ... flip value ...
|
|
V[neg[0],:,neg[1]] = V[neg[0],:,neg[1]]* -1 # ... and vector
|
|
|
|
d = np.log(D)
|
|
a = np.matmul(V,np.einsum('ij,ikj->ijk',d,V))
|
|
|
|
return {
|
|
'data' : a,
|
|
'label' : 'ln(V)({})'.format(defgrad['label']),
|
|
'meta' : {
|
|
'Unit' : defgrad['meta']['Unit'],
|
|
'Description' : 'Strain tensor ln(V){} ({})'.format(defgrad['label'],defgrad['meta']['Description']),
|
|
'Creator' : 'dadf5.py:add_deviator vXXXXX'
|
|
}
|
|
}
|
|
|
|
requested = [{'label':defgrad,'arg':'defgrad'}]
|
|
|
|
self.__add_generic_pointwise(strain_tensor,requested,{'t':t,'ord':ord})
|
|
|
|
|
|
def __add_generic_pointwise(self,func,datasets_requested,extra_args={}):
|
|
"""
|
|
General function to add pointwise data.
|
|
|
|
Parameters
|
|
----------
|
|
func : function
|
|
Function that calculates a new dataset from one or more datasets per HDF5 group.
|
|
datasets_requested : list of dictionaries
|
|
Details of the datasets to be used: label (in HDF5 file) and arg (argument to which the data is parsed in func).
|
|
extra_args : dictionary, optional
|
|
Any extra arguments parsed to func.
|
|
|
|
"""
|
|
def job(args):
|
|
"""Call function with input data + extra arguments, returns results + group."""
|
|
args['results'].put({**args['func'](**args['in']),'group':args['group']})
|
|
|
|
|
|
N_threads = 1 # ToDo: should be a parameter
|
|
|
|
results = Queue(N_threads)
|
|
pool = util.ThreadPool(N_threads)
|
|
N_added = N_threads + 1
|
|
|
|
todo = []
|
|
# ToDo: It would be more memory efficient to read only from file when required, i.e. do to it in pool.add_task
|
|
for group in self.get_groups([d['label'] for d in datasets_requested]):
|
|
with h5py.File(self.filename,'r') as f:
|
|
datasets_in = {}
|
|
for d in datasets_requested:
|
|
loc = f[group+'/'+d['label']]
|
|
data = loc[()]
|
|
meta = {k:loc.attrs[k] for k in loc.attrs.keys()}
|
|
datasets_in[d['arg']] = {'data': data, 'meta' : meta, 'label' : d['label']}
|
|
|
|
todo.append({'in':{**datasets_in,**extra_args},'func':func,'group':group,'results':results})
|
|
|
|
pool.map(job, todo[:N_added]) # initialize
|
|
|
|
N_not_calculated = len(todo)
|
|
while N_not_calculated > 0:
|
|
result = results.get()
|
|
with h5py.File(self.filename,'a') as f: # write to file
|
|
dataset_out = f[result['group']].create_dataset(result['label'],data=result['data'])
|
|
for k in result['meta'].keys():
|
|
dataset_out.attrs[k] = result['meta'][k]
|
|
N_not_calculated-=1
|
|
|
|
if N_added < len(todo): # add more jobs
|
|
pool.add_task(job,todo[N_added])
|
|
N_added +=1
|
|
|
|
pool.wait_completion()
|