DAMASK_EICMD/src/crystallite.f90

2365 lines
127 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Chen Zhang, Michigan State University
!> @brief crystallite state integration functions and reporting of results
!--------------------------------------------------------------------------------------------------
module crystallite
use prec
use IO
use config
use debug
use numerics
use rotations
use math
use FEsolving
use material
use constitutive
use discretization
use lattice
use plastic_nonlocal
use geometry_plastic_nonlocal, only: &
nIPneighbors => geometry_plastic_nonlocal_nIPneighbors, &
IPneighborhood => geometry_plastic_nonlocal_IPneighborhood
use HDF5_utilities
use results
implicit none
private
character(len=64), dimension(:,:), allocatable :: &
crystallite_output !< name of each post result output
integer, public, protected :: &
crystallite_maxSizePostResults !< description not available
integer, dimension(:), allocatable, public, protected :: &
crystallite_sizePostResults !< description not available
integer, dimension(:,:), allocatable :: &
crystallite_sizePostResult !< description not available
real(pReal), dimension(:,:,:), allocatable, public :: &
crystallite_dt !< requested time increment of each grain
real(pReal), dimension(:,:,:), allocatable :: &
crystallite_subdt, & !< substepped time increment of each grain
crystallite_subFrac, & !< already calculated fraction of increment
crystallite_subStep !< size of next integration step
type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation
real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: &
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_P !< 1st Piola-Kirchhoff stress per grain
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
crystallite_S, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedS0, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc
crystallite_Fp, & !< current plastic def grad (end of converged time step)
crystallite_Fp0, & !< plastic def grad at start of FE inc
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
crystallite_Fi0, & !< intermediate def grad at start of FE inc
crystallite_partionedFi0,& !< intermediate def grad at start of homog inc
crystallite_F0, & !< def grad at start of FE inc
crystallite_partionedF, & !< def grad to be reached at end of homog inc
crystallite_partionedF0, & !< def grad at start of homog inc
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
crystallite_partionedLp0, & !< plastic velocity grad at start of homog inc
crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step)
crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc
crystallite_partionedLi0 !< intermediate velocity grad at start of homog inc
real(pReal), dimension(:,:,:,:,:), allocatable :: &
crystallite_subS0, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
crystallite_invFi, & !< inverse of current intermediate def grad (end of converged time step)
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
crystallite_subF, & !< def grad to be reached at end of crystallite inc
crystallite_subF0, & !< def grad at start of crystallite inc
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
crystallite_subLi0 !< intermediate velocity grad at start of crystallite inc
real(pReal), dimension(:,:,:,:,:,:,:), allocatable, public :: &
crystallite_dPdF !< current individual dPdF per grain (end of converged time step)
logical, dimension(:,:,:), allocatable, public :: &
crystallite_requested !< used by upper level (homogenization) to request crystallite calculation
logical, dimension(:,:,:), allocatable :: &
crystallite_converged, & !< convergence flag
crystallite_todo, & !< flag to indicate need for further computation
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
enum, bind(c)
enumerator :: undefined_ID, &
phase_ID, &
texture_ID, &
orientation_ID, &
grainrotation_ID, &
defgrad_ID, &
fe_ID, &
fp_ID, &
fi_ID, &
lp_ID, &
li_ID, &
p_ID, &
s_ID, &
elasmatrix_ID, &
neighboringip_ID, &
neighboringelement_ID
end enum
integer(kind(undefined_ID)),dimension(:,:), allocatable :: &
crystallite_outputID !< ID of each post result output
type :: tOutput !< new requested output (per phase)
character(len=65536), allocatable, dimension(:) :: &
label
end type tOutput
type(tOutput), allocatable, dimension(:) :: output_constituent
type :: tNumerics
integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
nState, & !< state loop limit
nStress !< stress loop limit
real(pReal) :: &
subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback
subStepSizeCryst, & !< size of first substep when cutback
subStepSizeLp, & !< size of first substep when cutback in Lp calculation
subStepSizeLi, & !< size of first substep when cutback in Li calculation
stepIncreaseCryst, & !< increase of next substep size when previous substep converged
rTol_crystalliteState, & !< relative tolerance in state loop
rTol_crystalliteStress, & !< relative tolerance in stress loop
aTol_crystalliteStress !< absolute tolerance in stress loop
end type tNumerics
type(tNumerics) :: num ! numerics parameters. Better name?
procedure(), pointer :: integrateState
public :: &
crystallite_init, &
crystallite_stress, &
crystallite_stressTangent, &
crystallite_orientations, &
crystallite_push33ToRef, &
crystallite_postResults, &
crystallite_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates and initialize per grain variables
!--------------------------------------------------------------------------------------------------
subroutine crystallite_init
integer, parameter :: FILEUNIT=434
logical, dimension(:,:), allocatable :: devNull
integer :: &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
o = 0, & !< counter in output loop
r, &
cMax, & !< maximum number of integration point components
iMax, & !< maximum number of integration points
eMax, & !< maximum number of elements
myNcomponents, & !< number of components at current IP
mySize
character(len=65536), dimension(:), allocatable :: str
write(6,'(/,a)') ' <<<+- crystallite init -+>>>'
cMax = homogenization_maxNgrains
iMax = discretization_nIP
eMax = discretization_nElem
allocate(crystallite_S0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedS0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_S(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subS0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_P(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_F0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedF(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subF(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_invFp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fi(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_invFi(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fe(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Lp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Lp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Li0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Li(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_dt(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subdt(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFrac(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subStep(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_orientation(cMax,iMax,eMax))
allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.)
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
allocate(crystallite_todo(cMax,iMax,eMax), source=.false.)
allocate(crystallite_converged(cMax,iMax,eMax), source=.true.)
allocate(crystallite_output(maxval(crystallite_Noutput), &
size(config_crystallite))) ; crystallite_output = ''
allocate(crystallite_outputID(maxval(crystallite_Noutput), &
size(config_crystallite)), source=undefined_ID)
allocate(crystallite_sizePostResults(size(config_crystallite)),source=0)
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
size(config_crystallite)), source=0)
num%subStepMinCryst = config_numerics%getFloat('substepmincryst', defaultVal=1.0e-3_pReal)
num%subStepSizeCryst = config_numerics%getFloat('substepsizecryst', defaultVal=0.25_pReal)
num%stepIncreaseCryst = config_numerics%getFloat('stepincreasecryst', defaultVal=1.5_pReal)
num%subStepSizeLp = config_numerics%getFloat('substepsizelp', defaultVal=0.5_pReal)
num%subStepSizeLi = config_numerics%getFloat('substepsizeli', defaultVal=0.5_pReal)
num%rTol_crystalliteState = config_numerics%getFloat('rtol_crystallitestate', defaultVal=1.0e-6_pReal)
num%rTol_crystalliteStress = config_numerics%getFloat('rtol_crystallitestress',defaultVal=1.0e-6_pReal)
num%aTol_crystalliteStress = config_numerics%getFloat('atol_crystallitestress',defaultVal=1.0e-8_pReal)
num%iJacoLpresiduum = config_numerics%getInt ('ijacolpresiduum', defaultVal=1)
num%nState = config_numerics%getInt ('nstate', defaultVal=20)
num%nStress = config_numerics%getInt ('nstress', defaultVal=40)
if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst')
if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst')
if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst')
if(num%subStepSizeLp <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLp')
if(num%subStepSizeLi <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLi')
if(num%rTol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteState')
if(num%rTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rTol_crystalliteStress')
if(num%aTol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='aTol_crystalliteStress')
if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum')
if(num%nState < 1) call IO_error(301,ext_msg='nState')
if(num%nStress< 1) call IO_error(301,ext_msg='nStress')
select case(numerics_integrator)
case(1)
integrateState => integrateStateFPI
case(2)
integrateState => integrateStateEuler
case(3)
integrateState => integrateStateAdaptiveEuler
case(4)
integrateState => integrateStateRK4
case(5)
integrateState => integrateStateRKCK45
end select
do c = 1, size(config_crystallite)
#if defined(__GFORTRAN__)
str = ['GfortranBug86277']
str = config_crystallite(c)%getStrings('(output)',defaultVal=str)
if (str(1) == 'GfortranBug86277') str = [character(len=65536)::]
#else
str = config_crystallite(c)%getStrings('(output)',defaultVal=[character(len=65536)::])
#endif
do o = 1, size(str)
crystallite_output(o,c) = str(o)
outputName: select case(str(o))
case ('phase') outputName
crystallite_outputID(o,c) = phase_ID
case ('texture') outputName
crystallite_outputID(o,c) = texture_ID
case ('orientation') outputName
crystallite_outputID(o,c) = orientation_ID
case ('grainrotation') outputName
crystallite_outputID(o,c) = grainrotation_ID
case ('defgrad','f') outputName ! ToDo: no alias (f only)
crystallite_outputID(o,c) = defgrad_ID
case ('fe') outputName
crystallite_outputID(o,c) = fe_ID
case ('fp') outputName
crystallite_outputID(o,c) = fp_ID
case ('fi') outputName
crystallite_outputID(o,c) = fi_ID
case ('lp') outputName
crystallite_outputID(o,c) = lp_ID
case ('li') outputName
crystallite_outputID(o,c) = li_ID
case ('p','firstpiola','1stpiola') outputName ! ToDo: no alias (p only)
crystallite_outputID(o,c) = p_ID
case ('s','tstar','secondpiola','2ndpiola') outputName ! ToDo: no alias (s only)
crystallite_outputID(o,c) = s_ID
case ('elasmatrix') outputName
crystallite_outputID(o,c) = elasmatrix_ID
case ('neighboringip') outputName ! ToDo: this is not a result, it is static. Should be written out by mesh
crystallite_outputID(o,c) = neighboringip_ID
case ('neighboringelement') outputName ! ToDo: this is not a result, it is static. Should be written out by mesh
crystallite_outputID(o,c) = neighboringelement_ID
case default outputName
call IO_error(105,ext_msg=trim(str(o))//' (Crystallite)')
end select outputName
enddo
enddo
allocate(output_constituent(size(config_phase)))
do c = 1, size(config_phase)
#if defined(__GFORTRAN__)
allocate(output_constituent(c)%label(1))
output_constituent(c)%label(1)= 'GfortranBug86277'
output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=output_constituent(c)%label )
if (output_constituent(c)%label (1) == 'GfortranBug86277') output_constituent(c)%label = [character(len=pStringLen)::]
#else
output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=[character(len=pStringLen)::])
#endif
enddo
do r = 1,size(config_crystallite)
do o = 1,crystallite_Noutput(r)
select case(crystallite_outputID(o,r))
case(phase_ID,texture_ID)
mySize = 1
case(orientation_ID,grainrotation_ID)
mySize = 4
case(defgrad_ID,fe_ID,fp_ID,fi_ID,lp_ID,li_ID,p_ID,s_ID)
mySize = 9
case(elasmatrix_ID)
mySize = 36
case(neighboringip_ID,neighboringelement_ID)
mySize = nIPneighbors
case default
mySize = 0
end select
crystallite_sizePostResult(o,r) = mySize
crystallite_sizePostResults(r) = crystallite_sizePostResults(r) + mySize
enddo
enddo
crystallite_maxSizePostResults = &
maxval(crystallite_sizePostResults(microstructure_crystallite),microstructure_active)
!--------------------------------------------------------------------------------------------------
! write description file for crystallite output
if (worldrank == 0) then
call IO_write_jobFile(FILEUNIT,'outputCrystallite')
do r = 1,size(config_crystallite)
if (any(microstructure_crystallite(discretization_microstructureAt) == r)) then
write(FILEUNIT,'(/,a,/)') '['//trim(config_name_crystallite(r))//']'
do o = 1,crystallite_Noutput(r)
write(FILEUNIT,'(a,i4)') trim(crystallite_output(o,r))//char(9),crystallite_sizePostResult(o,r)
enddo
endif
enddo
close(FILEUNIT)
endif
call config_deallocate('material.config/phase')
call config_deallocate('material.config/crystallite')
!--------------------------------------------------------------------------------------------------
! initialize
!$OMP PARALLEL DO PRIVATE(myNcomponents,i,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1,e), FEsolving_execIP(2,e); do c = 1, myNcomponents
crystallite_Fp0(1:3,1:3,c,i,e) = math_EulerToR(material_Eulers(1:3,c,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e)
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e))
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(crystallite_Fi0(1:3,1:3,c,i,e), &
crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
crystallite_requested(c,i,e) = .true.
enddo; enddo
enddo
!$OMP END PARALLEL DO
if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal?
crystallite_partionedFp0 = crystallite_Fp0
crystallite_partionedFi0 = crystallite_Fi0
crystallite_partionedF0 = crystallite_F0
crystallite_partionedF = crystallite_F0
call crystallite_orientations()
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
call constitutive_microstructure(crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fp(1:3,1:3,c,i,e), &
c,i,e) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
!$OMP END PARALLEL DO
devNull = crystallite_stress()
call crystallite_stressTangent
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then
write(6,'(a42,1x,i10)') ' # of elements: ', eMax
write(6,'(a42,1x,i10)') 'max # of integration points/element: ', iMax
write(6,'(a42,1x,i10)') 'max # of constituents/integration point: ', cMax
write(6,'(a42,1x,i10)') ' # of nonlocal constituents: ',count(.not. crystallite_localPlasticity)
flush(6)
endif
call debug_info
call debug_reset
#endif
end subroutine crystallite_init
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress (P)
!--------------------------------------------------------------------------------------------------
function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC)
logical, dimension(discretization_nIP,discretization_nElem) :: crystallite_stress
real(pReal), intent(in), optional :: &
dummyArgumentToPreventInternalCompilerErrorWithGCC
real(pReal) :: &
formerSubStep
integer :: &
NiterationCrystallite, & ! number of iterations in crystallite loop
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
startIP, endIP, &
s
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0 &
.and. FEsolving_execElem(1) <= debug_e &
.and. debug_e <= FEsolving_execElem(2)) then
write(6,'(/,a,i8,1x,i2,1x,i3)') '<< CRYST stress >> boundary and initial values at el ip ipc ', &
debug_e,debug_i, debug_g
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> F ', &
transpose(crystallite_partionedF(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> F0 ', &
transpose(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fp0', &
transpose(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fi0', &
transpose(crystallite_partionedFi0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Lp0', &
transpose(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Li0', &
transpose(crystallite_partionedLi0(1:3,1:3,debug_g,debug_i,debug_e))
endif
#endif
!--------------------------------------------------------------------------------------------------
! initialize to starting condition
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
homogenizationRequestsCalculation: if (crystallite_requested(c,i,e)) then
plasticState (material_phaseAt(c,e))%subState0( :,material_phaseMemberAt(c,i,e)) = &
plasticState (material_phaseAt(c,e))%partionedState0(:,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState(material_phaseAt(c,e))%p(s)%subState0( :,material_phaseMemberAt(c,i,e)) = &
sourceState(material_phaseAt(c,e))%p(s)%partionedState0(:,material_phaseMemberAt(c,i,e))
enddo
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partionedFp0(1:3,1:3,c,i,e)
crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_partionedLp0(1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partionedFi0(1:3,1:3,c,i,e)
crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_partionedLi0(1:3,1:3,c,i,e)
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partionedF0(1:3,1:3,c,i,e)
crystallite_subS0(1:3,1:3,c,i,e) = crystallite_partionedS0(1:3,1:3,c,i,e)
crystallite_subFrac(c,i,e) = 0.0_pReal
crystallite_subStep(c,i,e) = 1.0_pReal/num%subStepSizeCryst
crystallite_todo(c,i,e) = .true.
crystallite_converged(c,i,e) = .false. ! pretend failed step of 1/subStepSizeCryst
endif homogenizationRequestsCalculation
enddo; enddo
enddo elementLooping1
!$OMP END PARALLEL DO
singleRun: if (FEsolving_execELem(1) == FEsolving_execElem(2) .and. &
FEsolving_execIP(1,FEsolving_execELem(1))==FEsolving_execIP(2,FEsolving_execELem(1))) then
startIP = FEsolving_execIP(1,FEsolving_execELem(1))
endIP = startIP
else singleRun
startIP = 1
endIP = discretization_nIP
endif singleRun
NiterationCrystallite = 0
cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2))))
NiterationCrystallite = NiterationCrystallite + 1
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0) &
write(6,'(a,i6)') '<< CRYST stress >> crystallite iteration ',NiterationCrystallite
#endif
!$OMP PARALLEL DO PRIVATE(formerSubStep)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
!--------------------------------------------------------------------------------------------------
! wind forward
if (crystallite_converged(c,i,e)) then
formerSubStep = crystallite_subStep(c,i,e)
crystallite_subFrac(c,i,e) = crystallite_subFrac(c,i,e) + crystallite_subStep(c,i,e)
crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), &
num%stepIncreaseCryst * crystallite_subStep(c,i,e))
crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on?
if (crystallite_todo(c,i,e)) then
crystallite_subF0 (1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e)
crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e)
crystallite_subS0 (1:3,1:3,c,i,e) = crystallite_S (1:3,1:3,c,i,e)
!if abbrevation, make c and p private in omp
plasticState( material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e)) &
= plasticState(material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState( material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e)) &
= sourceState(material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e))
enddo
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0 &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) &
write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST stress >> winding forward from ', &
crystallite_subFrac(c,i,e)-formerSubStep,' to current crystallite_subfrac ', &
crystallite_subFrac(c,i,e),' in crystallite_stress at el ip ipc ',e,i,c
#endif
endif
!--------------------------------------------------------------------------------------------------
! cut back (reduced time and restore)
else
crystallite_subStep(c,i,e) = num%subStepSizeCryst * crystallite_subStep(c,i,e)
crystallite_Fp (1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e)
crystallite_invFp(1:3,1:3,c,i,e) = math_inv33(crystallite_Fp (1:3,1:3,c,i,e))
crystallite_Fi (1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e)
crystallite_invFi(1:3,1:3,c,i,e) = math_inv33(crystallite_Fi (1:3,1:3,c,i,e))
crystallite_S (1:3,1:3,c,i,e) = crystallite_S0 (1:3,1:3,c,i,e)
if (crystallite_subStep(c,i,e) < 1.0_pReal) then ! actual (not initial) cutback
crystallite_Lp (1:3,1:3,c,i,e) = crystallite_subLp0(1:3,1:3,c,i,e)
crystallite_Li (1:3,1:3,c,i,e) = crystallite_subLi0(1:3,1:3,c,i,e)
endif
plasticState (material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e)) &
= plasticState(material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState( material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e)) &
= sourceState(material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e))
enddo
! cant restore dotState here, since not yet calculated in first cutback after initialization
crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > num%subStepMinCryst ! still on track or already done (beyond repair)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0)) then
if (crystallite_todo(c,i,e)) then
write(6,'(a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST stress >> cutback with new crystallite_subStep: ', &
crystallite_subStep(c,i,e),' at el ip ipc ',e,i,c
else
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST stress >> reached minimum step size at el ip ipc ',e,i,c
endif
endif
#endif
endif
!--------------------------------------------------------------------------------------------------
! prepare for integration
if (crystallite_todo(c,i,e)) then
crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) &
+ crystallite_subStep(c,i,e) * (crystallite_partionedF (1:3,1:3,c,i,e) &
- crystallite_partionedF0(1:3,1:3,c,i,e))
crystallite_Fe(1:3,1:3,c,i,e) = matmul(matmul(crystallite_subF (1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
crystallite_invFi(1:3,1:3,c,i,e))
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
crystallite_converged(c,i,e) = .false.
endif
enddo
enddo
enddo elementLooping3
!$OMP END PARALLEL DO
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0) then
write(6,'(/,a,f8.5,a,f8.5,/)') '<< CRYST stress >> ',minval(crystallite_subStep), &
' ≤ subStep ≤ ',maxval(crystallite_subStep)
write(6,'(/,a,f8.5,a,f8.5,/)') '<< CRYST stress >> ',minval(crystallite_subFrac), &
' ≤ subFrac ≤ ',maxval(crystallite_subFrac)
flush(6)
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0) then
write(6,'(/,a,f8.5,1x,a,1x,f8.5,1x,a)') '<< CRYST stress >> subFrac + subStep = ',&
crystallite_subFrac(debug_g,debug_i,debug_e),'+',crystallite_subStep(debug_g,debug_i,debug_e),'@selective'
flush(6)
endif
endif
#endif
!--------------------------------------------------------------------------------------------------
! integrate --- requires fully defined state array (basic + dependent state)
if (any(crystallite_todo)) call integrateState ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation
where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further
crystallite_todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
enddo cutbackLooping
! return whether converged or not
crystallite_stress = .false.
elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_stress(i,e) = all(crystallite_converged(:,i,e))
enddo
enddo elementLooping5
#ifdef DEBUG
elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (.not. crystallite_converged(c,i,e)) then
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST stress >> no convergence at el ip ipc ', &
e,i,c
endif
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST stress >> solution at el ip ipc ',e,i,c
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CRYST stress >> P / MPa', &
transpose(crystallite_P(1:3,1:3,c,i,e))*1.0e-6_pReal
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fp', &
transpose(crystallite_Fp(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fi', &
transpose(crystallite_Fi(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST stress >> Lp', &
transpose(crystallite_Lp(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST stress >> Li', &
transpose(crystallite_Li(1:3,1:3,c,i,e))
flush(6)
endif
enddo
enddo
enddo elementLooping6
#endif
end function crystallite_stress
!--------------------------------------------------------------------------------------------------
!> @brief calculate tangent (dPdF)
!--------------------------------------------------------------------------------------------------
subroutine crystallite_stressTangent
integer :: &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
o, &
p
real(pReal), dimension(3,3) :: temp_33_1, devNull,invSubFi0, temp_33_2, temp_33_3, temp_33_4
real(pReal), dimension(3,3,3,3) :: dSdFe, &
dSdF, &
dSdFi, &
dLidS, &
dLidFi, &
dLpdS, &
dLpdFi, &
dFidS, &
dFpinvdF, &
rhs_3333, &
lhs_3333, &
temp_3333
real(pReal), dimension(9,9):: temp_99
logical :: error
!$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFi,dLpdS,dLpdFi,dFpinvdF,dLidS,dLidFi,dFidS,invSubFi0,o,p, &
!$OMP rhs_3333,lhs_3333,temp_99,temp_33_1,temp_33_2,temp_33_3,temp_33_4,temp_3333,error)
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
call constitutive_SandItsTangents(devNull,dSdFe,dSdFi, &
crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate elastic stress tangent
call constitutive_LiAndItsTangents(devNull,dLidS,dLidFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e), &
c,i,e) ! call constitutive law to calculate Li tangent in lattice configuration
if (sum(abs(dLidS)) < tol_math_check) then
dFidS = 0.0_pReal
else
invSubFi0 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e))
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
do o=1,3; do p=1,3
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) &
+ crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidFi(1:3,1:3,o,p))
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) &
+ crystallite_invFi(1:3,1:3,c,i,e)*crystallite_invFi(p,o,c,i,e)
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) &
- crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidS(1:3,1:3,o,p))
enddo; enddo
call math_invert(temp_99,error,math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dFidS = 0.0_pReal
else
dFidS = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
endif
call constitutive_LpAndItsTangents(devNull,dLpdS,dLpdFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
!--------------------------------------------------------------------------------------------------
! calculate dSdF
temp_33_1 = transpose(matmul(crystallite_invFp(1:3,1:3,c,i,e), &
crystallite_invFi(1:3,1:3,c,i,e)))
temp_33_2 = matmul( crystallite_subF (1:3,1:3,c,i,e), &
math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)))
temp_33_3 = matmul(matmul(crystallite_subF (1:3,1:3,c,i,e), &
crystallite_invFp (1:3,1:3,c,i,e)), &
math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)))
do o=1,3; do p=1,3
rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1)
temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), &
crystallite_invFi(1:3,1:3,c,i,e)) &
+ matmul(temp_33_3,dLidS(1:3,1:3,p,o))
enddo; enddo
lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) &
+ math_mul3333xx3333(dSdFi,dFidS)
call math_invert(temp_99,error,math_identity2nd(9)+math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dSdF = rhs_3333
else
dSdF = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
!--------------------------------------------------------------------------------------------------
! calculate dFpinvdF
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
do o=1,3; do p=1,3
dFpinvdF(1:3,1:3,p,o) &
= -crystallite_subdt(c,i,e) &
* matmul(math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)), &
matmul(temp_3333(1:3,1:3,p,o),crystallite_invFi(1:3,1:3,c,i,e)))
enddo; enddo
!--------------------------------------------------------------------------------------------------
! assemble dPdF
temp_33_1 = matmul(crystallite_invFp(1:3,1:3,c,i,e), &
matmul(crystallite_S(1:3,1:3,c,i,e), &
transpose(crystallite_invFp(1:3,1:3,c,i,e))))
temp_33_2 = matmul(crystallite_S(1:3,1:3,c,i,e), &
transpose(crystallite_invFp(1:3,1:3,c,i,e)))
temp_33_3 = matmul(crystallite_subF(1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e))
temp_33_4 = matmul(matmul(crystallite_subF(1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
crystallite_S(1:3,1:3,c,i,e))
crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = 0.0_pReal
do p=1,3
crystallite_dPdF(p,1:3,p,1:3,c,i,e) = transpose(temp_33_1)
enddo
do o=1,3; do p=1,3
crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + &
matmul(matmul(crystallite_subF(1:3,1:3,c,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33_2) + &
matmul(matmul(temp_33_3,dSdF(1:3,1:3,p,o)),transpose(crystallite_invFp(1:3,1:3,c,i,e))) + &
matmul(temp_33_4,transpose(dFpinvdF(1:3,1:3,p,o)))
enddo; enddo
enddo; enddo
enddo elementLooping
!$OMP END PARALLEL DO
end subroutine crystallite_stressTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates orientations
!--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations
integer &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e !< counter in element loop
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,homogenization_Ngrains(material_homogenizationAt(e))
call crystallite_orientation(c,i,e)%fromMatrix(transpose(math_rotationalPart33(crystallite_Fe(1:3,1:3,c,i,e))))
enddo; enddo; enddo
!$OMP END PARALLEL DO
nonlocalPresent: if (any(plasticState%nonLocal)) then
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (plasticState(material_phaseAt(1,e))%nonLocal) & ! if nonlocal model
call plastic_nonlocal_updateCompatibility(crystallite_orientation,i,e)
enddo; enddo
!$OMP END PARALLEL DO
endif nonlocalPresent
end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief Map 2nd order tensor to reference config
!--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(ipc,ip,el, tensor33)
real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3), intent(in) :: tensor33
real(pReal), dimension(3,3) :: T
integer, intent(in):: &
el, &
ip, &
ipc
T = matmul(material_orientation0(ipc,ip,el)%asMatrix(), & ! ToDo: initial orientation correct?
transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el))))
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))
end function crystallite_push33ToRef
!--------------------------------------------------------------------------------------------------
!> @brief return results of particular grain
!--------------------------------------------------------------------------------------------------
function crystallite_postResults(ipc, ip, el)
integer, intent(in):: &
el, & !< element index
ip, & !< integration point index
ipc !< grain index
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(discretization_microstructureAt(el))) + &
1+plasticState(material_phaseAt(ipc,el))%sizePostResults + &
sum(sourceState(material_phaseAt(ipc,el))%p(:)%sizePostResults)) :: &
crystallite_postResults
integer :: &
o, &
c, &
crystID, &
mySize, &
n
type(rotation) :: rot
crystID = microstructure_crystallite(discretization_microstructureAt(el))
crystallite_postResults = 0.0_pReal
crystallite_postResults(1) = real(crystallite_sizePostResults(crystID),pReal) ! header-like information (length)
c = 1
do o = 1,crystallite_Noutput(crystID)
mySize = 0
select case(crystallite_outputID(o,crystID))
case (phase_ID)
mySize = 1
crystallite_postResults(c+1) = real(material_phaseAt(ipc,el),pReal) ! phaseID of grain
case (texture_ID)
mySize = 1
crystallite_postResults(c+1) = real(material_texture(ipc,ip,el),pReal) ! textureID of grain
case (orientation_ID)
mySize = 4
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(ipc,ip,el)%asQuaternion()
case (grainrotation_ID)
rot = material_orientation0(ipc,ip,el)%misorientation(crystallite_orientation(ipc,ip,el))
mySize = 4
crystallite_postResults(c+1:c+mySize) = rot%asAxisAngle()
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33
! thus row index i is slow, while column index j is fast. reminder: "row is slow"
case (defgrad_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_partionedF(1:3,1:3,ipc,ip,el)),[mySize])
case (fe_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fe(1:3,1:3,ipc,ip,el)),[mySize])
case (fp_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fp(1:3,1:3,ipc,ip,el)),[mySize])
case (fi_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fi(1:3,1:3,ipc,ip,el)),[mySize])
case (lp_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Lp(1:3,1:3,ipc,ip,el)),[mySize])
case (li_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Li(1:3,1:3,ipc,ip,el)),[mySize])
case (p_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_P(1:3,1:3,ipc,ip,el)),[mySize])
case (s_ID)
mySize = 9
crystallite_postResults(c+1:c+mySize) = &
reshape(crystallite_S(1:3,1:3,ipc,ip,el),[mySize])
case (elasmatrix_ID)
mySize = 36
crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(ipc,ip,el),[mySize])
case(neighboringelement_ID)
mySize = nIPneighbors
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
forall (n = 1:mySize) &
crystallite_postResults(c+n) = real(IPneighborhood(1,n,ip,el),pReal)
case(neighboringip_ID)
mySize = nIPneighbors
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
forall (n = 1:mySize) &
crystallite_postResults(c+n) = real(IPneighborhood(2,n,ip,el),pReal)
end select
c = c + mySize
enddo
crystallite_postResults(c+1) = real(plasticState(material_phaseAt(ipc,el))%sizePostResults,pReal) ! size of constitutive results
c = c + 1
if (size(crystallite_postResults)-c > 0) &
crystallite_postResults(c+1:size(crystallite_postResults)) = &
constitutive_postResults(crystallite_S(1:3,1:3,ipc,ip,el), crystallite_Fi(1:3,1:3,ipc,ip,el), &
ipc, ip, el)
end function crystallite_postResults
!--------------------------------------------------------------------------------------------------
!> @brief writes crystallite results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine crystallite_results
#if defined(PETSc) || defined(DAMASK_HDF5)
integer :: p,o
real(pReal), allocatable, dimension(:,:,:) :: selected_tensors
type(rotation), allocatable, dimension(:) :: selected_rotations
character(len=256) :: group,lattice_label
do p=1,size(config_name_phase)
group = trim('current/constituent')//'/'//trim(config_name_phase(p))//'/generic'
call HDF5_closeGroup(results_addGroup(group))
do o = 1, size(output_constituent(p)%label)
select case (output_constituent(p)%label(o))
case('f')
selected_tensors = select_tensors(crystallite_partionedF,p)
call results_writeDataset(group,selected_tensors,'F',&
'deformation gradient','1')
case('fe')
selected_tensors = select_tensors(crystallite_Fe,p)
call results_writeDataset(group,selected_tensors,'Fe',&
'elastic deformation gradient','1')
case('fp')
selected_tensors = select_tensors(crystallite_Fp,p)
call results_writeDataset(group,selected_tensors,'Fp',&
'plastic deformation gradient','1')
case('fi')
selected_tensors = select_tensors(crystallite_Fi,p)
call results_writeDataset(group,selected_tensors,'Fi',&
'inelastic deformation gradient','1')
case('lp')
selected_tensors = select_tensors(crystallite_Lp,p)
call results_writeDataset(group,selected_tensors,'Lp',&
'plastic velocity gradient','1/s')
case('li')
selected_tensors = select_tensors(crystallite_Li,p)
call results_writeDataset(group,selected_tensors,'Li',&
'inelastic velocity gradient','1/s')
case('p')
selected_tensors = select_tensors(crystallite_P,p)
call results_writeDataset(group,selected_tensors,'P',&
'1st Piola-Kirchoff stress','Pa')
case('s')
selected_tensors = select_tensors(crystallite_S,p)
call results_writeDataset(group,selected_tensors,'S',&
'2nd Piola-Kirchoff stress','Pa')
case('orientation')
select case(lattice_structure(p))
case(LATTICE_iso_ID)
lattice_label = 'iso'
case(LATTICE_fcc_ID)
lattice_label = 'fcc'
case(LATTICE_bcc_ID)
lattice_label = 'bcc'
case(LATTICE_bct_ID)
lattice_label = 'bct'
case(LATTICE_hex_ID)
lattice_label = 'hex'
case(LATTICE_ort_ID)
lattice_label = 'ort'
end select
selected_rotations = select_rotations(crystallite_orientation,p)
call results_writeDataset(group,selected_rotations,'orientation',&
'crystal orientation as quaternion',lattice_label)
end select
enddo
enddo
contains
!------------------------------------------------------------------------------------------------
!> @brief select tensors for output
!------------------------------------------------------------------------------------------------
function select_tensors(dataset,instance)
integer, intent(in) :: instance
real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset
real(pReal), allocatable, dimension(:,:,:) :: select_tensors
integer :: e,i,c,j
allocate(select_tensors(3,3,count(material_phaseAt==instance)*homogenization_maxNgrains))
j=0
do e = 1, size(material_phaseAt,2)
do i = 1, homogenization_maxNgrains !ToDo: this needs to be changed for varying Ngrains
do c = 1, size(material_phaseAt,1)
if (material_phaseAt(c,e) == instance) then
j = j + 1
select_tensors(1:3,1:3,j) = dataset(1:3,1:3,c,i,e)
endif
enddo
enddo
enddo
end function select_tensors
!--------------------------------------------------------------------------------------------------
!> @brief select rotations for output
!--------------------------------------------------------------------------------------------------
function select_rotations(dataset,instance)
integer, intent(in) :: instance
type(rotation), dimension(:,:,:), intent(in) :: dataset
type(rotation), allocatable, dimension(:) :: select_rotations
integer :: e,i,c,j
allocate(select_rotations(count(material_phaseAt==instance)*homogenization_maxNgrains))
j=0
do e = 1, size(material_phaseAt,2)
do i = 1, homogenization_maxNgrains !ToDo: this needs to be changed for varying Ngrains
do c = 1, size(material_phaseAt,1)
if (material_phaseAt(c,e) == instance) then
j = j + 1
select_rotations(j) = dataset(c,i,e)
endif
enddo
enddo
enddo
end function select_rotations
#endif
end subroutine crystallite_results
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
logical function integrateStress(ipc,ip,el,timeFraction)
integer, intent(in):: el, & ! element index
ip, & ! integration point index
ipc ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
Fi_new, & ! gradient of intermediate deformation stages
invFi_new, &
invFp_current, & ! inverse of Fp_current
invFi_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuumLp, & ! current residuum of plastic velocity gradient
residuumLp_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Liguess, & ! current guess for intermediate velocity gradient
Liguess_old, & ! known last good guess for intermediate velocity gradient
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
residuumLi, & ! current residuum of intermediate velocity gradient
residuumLi_old, & ! last residuum of intermediate velocity gradient
deltaLi, & ! direction of next guess
S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
A, &
B, &
Fe, & ! elastic deformation gradient
temp_33
real(pReal), dimension(9) :: work ! needed for matrix inversion by LAPACK
integer, dimension(9) :: devNull ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme)
dRLp_dLp2, & ! working copy of dRdLp
dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme)
real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress
dS_dFi, &
dFe_dLp, & ! partial derivative of elastic deformation gradient
dFe_dLi, &
dFi_dLi, &
dLp_dFi, &
dLi_dFi, &
dLp_dS, &
dLi_dS
real(pReal) detInvFi, & ! determinant of InvFi
steplengthLp, &
steplengthLi, &
dt, & ! time increment
aTolLp, &
aTolLi
integer NiterationStressLp, & ! number of stress integrations
NiterationStressLi, & ! number of inner stress integrations
ierr, & ! error indicator for LAPACK
o, &
p, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
external :: &
dgesv
!* be pessimistic
integrateStress = .false.
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) &
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> at el ip ipc ',el,ip,ipc
#endif
if (present(timeFraction)) then
dt = crystallite_subdt(ipc,ip,el) * timeFraction
Fg_new = crystallite_subF0(1:3,1:3,ipc,ip,el) &
+ (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction
else
dt = crystallite_subdt(ipc,ip,el)
Fg_new = crystallite_subF(1:3,1:3,ipc,ip,el)
endif
Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess_old = Liguess
invFp_current = math_inv33(crystallite_subFp0(1:3,1:3,ipc,ip,el))
failedInversionFp: if (all(dEq0(invFp_current))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> failed on inversion of current Fp at el ip ipc ',&
el,ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> current Fp ',transpose(crystallite_subFp0(1:3,1:3,ipc,ip,el))
#endif
return
endif failedInversionFp
A = matmul(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
invFi_current = math_inv33(crystallite_subFi0(1:3,1:3,ipc,ip,el))
failedInversionFi: if (all(dEq0(invFi_current))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> failed on inversion of current Fi at el ip ipc ',&
el,ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> current Fi ', &
transpose(crystallite_subFi0(1:3,1:3,ipc,ip,el))
#endif
return
endif failedInversionFi
!* start Li loop with normal step length
NiterationStressLi = 0
jacoCounterLi = 0
steplengthLi = 1.0_pReal
residuumLi_old = 0.0_pReal
LiLoop: do
NiterationStressLi = NiterationStressLi + 1
LiLoopLimit: if (NiterationStressLi > num%nStress) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i3,a,i8,1x,i2,1x,i3,/)') '<< CRYST integrateStress >> reached Li loop limit',num%nStress, &
' at el ip ipc ', el,ip,ipc
#endif
return
endif LiLoopLimit
invFi_new = matmul(invFi_current,math_I3 - dt*Liguess)
Fi_new = math_inv33(invFi_new)
detInvFi = math_det33(invFi_new)
!* start Lp loop with normal step length
NiterationStressLp = 0
jacoCounterLp = 0
steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess
LpLoop: do
NiterationStressLp = NiterationStressLp + 1
LpLoopLimit: if (NiterationStressLp > num%nStress) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i3,a,i8,1x,i2,1x,i3,/)') '<< CRYST integrateStress >> reached Lp loop limit',num%nStress, &
' at el ip ipc ', el,ip,ipc
#endif
return
endif LpLoopLimit
!* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law
B = math_I3 - dt*Lpguess
Fe = matmul(matmul(A,B), invFi_new)
call constitutive_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, ipc, ip, el) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration
!* calculate plastic velocity gradient and its tangent from constitutive law
call constitutive_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ipc, ip, el)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,i3,/)') '<< CRYST integrateStress >> Lp iteration ', NiterationStressLp
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST integrateStress >> Lpguess', transpose(Lpguess)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST integrateStress >> Lp_constitutive', transpose(Lp_constitutive)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST integrateStress >> Fi', transpose(Fi_new)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST integrateStress >> Fe', transpose(Fe)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST integrateStress >> S', transpose(S)
endif
#endif
!* update current residuum and check for convergence of loop
aTolLp = max(num%rTol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%aTol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i8,1x,i2,1x,i3,a,i3,a)') '<< CRYST integrateStress >> encountered NaN for Lp-residuum at el ip ipc ', &
el,ip,ipc, &
' ; iteration ', NiterationStressLp,&
' >> returning..!'
#endif
return ! ...me = .false. to inform integrator about problem
elseif (norm2(residuumLp) < aTolLp) then ! converged if below absolute tolerance
exit LpLoop ! ...leave iteration loop
elseif ( NiterationStressLp == 1 &
.or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLp_old = residuumLp ! ...remember old values and...
Lpguess_old = Lpguess
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
Lpguess = Lpguess_old + steplengthLp * deltaLp
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f7.4)') '<< CRYST integrateStress >> linear search for Lpguess with step', steplengthLp
endif
#endif
cycle LpLoop
endif
!* calculate Jacobian for correction term
if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then
do o=1,3; do p=1,3
dFe_dLp(o,1:3,p,1:3) = A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
enddo; enddo
dFe_dLp = - dt * dFe_dLp
dRLp_dLp = math_identity2nd(9) &
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,/,9(12x,9(e12.4,1x)/))') '<< CRYST integrateStress >> dLp_dS', math_3333to99(dLp_dS)
write(6,'(a,1x,e20.10)') '<< CRYST integrateStress >> dLp_dS norm', norm2(math_3333to99(dLp_dS))
write(6,'(a,/,9(12x,9(e12.4,1x)/))') '<< CRYST integrateStress >> dRLp_dLp', dRLp_dLp-math_identity2nd(9)
write(6,'(a,1x,e20.10)') '<< CRYST integrateStress >> dRLp_dLp norm', norm2(dRLp_dLp-math_identity2nd(9))
endif
#endif
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
work = math_33to9(residuumLp)
call dgesv(9,1,dRLp_dLp2,9,devNull,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
if (ierr /= 0) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> failed on dR/dLp inversion at el ip ipc ', &
el,ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,*)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dR_dLp',transpose(dRLp_dLp)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dFe_dLp',transpose(math_3333to99(dFe_dLp))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dS_dFe (cnst)',transpose(math_3333to99(dS_dFe))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dLp_dS (cnst)',transpose(math_3333to99(dLp_dS))
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> A',transpose(A)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> B',transpose(B)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Lp_constitutive',transpose(Lp_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Lpguess',transpose(Lpguess)
endif
endif
#endif
return
endif
deltaLp = - math_9to33(work)
endif
jacoCounterLp = jacoCounterLp + 1
Lpguess = Lpguess + steplengthLp * deltaLp
enddo LpLoop
!* calculate intermediate velocity gradient and its tangent from constitutive law
call constitutive_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, &
S, Fi_new, ipc, ip, el)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,i3,/)') '<< CRYST integrateStress >> Li iteration ', NiterationStressLi
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Li_constitutive', transpose(Li_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Liguess', transpose(Liguess)
endif
#endif
!* update current residuum and check for convergence of loop
aTolLi = max(num%rTol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%aTol_crystalliteStress) ! minimum lower cutoff
residuumLi = Liguess - Li_constitutive
if (any(IEEE_is_NaN(residuumLi))) then ! NaN in residuum...
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) &
write(6,'(a,i8,1x,i2,1x,i3,a,i3,a)') '<< CRYST integrateStress >> encountered NaN for Li-residuum at el ip ipc ', &
el,ip,ipc, &
' ; iteration ', NiterationStressLi,&
' >> returning..!'
#endif
return ! ...me = .false. to inform integrator about problem
elseif (norm2(residuumLi) < aTolLi) then ! converged if below absolute tolerance
exit LiLoop ! ...leave iteration loop
elseif ( NiterationStressLi == 1 &
.or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLi_old = residuumLi ! ...remember old values and...
Liguess_old = Liguess
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
Liguess = Liguess_old + steplengthLi * deltaLi
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f7.4)') '<< CRYST integrateStress >> linear search for Liguess with step', steplengthLi
endif
#endif
cycle LiLoop
endif
!* calculate Jacobian for correction term
if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
temp_33 = matmul(matmul(A,B),invFi_current)
do o=1,3; do p=1,3
dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFi_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
enddo; enddo
do o=1,3; do p=1,3
dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new)
enddo; enddo
dRLi_dLi = math_identity2nd(9) &
- math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) + &
math_mul3333xx3333(dS_dFi, dFi_dLi))) &
- math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi))
work = math_33to9(residuumLi)
call dgesv(9,1,dRLi_dLi,9,devNull,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
if (ierr /= 0) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> failed on dR/dLi inversion at el ip ipc ', &
el,ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,*)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dR_dLi',transpose(dRLi_dLi)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dFe_dLi',transpose(math_3333to99(dFe_dLi))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dS_dFi (cnst)',transpose(math_3333to99(dS_dFi))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST integrateStress >> dLi_dS (cnst)',transpose(math_3333to99(dLi_dS))
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Li_constitutive',transpose(Li_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> Liguess',transpose(Liguess)
endif
endif
#endif
return
endif
deltaLi = - math_9to33(work)
endif
jacoCounterLi = jacoCounterLi + 1
Liguess = Liguess + steplengthLi * deltaLi
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST integrateStress >> corrected Liguess by', transpose(deltaLi)
endif
#endif
enddo LiLoop
!* calculate new plastic and elastic deformation gradient
invFp_new = matmul(invFp_current,B)
invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize
Fp_new = math_inv33(invFp_new)
failedInversionInvFp: if (all(dEq0(Fp_new))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST integrateStress >> failed on invFp_new inversion at el ip ipc ', &
el,ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> invFp_new',transpose(invFp_new)
endif
#endif
return
endif failedInversionInvFp
Fe_new = matmul(matmul(Fg_new,invFp_new),invFi_new)
!--------------------------------------------------------------------------------------------------
! stress integration was successful
integrateStress = .true.
crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(Fg_new,invFp_new),matmul(S,transpose(invFp_new)))
crystallite_S (1:3,1:3,ipc,ip,el) = S
crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess
crystallite_Li (1:3,1:3,ipc,ip,el) = Liguess
crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new
crystallite_Fi (1:3,1:3,ipc,ip,el) = Fi_new
crystallite_Fe (1:3,1:3,ipc,ip,el) = Fe_new
crystallite_invFp(1:3,1:3,ipc,ip,el) = invFp_new
crystallite_invFi(1:3,1:3,ipc,ip,el) = invFi_new
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,/)') '<< CRYST integrateStress >> successful integration'
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> P / MPa', &
transpose(crystallite_P(1:3,1:3,ipc,ip,el))*1.0e-6_pReal
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> Cauchy / MPa', &
matmul(crystallite_P(1:3,1:3,ipc,ip,el), transpose(Fg_new)) * 1.0e-6_pReal / math_det33(Fg_new)
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> Fe Lp Fe^-1', &
transpose(matmul(Fe_new, matmul(crystallite_Lp(1:3,1:3,ipc,ip,el), math_inv33(Fe_new))))
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> Fp',transpose(crystallite_Fp(1:3,1:3,ipc,ip,el))
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST integrateStress >> Fi',transpose(crystallite_Fi(1:3,1:3,ipc,ip,el))
endif
#endif
end function integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI
integer :: &
NiterationState, & !< number of iterations in state loop
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
s, &
sizeDotState
real(pReal) :: &
zeta
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: &
residuum_plastic ! residuum for plastic state
real(pReal), dimension(constitutive_source_maxSizeDotState) :: &
residuum_source ! residuum for source state
logical :: &
doneWithIntegration
! --+>> PREGUESS FOR STATE <<+--
call update_dotState(1.0_pReal)
call update_state(1.0_pReal)
NiterationState = 0
doneWithIntegration = .false.
crystalliteLooping: do while (.not. doneWithIntegration .and. NiterationState < num%nState)
NiterationState = NiterationState + 1
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0) &
write(6,'(a,i6)') '<< CRYST stateFPI >> state iteration ',NiterationState
#endif
! store previousDotState and previousDotState2
!$OMP PARALLEL DO PRIVATE(p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
plasticState(p)%previousDotState2(:,c) = merge(plasticState(p)%previousDotState(:,c),&
0.0_pReal,&
NiterationState > 1)
plasticState(p)%previousDotState (:,c) = plasticState(p)%dotState(:,c)
do s = 1, phase_Nsources(p)
sourceState(p)%p(s)%previousDotState2(:,c) = merge(sourceState(p)%p(s)%previousDotState(:,c),&
0.0_pReal, &
NiterationState > 1)
sourceState(p)%p(s)%previousDotState (:,c) = sourceState(p)%p(s)%dotState(:,c)
enddo
endif
enddo
enddo
enddo
!$OMP END PARALLEL DO
call update_dependentState
call update_stress(1.0_pReal)
call update_dotState(1.0_pReal)
!$OMP PARALLEL
!$OMP DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
zeta = damper(plasticState(p)%dotState (:,c), &
plasticState(p)%previousDotState (:,c), &
plasticState(p)%previousDotState2(:,c))
residuum_plastic(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) &
- plasticState(p)%subState0(1:sizeDotState,c) &
- ( plasticState(p)%dotState (:,c) * zeta &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal-zeta) &
) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) &
- residuum_plastic(1:sizeDotState)
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plasticState(p)%previousDotState(:,c) * (1.0_pReal - zeta)
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
zeta = damper(sourceState(p)%p(s)%dotState (:,c), &
sourceState(p)%p(s)%previousDotState (:,c), &
sourceState(p)%p(s)%previousDotState2(:,c))
residuum_source(1:sizeDotState) = sourceState(p)%p(s)%state (1:sizeDotState,c) &
- sourceState(p)%p(s)%subState0(1:sizeDotState,c) &
- ( sourceState(p)%p(s)%dotState (:,c) * zeta &
+ sourceState(p)%p(s)%previousDotState(:,c) * (1.0_pReal - zeta) &
) * crystallite_subdt(g,i,e)
sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%state(1:sizeDotState,c) &
- residuum_source(1:sizeDotState)
sourceState(p)%p(s)%dotState(:,c) = sourceState(p)%p(s)%dotState(:,c) * zeta &
+ sourceState(p)%p(s)%previousDotState(:,c)* (1.0_pReal - zeta)
crystallite_converged(g,i,e) = &
crystallite_converged(g,i,e) .and. converged(residuum_source(1:sizeDotState), &
sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%aTolState(1:sizeDotState))
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive...
crystallite_todo(g,i,e) = stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
crystallite_converged(g,i,e) = .false.
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
! --- CHECK IF DONE WITH INTEGRATION ---
doneWithIntegration = .true.
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
doneWithIntegration = .false.
exit
endif
enddo; enddo
enddo
enddo crystalliteLooping
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::&
current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end subroutine integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateEuler
call update_dotState(1.0_pReal)
call update_state(1.0_pReal)
call update_deltaState
call update_dependentState
call update_stress(1.0_pReal)
call setConvergenceFlag
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler
integer :: &
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
p, &
c, &
s, &
sizeDotState
! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of adaptive Euler
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
residuum_plastic
real(pReal), dimension(constitutive_source_maxSizeDotState,&
maxval(phase_Nsources), &
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
residuum_source
!--------------------------------------------------------------------------------------------------
! contribution to state and relative residui and from Euler integration
call update_dotState(1.0_pReal)
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) &
* (- 0.5_pReal * crystallite_subdt(g,i,e))
plasticState(p)%state(1:sizeDotState,c) = &
plasticState(p)%state(1:sizeDotState,c) + plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state?
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
residuum_source(1:sizeDotState,s,g,i,e) = sourceState(p)%p(s)%dotstate(1:sizeDotState,c) &
* (- 0.5_pReal * crystallite_subdt(g,i,e))
sourceState(p)%p(s)%state(1:sizeDotState,c) = &
sourceState(p)%p(s)%state(1:sizeDotState,c) + sourceState(p)%p(s)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state?
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call update_deltaState
call update_dependentState
call update_stress(1.0_pReal)
call update_dotState(1.0_pReal)
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e)
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
residuum_source(1:sizeDotState,s,g,i,e) = &
residuum_source(1:sizeDotState,s,g,i,e) + 0.5_pReal * sourceState(p)%p(s)%dotState(:,c) * crystallite_subdt(g,i,e)
crystallite_converged(g,i,e) = &
crystallite_converged(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), &
sourceState(p)%p(s)%state(1:sizeDotState,c), &
sourceState(p)%p(s)%aTolState(1:sizeDotState))
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 4th order explicit Runge Kutta method
! ToDo: This is totally BROKEN: RK4dotState is never used!!!
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRK4
real(pReal), dimension(4), parameter :: &
TIMESTEPFRACTION = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: &
WEIGHT = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6)
integer :: e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
p, & ! phase loop
c, &
n, &
s
call update_dotState(1.0_pReal)
do n = 1,4
!$OMP PARALLEL DO PRIVATE(p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
plasticState(p)%RK4dotState(:,c) = WEIGHT(n)*plasticState(p)%dotState(:,c) &
+ merge(plasticState(p)%RK4dotState(:,c),0.0_pReal,n>1)
do s = 1, phase_Nsources(p)
sourceState(p)%p(s)%RK4dotState(:,c) = WEIGHT(n)*sourceState(p)%p(s)%dotState(:,c) &
+ merge(sourceState(p)%p(s)%RK4dotState(:,c),0.0_pReal,n>1)
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call update_state(TIMESTEPFRACTION(n))
call update_deltaState
call update_dependentState
call update_stress(TIMESTEPFRACTION(n))
! --- dot state and RK dot state---
first3steps: if (n < 4) then
call update_dotState(TIMESTEPFRACTION(n))
endif first3steps
enddo
call setConvergenceFlag
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateRK4
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
.2_pReal, .075_pReal, .3_pReal, -11.0_pReal/54.0_pReal, 1631.0_pReal/55296.0_pReal, &
.0_pReal, .225_pReal, -.9_pReal, 2.5_pReal, 175.0_pReal/512.0_pReal, &
.0_pReal, .0_pReal, 1.2_pReal, -70.0_pReal/27.0_pReal, 575.0_pReal/13824.0_pReal, &
.0_pReal, .0_pReal, .0_pReal, 35.0_pReal/27.0_pReal, 44275.0_pReal/110592.0_pReal, &
.0_pReal, .0_pReal, .0_pReal, .0_pReal, 253.0_pReal/4096.0_pReal], &
[5,5], order=[2,1]) !< coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
real(pReal), dimension(6), parameter :: &
B = &
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], & !< coefficients in Butcher tableau (used for final integration and error estimate)
DB = B - &
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 0.25_pReal] !< coefficients in Butcher tableau (used for final integration and error estimate)
real(pReal), dimension(5), parameter :: &
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal] !< coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
integer :: &
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
stage, & ! stage index in integration stage loop
n, &
p, &
cc, &
s, &
sizeDotState
! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of RKCK45
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
residuum_plastic ! relative residuum from evolution in microstructure
real(pReal), dimension(constitutive_source_maxSizeDotState, &
maxval(phase_Nsources), &
homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
residuum_source ! relative residuum from evolution in microstructure
call update_dotState(1.0_pReal)
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
do stage = 1,5
! --- state update ---
!$OMP PARALLEL DO PRIVATE(p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e)
plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc)
plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc)
do s = 1, phase_Nsources(p)
sourceState(p)%p(s)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(s)%dotState(:,cc)
sourceState(p)%p(s)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(s)%RKCK45dotState(1,:,cc)
enddo
do n = 2, stage
plasticState(p)%dotState(:,cc) = plasticState(p)%dotState(:,cc) &
+ A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc)
do s = 1, phase_Nsources(p)
sourceState(p)%p(s)%dotState(:,cc) = sourceState(p)%p(s)%dotState(:,cc) &
+ A(n,stage) * sourceState(p)%p(s)%RKCK45dotState(n,:,cc)
enddo
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call update_state(1.0_pReal) !MD: 1.0 correct?
call update_deltaState
call update_dependentState
call update_stress(C(stage))
call update_dotState(C(stage))
enddo
!--------------------------------------------------------------------------------------------------
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE ---
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc)
residuum_plastic(1:sizeDotState,g,i,e) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & ! why transpose? Better to transpose constant DB
* crystallite_subdt(g,i,e)
plasticState(p)%dotState(:,cc) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)), B) ! why transpose? Better to transpose constant B
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%RKCK45dotState(6,:,cc) = sourceState(p)%p(s)%dotState(:,cc)
residuum_source(1:sizeDotState,s,g,i,e) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) &
* crystallite_subdt(g,i,e)
sourceState(p)%p(s)%dotState(:,cc) = &
matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),B)
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call update_state(1.0_pReal)
! --- relative residui and state convergence ---
!$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e)) then
p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e)
sizeDotState = plasticState(p)%sizeDotState
crystallite_todo(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), &
plasticState(p)%state(1:sizeDotState,cc), &
plasticState(p)%aTolState(1:sizeDotState))
do s = 1, phase_Nsources(p)
sizeDotState = sourceState(p)%p(s)%sizeDotState
crystallite_todo(g,i,e) = &
crystallite_todo(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), &
sourceState(p)%p(s)%state(1:sizeDotState,cc), &
sourceState(p)%p(s)%aTolState(1:sizeDotState))
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
call update_deltaState
call update_dependentState
call update_stress(1.0_pReal)
call setConvergenceFlag
if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck
end subroutine integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief sets convergence flag for nonlocal calculations
!> @detail one non-converged nonlocal sets all other nonlocals to non-converged to trigger cut back
!--------------------------------------------------------------------------------------------------
subroutine nonlocalConvergenceCheck
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
where( .not. crystallite_localPlasticity) crystallite_converged = .false.
end subroutine nonlocalConvergenceCheck
!--------------------------------------------------------------------------------------------------
!> @brief Sets convergence flag based on "todo": every point that survived the integration (todo is
! still .true. is considered as converged
!> @details: For explicitEuler, RK4 and RKCK45, adaptive Euler and FPI have their on criteria
!--------------------------------------------------------------------------------------------------
subroutine setConvergenceFlag
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
!OMP DO PARALLEL PRIVATE
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
crystallite_converged(g,i,e) = crystallite_todo(g,i,e) .or. crystallite_converged(g,i,e) ! if still "to do" then converged per definition
enddo; enddo; enddo
!OMP END DO PARALLEL
end subroutine setConvergenceFlag
!--------------------------------------------------------------------------------------------------
!> @brief determines whether a point is converged
!--------------------------------------------------------------------------------------------------
logical pure function converged(residuum,state,aTol)
real(pReal), intent(in), dimension(:) ::&
residuum, state, aTol
real(pReal) :: &
rTol
rTol = num%rTol_crystalliteState
converged = all(abs(residuum) <= max(aTol, rTol*abs(state)))
end function converged
!--------------------------------------------------------------------------------------------------
!> @brief Standard forwarding of state as state = state0 + dotState * (delta t) comment seems wrong!
!--------------------------------------------------------------------------------------------------
subroutine update_stress(timeFraction)
real(pReal), intent(in) :: &
timeFraction
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = integrateStress(g,i,e,timeFraction)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
end subroutine update_stress
!--------------------------------------------------------------------------------------------------
!> @brief tbd
!--------------------------------------------------------------------------------------------------
subroutine update_dependentState
use constitutive, only: &
constitutive_dependentState => constitutive_microstructure
integer :: e, & ! element index in element loop
i, & ! integration point index in ip loop
g ! grain index in grain loop
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
call constitutive_dependentState(crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e)
enddo; enddo; enddo
!$OMP END PARALLEL DO
end subroutine update_dependentState
!--------------------------------------------------------------------------------------------------
!> @brief Standard forwarding of state as state = state0 + dotState * (delta t)
!--------------------------------------------------------------------------------------------------
subroutine update_state(timeFraction)
real(pReal), intent(in) :: &
timeFraction
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
s, &
mySize
!$OMP PARALLEL DO PRIVATE(mySize,p,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
mySize = plasticState(p)%sizeDotState
plasticState(p)%state(1:mySize,c) = plasticState(p)%subState0(1:mySize,c) &
+ plasticState(p)%dotState (1:mySize,c) &
* crystallite_subdt(g,i,e) * timeFraction
do s = 1, phase_Nsources(p)
mySize = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:mySize,c) = sourceState(p)%p(s)%subState0(1:mySize,c) &
+ sourceState(p)%p(s)%dotState (1:mySize,c) &
* crystallite_subdt(g,i,e) * timeFraction
enddo
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
end subroutine update_state
!--------------------------------------------------------------------------------------------------
!> @brief triggers calculation of all new rates
!> if NaN occurs, crystallite_todo is set to FALSE. Any NaN in a nonlocal propagates to all others
!--------------------------------------------------------------------------------------------------
subroutine update_dotState(timeFraction)
real(pReal), intent(in) :: &
timeFraction
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
s
logical :: &
NaN, &
nonlocalStop
nonlocalStop = .false.
!$OMP PARALLEL DO PRIVATE (p,c,NaN)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
!$OMP FLUSH(nonlocalStop)
if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then
call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_Fp, &
crystallite_subdt(g,i,e)*timeFraction, g,i,e)
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do s = 1, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c)))
enddo
if (NaN) then
crystallite_todo(g,i,e) = .false. ! this one done (and broken)
if (.not. crystallite_localPlasticity(g,i,e)) nonlocalStop = .True.
endif
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity
end subroutine update_DotState
subroutine update_deltaState
integer :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
mySize, &
myOffset, &
c, &
s
logical :: &
NaN, &
nonlocalStop
nonlocalStop = .false.
!$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,NaN)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(material_homogenizationAt(e))
!$OMP FLUSH(nonlocalStop)
if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then
call constitutive_collectDeltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e), &
g,i,e)
p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e)
myOffset = plasticState(p)%offsetDeltaState
mySize = plasticState(p)%sizeDeltaState
NaN = any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c)))
if (.not. NaN) then
plasticState(p)%state(myOffset + 1: myOffset + mySize,c) = &
plasticState(p)%state(myOffset + 1: myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c)
do s = 1, phase_Nsources(p)
myOffset = sourceState(p)%p(s)%offsetDeltaState
mySize = sourceState(p)%p(s)%sizeDeltaState
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%deltaState(1:mySize,c)))
if (.not. NaN) then
sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) = &
sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) + sourceState(p)%p(s)%deltaState(1:mySize,c)
endif
enddo
endif
crystallite_todo(g,i,e) = .not. NaN
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
crystallite_converged(g,i,e) = .false.
if (.not. crystallite_localPlasticity(g,i,e)) nonlocalStop = .true.
endif
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity
end subroutine update_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief calculates a jump in the state according to the current state and the current stress
!> returns true, if state jump was successfull or not needed. false indicates NaN in delta state
!--------------------------------------------------------------------------------------------------
logical function stateJump(ipc,ip,el)
integer, intent(in):: &
el, & ! element index
ip, & ! integration point index
ipc ! grain index
integer :: &
c, &
p, &
mySource, &
myOffset, &
mySize
c = material_phaseMemberAt(ipc,ip,el)
p = material_phaseAt(ipc,el)
call constitutive_collectDeltaState(crystallite_S(1:3,1:3,ipc,ip,el), &
crystallite_Fe(1:3,1:3,ipc,ip,el), &
crystallite_Fi(1:3,1:3,ipc,ip,el), &
ipc,ip,el)
myOffset = plasticState(p)%offsetDeltaState
mySize = plasticState(p)%sizeDeltaState
if( any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c)))) then ! NaN occured in deltaState
stateJump = .false.
return
endif
plasticState(p)%state(myOffset + 1:myOffset + mySize,c) = &
plasticState(p)%state(myOffset + 1:myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c)
do mySource = 1, phase_Nsources(p)
myOffset = sourceState(p)%p(mySource)%offsetDeltaState
mySize = sourceState(p)%p(mySource)%sizeDeltaState
if (any(IEEE_is_NaN(sourceState(p)%p(mySource)%deltaState(1:mySize,c)))) then ! NaN occured in deltaState
stateJump = .false.
return
endif
sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) = &
sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) + sourceState(p)%p(mySource)%deltaState(1:mySize,c)
enddo
#ifdef DEBUG
if (any(dNeq0(plasticState(p)%deltaState(1:mySize,c))) &
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then
write(6,'(a,i8,1x,i2,1x,i3, /)') '<< CRYST >> update state at el ip ipc ',el,ip,ipc
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> deltaState', plasticState(p)%deltaState(1:mySize,c)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', &
plasticState(p)%state(myOffset + 1 : &
myOffset + mySize,c)
endif
#endif
stateJump = .true.
end function stateJump
end module crystallite