DAMASK_EICMD/src/homogenization.f90

582 lines
21 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec
use IO
use config
use math
use material
use phase
use discretization
use HDF5_utilities
use results
use lattice
implicit none
private
enum, bind(c); enumerator :: &
THERMAL_ISOTHERMAL_ID, &
THERMAL_CONDUCTION_ID, &
DAMAGE_NONE_ID, &
DAMAGE_NONLOCAL_ID, &
HOMOGENIZATION_UNDEFINED_ID, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
end enum
type(tState), allocatable, dimension(:), public :: &
homogState, &
damageState_h
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable :: &
thermal_type !< thermal transport model
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable :: &
damage_type !< nonlocal damage model
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable :: &
homogenization_type !< type of each homogenization
type, private :: tNumerics_damage
real(pReal) :: &
charLength !< characteristic length scale for gradient problems
end type tNumerics_damage
type(tNumerics_damage), private :: &
num_damage
logical, public :: &
terminallyIll = .false. !< at least one material point is terminally ill
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
real(pReal), dimension(:,:,:), allocatable, public :: &
homogenization_F0, & !< def grad of IP at start of FE increment
homogenization_F !< def grad of IP to be reached at end of FE increment
real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort
homogenization_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: &
homogenization_dPdF !< tangent of first P--K stress at IP
!--------------------------------------------------------------------------------------------------
type :: tNumerics
integer :: &
nMPstate !< materialpoint state loop limit
end type tNumerics
type(tNumerics) :: num
!--------------------------------------------------------------------------------------------------
interface
module subroutine mechanical_init(num_homog)
class(tNode), pointer, intent(in) :: &
num_homog !< pointer to mechanical homogenization numerics data
end subroutine mechanical_init
module subroutine thermal_init
end subroutine thermal_init
module subroutine damage_init
end subroutine damage_init
module subroutine mechanical_partition(subF,ce)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ce
end subroutine mechanical_partition
module subroutine thermal_partition(ce)
integer, intent(in) :: ce
end subroutine thermal_partition
module subroutine damage_partition(ce)
integer, intent(in) :: ce
end subroutine damage_partition
module subroutine thermal_homogenize(ip,el)
integer, intent(in) :: ip,el
end subroutine thermal_homogenize
module subroutine mechanical_homogenize(dt,ce)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ce !< cell
end subroutine mechanical_homogenize
module subroutine mechanical_results(group_base,ho)
character(len=*), intent(in) :: group_base
integer, intent(in) :: ho
end subroutine mechanical_results
module function mechanical_updateState(subdt,subF,ce) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ce !< cell
logical, dimension(2) :: doneAndHappy
end function mechanical_updateState
module function thermal_conduction_getConductivity(ce) result(K)
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: K
end function thermal_conduction_getConductivity
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
integer, intent(in) :: ce
real(pReal) :: c_P
end function thermal_conduction_getSpecificHeat
module function thermal_conduction_getMassDensity(ce) result(rho)
integer, intent(in) :: ce
real(pReal) :: rho
end function thermal_conduction_getMassDensity
module subroutine homogenization_thermal_setField(T,dot_T, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: T, dot_T
end subroutine homogenization_thermal_setField
module subroutine thermal_conduction_results(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine thermal_conduction_results
module function homogenization_thermal_T(ce) result(T)
integer, intent(in) :: ce
real(pReal) :: T
end function homogenization_thermal_T
module subroutine thermal_conduction_getSource(Tdot, ip, el)
integer, intent(in) :: &
ip, &
el
real(pReal), intent(out) :: Tdot
end subroutine thermal_conduction_getSource
module function damage_nonlocal_getMobility(ce) result(M)
integer, intent(in) :: ce
real(pReal) :: M
end function damage_nonlocal_getMobility
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
real(pReal) :: &
phiDot, dPhiDot_dPhi
end subroutine damage_nonlocal_getSourceAndItsTangent
module subroutine damage_nonlocal_putNonLocalDamage(phi,ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: &
phi
end subroutine damage_nonlocal_putNonLocalDamage
module subroutine damage_nonlocal_results(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine damage_nonlocal_results
end interface
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getConductivity, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSource, &
damage_nonlocal_getMobility, &
damage_nonlocal_getSourceAndItsTangent, &
damage_nonlocal_putNonLocalDamage, &
homogenization_thermal_setfield, &
homogenization_thermal_T, &
homogenization_forward, &
homogenization_results, &
homogenization_restartRead, &
homogenization_restartWrite, &
THERMAL_CONDUCTION_ID, &
DAMAGE_NONLOCAL_ID
public :: &
damage_nonlocal_init, &
damage_nonlocal_getDiffusion
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init()
class (tNode) , pointer :: &
num_homog, &
num_homogGeneric
print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT)
allocate(homogState (size(material_name_homogenization)))
allocate(damageState_h (size(material_name_homogenization)))
call material_parseHomogenization()
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
num%nMPstate = num_homogGeneric%get_asInt('nMPstate',defaultVal=10)
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
call mechanical_init(num_homog)
call thermal_init()
call damage_init()
call damage_nonlocal_init()
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem)
real(pReal), intent(in) :: dt !< time increment
integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP
integer :: &
NiterationMPstate, &
ip, & !< integration point number
el, & !< element number
myNgrains, co, ce, ho, me, ph
logical :: &
converged
logical, dimension(2) :: &
doneAndHappy
!$OMP PARALLEL
!$OMP DO PRIVATE(ce,me,ho,myNgrains,NiterationMPstate,converged,doneAndHappy)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
myNgrains = homogenization_Nconstituents(ho)
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
me = material_homogenizationMemberAt2(ce)
call phase_restore(ce,.false.) ! wrong name (is more a forward function)
if(homogState(ho)%sizeState > 0) homogState(ho)%state(:,me) = homogState(ho)%state0(:,me)
if(damageState_h(ho)%sizeState > 0) damageState_h(ho)%state(:,me) = damageState_h(ho)%state0(:,me)
call damage_partition(ce)
doneAndHappy = [.false.,.true.]
NiterationMPstate = 0
convergenceLooping: do while (.not. (terminallyIll .or. doneAndHappy(1)) &
.and. NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1
call mechanical_partition(homogenization_F(1:3,1:3,ce),ce)
converged = .true.
do co = 1, myNgrains
converged = converged .and. crystallite_stress(dt,co,ip,el)
enddo
if (converged) then
doneAndHappy = mechanical_updateState(dt,homogenization_F(1:3,1:3,ce),ce)
converged = all(doneAndHappy)
else
doneAndHappy = [.true.,.false.]
endif
enddo convergenceLooping
if (.not. converged) then
if (.not. terminallyIll) print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
terminallyIll = .true.
endif
enddo
enddo
!$OMP END DO
if (.not. terminallyIll) then
!$OMP DO PRIVATE(ho,ph,ce)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
if (terminallyIll) continue
ho = material_homogenizationAt(el)
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
call thermal_partition(ce)
do co = 1, homogenization_Nconstituents(ho)
ph = material_phaseAt(co,el)
if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then
if (.not. terminallyIll) & ! so first signals terminally ill...
print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
terminallyIll = .true. ! ...and kills all others
endif
enddo
call thermal_homogenize(ip,el)
enddo
enddo
!$OMP END DO
!$OMP DO PRIVATE(ho,ce)
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ip,el)
enddo
call mechanical_homogenize(dt,ce)
enddo IpLooping3
enddo elementLooping3
!$OMP END DO
else
print'(/,a,/)', ' << HOMOG >> Material Point terminally ill'
endif
!$OMP END PARALLEL
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
integer :: ho
character(len=:), allocatable :: group_base,group
call results_closeGroup(results_addGroup('current/homogenization/'))
do ho=1,size(material_name_homogenization)
group_base = 'current/homogenization/'//trim(material_name_homogenization(ho))
call results_closeGroup(results_addGroup(group_base))
call mechanical_results(group_base,ho)
select case(damage_type(ho))
case(DAMAGE_NONLOCAL_ID)
group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group))
call damage_nonlocal_results(ho,group)
end select
select case(thermal_type(ho))
case(THERMAL_CONDUCTION_ID)
group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group))
call thermal_conduction_results(ho,group)
end select
enddo
end subroutine homogenization_results
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine homogenization_forward
integer :: ho
do ho = 1, size(material_name_homogenization)
homogState (ho)%state0 = homogState (ho)%state
if(damageState_h(ho)%sizeState > 0) &
damageState_h(ho)%state0 = damageState_h(ho)%state
enddo
end subroutine homogenization_forward
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartWrite(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_addGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_write(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartWrite
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartRead(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_openGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_read(groupHandle(2),homogState(ho)%state0,'omega') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartRead
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine damage_nonlocal_init
integer :: Ninstances,Nmaterialpoints,h
class(tNode), pointer :: &
num_generic, &
material_homogenization
print'(/,a)', ' <<<+- damage_nonlocal init -+>>>'; flush(6)
!------------------------------------------------------------------------------------
! read numerics parameter
num_generic => config_numerics%get('generic',defaultVal= emptyDict)
num_damage%charLength = num_generic%get_asFloat('charLength',defaultVal=1.0_pReal)
Ninstances = count(damage_type == DAMAGE_nonlocal_ID)
material_homogenization => config_material%get('homogenization')
do h = 1, material_homogenization%length
if (damage_type(h) /= DAMAGE_NONLOCAL_ID) cycle
Nmaterialpoints = count(material_homogenizationAt == h)
damageState_h(h)%sizeState = 1
allocate(damageState_h(h)%state0 (1,Nmaterialpoints), source=1.0_pReal)
allocate(damageState_h(h)%state (1,Nmaterialpoints), source=1.0_pReal)
enddo
end subroutine damage_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized non local damage diffusion tensor in reference configuration
!--------------------------------------------------------------------------------------------------
function damage_nonlocal_getDiffusion(ce)
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: &
damage_nonlocal_getDiffusion
integer :: &
ho, &
co
ho = material_homogenizationAt2(ce)
damage_nonlocal_getDiffusion = 0.0_pReal
do co = 1, homogenization_Nconstituents(ho)
damage_nonlocal_getDiffusion = damage_nonlocal_getDiffusion + &
crystallite_push33ToRef(co,ce,lattice_D(1:3,1:3,material_phaseAt2(co,ce)))
enddo
damage_nonlocal_getDiffusion = &
num_damage%charLength**2*damage_nonlocal_getDiffusion/real(homogenization_Nconstituents(ho),pReal)
end function damage_nonlocal_getDiffusion
!--------------------------------------------------------------------------------------------------
!> @brief parses the homogenization part from the material configuration
! ToDo: This should be done in homogenization
!--------------------------------------------------------------------------------------------------
subroutine material_parseHomogenization
class(tNode), pointer :: &
material_homogenization, &
homog, &
homogMech, &
homogThermal, &
homogDamage
integer :: h
material_homogenization => config_material%get('homogenization')
allocate(homogenization_type(size(material_name_homogenization)), source=HOMOGENIZATION_undefined_ID)
allocate(thermal_type(size(material_name_homogenization)), source=THERMAL_isothermal_ID)
allocate(damage_type (size(material_name_homogenization)), source=DAMAGE_none_ID)
do h=1, size(material_name_homogenization)
homog => material_homogenization%get(h)
homogMech => homog%get('mechanical')
select case (homogMech%get_asString('type'))
case('pass')
homogenization_type(h) = HOMOGENIZATION_NONE_ID
case('isostrain')
homogenization_type(h) = HOMOGENIZATION_ISOSTRAIN_ID
case('RGC')
homogenization_type(h) = HOMOGENIZATION_RGC_ID
case default
call IO_error(500,ext_msg=homogMech%get_asString('type'))
end select
if (homog%contains('thermal')) then
homogThermal => homog%get('thermal')
select case (homogThermal%get_asString('type'))
case('pass')
thermal_type(h) = THERMAL_conduction_ID
case default
call IO_error(500,ext_msg=homogThermal%get_asString('type'))
end select
endif
if (homog%contains('damage')) then
homogDamage => homog%get('damage')
select case (homogDamage%get_asString('type'))
case('pass')
damage_type(h) = DAMAGE_nonlocal_ID
case default
call IO_error(500,ext_msg=homogDamage%get_asString('type'))
end select
endif
enddo
end subroutine material_parseHomogenization
end module homogenization