DAMASK_EICMD/trunk/CPFEM.f90

607 lines
28 KiB
Fortran

!##############################################################
MODULE CPFEM
!##############################################################
! *** CPFEM engine ***
!
use prec, only: pReal,pInt
implicit none
!
! ****************************************************************
! *** General variables for the material behaviour calculation ***
! ****************************************************************
real(pReal), dimension (:,:), allocatable :: CPFEM_Temperature
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_bar
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn1_bar
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_PK1_bar
real(pReal), dimension (:,:,:,:,:,:),allocatable :: CPFEM_dPdF_bar
real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_bar
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_bar
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_results
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_old
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_new
real(pReal), parameter :: CPFEM_odd_stress = 1e15_pReal, CPFEM_odd_jacobian = 1e50_pReal
integer(pInt) :: CPFEM_Nresults = 4_pInt ! three Euler angles plus volume fraction
logical :: CPFEM_init_done = .false. ! remember if init has been done already
logical :: CPFEM_calc_done = .false. ! remember if first IP has already calced the results
!
CONTAINS
!
!*********************************************************
!*** allocate the arrays defined in module CPFEM ***
!*** and initialize them ***
!*********************************************************
SUBROUTINE CPFEM_init(Temperature)
!
use prec
use math, only: math_EulertoR, math_I3, math_identity2nd
use mesh
use constitutive
!
implicit none
!
real(pReal) Temperature
integer(pInt) e,i,g
!
! *** mpie.marc parameters ***
allocate(CPFEM_Temperature (mesh_maxNips,mesh_NcpElems)) ; CPFEM_Temperature = Temperature
allocate(CPFEM_ffn_bar (3,3,mesh_maxNips,mesh_NcpElems))
forall(e=1:mesh_NcpElems,i=1:mesh_maxNips) CPFEM_ffn_bar(:,:,i,e) = math_I3
allocate(CPFEM_ffn1_bar (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_bar = CPFEM_ffn_bar
allocate(CPFEM_PK1_bar (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_PK1_bar = 0.0_pReal
allocate(CPFEM_dPdF_bar(3,3,3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dPdF_bar = 0.0_pReal
allocate(CPFEM_stress_bar(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_bar = 0.0_pReal
allocate(CPFEM_jaco_bar(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_bar = 0.0_pReal
!
! *** User defined results !!! MISSING incorporate consti_Nresults ***
allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_results = 0.0_pReal
!
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
forall (e=1:mesh_NcpElems,i=1:mesh_maxNips,g=1:constitutive_maxNgrains) &
CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(constitutive_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
!
! *** Output to MARC output file ***
write(6,*)
write(6,*) 'CPFEM Initialization'
write(6,*)
write(6,*) 'CPFEM_Temperature: ', shape(CPFEM_Temperature)
write(6,*) 'CPFEM_ffn_bar: ', shape(CPFEM_ffn_bar)
write(6,*) 'CPFEM_ffn1_bar: ', shape(CPFEM_ffn1_bar)
write(6,*) 'CPFEM_PK1_bar: ', shape(CPFEM_PK1_bar)
write(6,*) 'CPFEM_dPdF_bar: ', shape(CPFEM_dPdF_bar)
write(6,*) 'CPFEM_stress_bar: ', shape(CPFEM_stress_bar)
write(6,*) 'CPFEM_jaco_bar: ', shape(CPFEM_jaco_bar)
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
write(6,*)
call flush(6)
return
!
END SUBROUTINE
!
!
!***********************************************************************
!*** perform initialization at first call, update variables and ***
!*** call the actual material model ***
!
! CPFEM_mode computation mode (regular, collection, recycle)
! ffn deformation gradient for t=t0
! ffn1 deformation gradient for t=t1
! Temperature temperature
! CPFEM_dt time increment
! CPFEM_en element number
! CPFEM_in intergration point number
! CPFEM_stress stress vector in Mandel notation
! CPFEM_updateJaco flag to initiate computation of Jacobian
! CPFEM_jaco jacobian in Mandel notation
! CPFEM_ngens size of stress strain law
!***********************************************************************
SUBROUTINE CPFEM_general(CPFEM_mode, ffn, ffn1, Temperature, CPFEM_dt,&
CPFEM_en, CPFEM_in, CPFEM_stress, CPFEM_updateJaco, CPFEM_jaco, CPFEM_ngens)
! note: CPFEM_stress = Cauchy stress cs(6) and CPFEM_jaco = Consistent tangent dcs/de
!
use prec, only: pReal,pInt
use FEsolving
use debug
use math, only: math_init, invnrmMandel, math_identity2nd, math_Mandel3333to66,math_Mandel33to6,math_Mandel6to33,math_det3x3,math_I3
use mesh, only: mesh_init,mesh_FEasCP, mesh_NcpElems, FE_Nips, FE_mapElemtype, mesh_element
use crystal, only: crystal_Init
use constitutive, only: constitutive_init,constitutive_state_old,constitutive_state_new,material_Cslip_66
implicit none
!
integer(pInt) CPFEM_en, CPFEM_in, cp_en, CPFEM_ngens, i,j,k,l,m,n, e
real(pReal), dimension (3,3) :: ffn,ffn1,Kirchhoff_bar
real(pReal), dimension (3,3,3,3) :: H_bar
real(pReal), dimension(CPFEM_ngens) :: CPFEM_stress
real(pReal), dimension(CPFEM_ngens,CPFEM_ngens) :: CPFEM_jaco
real(pReal) Temperature,CPFEM_dt,J_inverse
integer(pInt) CPFEM_mode ! 1: regular computation, 2: collection, 3: recycling
logical CPFEM_updateJaco
!
if (.not. CPFEM_init_done) then ! initialization step
! three dimensional stress state check missing?
call math_init()
call mesh_init()
call crystal_init()
call constitutive_init()
call CPFEM_init(Temperature)
CPFEM_init_done = .true.
endif
cp_en = mesh_FEasCP('elem',CPFEM_en)
if (cp_en == 1 .and. CPFEM_in == 1) &
write(6,'(a6,x,i4,x,a4,x,i4,x,a10,x,i2,x,a10,x,i2,x,a10,x,i2)') &
'elem',cp_en,'IP',CPFEM_in,'theInc',theInc,'theCycle',theCycle,'theLovl',theLovl,'mode',CPFEM_mode
select case (CPFEM_mode)
case (2,1) ! regular computation (with aging of results)
if (.not. CPFEM_calc_done) then ! puuh, me needs doing all the work...
write (6,*) 'puuh me needs doing all the work', cp_en
if (CPFEM_mode == 1) then ! age results at start of new increment
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
write (6,*) '#### aged results'
endif
debug_cutbackDistribution = 0_pInt ! initialize debugging data
debug_InnerLoopDistribution = 0_pInt
debug_OuterLoopDistribution = 0_pInt
do e=1,mesh_NcpElems ! ## this shall be done in a parallel loop in the future ##
do i=1,FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type
debugger = (e==1 .and. i==1) ! switch on debugging for first IP in first element
call CPFEM_MaterialPoint(CPFEM_updateJaco, CPFEM_dt, i, e)
enddo
enddo
call debug_info() ! output of debugging/performance statistics
CPFEM_calc_done = .true. ! now calc is done
endif
! translate from P and dP/dF to CS and dCS/dE
Kirchhoff_bar = matmul(CPFEM_PK1_bar(:,:,CPFEM_in, cp_en),transpose(CPFEM_ffn1_bar(:,:,CPFEM_in, cp_en)))
J_inverse = 1.0_pReal/math_det3x3(CPFEM_ffn1_bar(:,:,CPFEM_in, cp_en))
CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en) = math_Mandel33to6(J_inverse*Kirchhoff_bar)
!
H_bar = 0.0_pReal
forall(i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) &
H_bar(i,j,k,l) = H_bar(i,j,k,l) + &
(CPFEM_ffn1_bar(j,m,CPFEM_in, cp_en)*CPFEM_ffn1_bar(l,n,CPFEM_in, cp_en)*CPFEM_dPdF_bar(i,m,k,n,CPFEM_in, cp_en) - &
math_I3(j,l)*CPFEM_ffn1_bar(i,m,CPFEM_in, cp_en)*CPFEM_PK1_bar(k,m, CPFEM_in, cp_en)) + &
0.5_pReal*(math_I3(i,k)*Kirchhoff_bar(j,l) + math_I3(j,l)*Kirchhoff_bar(i,k) + &
math_I3(i,l)*Kirchhoff_bar(j,k) + math_I3(j,k)*Kirchhoff_bar(i,l))
CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en) = math_Mandel3333to66(J_inverse*H_bar)
case (3) ! collect and return odd result
CPFEM_Temperature(CPFEM_in,cp_en) = Temperature
CPFEM_ffn_bar(:,:,CPFEM_in,cp_en) = ffn
CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en) = ffn1
CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en) = CPFEM_odd_stress
CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en) = CPFEM_odd_jacobian*math_identity2nd(CPFEM_ngens)
CPFEM_calc_done = .false.
case (4) ! do nothing since we can recycle the former results (MARC specialty)
end select
!
! return the local stress and the jacobian from storage
CPFEM_stress(1:CPFEM_ngens) = CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en)
CPFEM_jaco(1:CPFEM_ngens,1:CPFEM_ngens) = CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en)
if (cp_en == 1 .and. CPFEM_in == 1) write (6,*) 'stress',CPFEM_stress
!
return
!
END SUBROUTINE
!
!**********************************************************
!*** calculate the material point behaviour ***
!**********************************************************
SUBROUTINE CPFEM_MaterialPoint(&
updateJaco,& ! flag to initiate Jacobian updating
CPFEM_dt,& ! Time increment (dt)
CPFEM_in,& ! Integration point number
cp_en) ! Element number
!
use prec, only: pReal,pInt,ijaco,nCutback
use debug
use math, only: math_pDecomposition,math_RtoEuler, inDeg, math_I3, math_invert3x3
use IO, only: IO_error
use mesh, only: mesh_element
use constitutive
implicit none
!
integer(pInt), parameter :: i_now = 1_pInt,i_then = 2_pInt
character(len=128) msg
integer(pInt) cp_en,CPFEM_in,grain,i,max_cutbacks
logical updateJaco,error,cutback,post_flag
real(pReal) CPFEM_dt,dt,t,volfrac,det
real(pReal), dimension(3,3) :: PK1
real(pReal), dimension(3,3,3,3) :: dPdF
real(pReal), dimension(3,3) :: Fe,U,R,deltaFg,invFgthen,invFpnow,Lp
real(pReal), dimension(3,3,2) :: Fg,Fp
real(pReal), dimension(constitutive_maxNstatevars,2) :: state
real(pReal), dimension (:), allocatable :: post_results
!
CPFEM_PK1_bar(:,:,CPFEM_in,cp_en) = 0.0_pReal ! zero out average first PK stress
if (updateJaco) CPFEM_dPdF_bar(:,:,:,:,CPFEM_in,cp_en) = 0.0_pReal ! zero out average consistent tangent
!
! -------------- grain loop -----------------
do grain = 1,texture_Ngrains(mesh_element(4,cp_en))
allocate(post_results(constitutive_Nresults(grain,CPFEM_in,cp_en))) ; post_results = 0.0_pReal
!
i = 0_pInt ! cutback counter
max_cutbacks = 0_pInt ! maximum depth of cut backing
dt = CPFEM_dt
state(:,i_now) = constitutive_state_old(:,grain,CPFEM_in,cp_en)
Fg(:,:,i_now) = CPFEM_ffn_bar(:,:,CPFEM_in,cp_en)
Fp(:,:,i_now) = CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en)
invFgthen = 0.0_pReal
invFpnow = 0.0_pReal
call math_invert3x3(CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en),invFgthen,det,error)
call math_invert3x3(Fp(:,:,i_now),invFpnow,det,error)
if (dt /= 0.0_pReal) then
Lp = (math_I3-matmul(Fp(:,:,i_now),matmul(invFgthen,matmul(Fg(:,:,i_now),invFpnow))))/dt ! fully plastic initial guess
else
Lp = 0.0_pReal ! fully elastic guess
endif
!
deltaFg = CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en)-CPFEM_ffn_bar(:,:,CPFEM_in,cp_en)
Fg(:,:,i_then) = Fg(:,:,i_now)
Fp(:,:,i_then) = Fp(:,:,i_now)
state(:,i_then) = 0.0_pReal ! state_old as initial guess
t = 0.0_pReal
cutback = .false. ! no cutback has happened so far
msg = ''
if (debugger) then
write(6,*) 'required Fg from FEM'
write(6,'(3(3(f5.3,x),/))') CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en)
write(6,*) 'my Fp_old'
write(6,'(3(3(f5.3,x),/))') CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en)
write(6,*) 'my Fp_new'
write(6,'(3(3(f5.3,x),/))') CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en)
write(6,*) 'my state old'
write(6,*) constitutive_state_old(:,grain,CPFEM_in,cp_en)
endif
!
! ------- crystallite integration -----------
do while ((t < CPFEM_dt) .or. (msg /= 'ok'))
!
if (t+dt < CPFEM_dt) then ! intermediate solution
t = t+dt ! next time inc
Fg(:,:,i_then) = Fg(:,:,i_then)+deltaFg ! corresponding Fg
post_flag = .false.
else ! full step solution
t = CPFEM_dt ! final time
Fg(:,:,i_then) = CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en) ! final Fg
post_flag = .true.
endif
!
if (debugger .and. CPFEM_dt > 0.0_pReal) &
write (6,'(a,x,f7.5,x,a,x,f7.5,x,a,i2)') 'calculating from',(t-dt)/CPFEM_dt,'to',t/CPFEM_dt,'for grain',grain
call CPFEM_Crystallite(msg,PK1,dPdF,post_results,post_flag,Lp,Fp(:,:,i_then),Fe,state(:,i_then),&
t,cp_en,CPFEM_in,grain,updateJaco .and. t==CPFEM_dt,&
Fg(:,:,i_then),Fp(:,:,i_now),state(:,i_now))
if (msg == 'ok') then ! solution converged
! if (t == CPFEM_dt) then
! debug_cutbackDistribution(max_cutbacks+1) = debug_cutbackDistribution(max_cutbacks+1)+1
! exit ! reached final "then"
! endif
if (.not. cutback) then ! stable solution at current speed?
dt = 2.0_pReal*dt ! double time-step
i = i-1_pInt ! dec cutback counter
endif
cutback = .false. ! solution in next step does not derive from a cutback
else ! solution not found
if (debugger) write (6,*) msg
i = i+1_pInt ! inc cutback counter
max_cutbacks = max(i,max_cutbacks)
cutback = .true.
if (i > nCutback) then ! limit exceeded?
debug_cutbackDistribution(nCutback+1) = debug_cutbackDistribution(nCutback+1)+1
write(6,'(x,a,x,f10.8,x,a,x,f10.8,x,a,x,i6,x,a,x,i2,x,a,x,i2)') &
'inc fraction:',t/CPFEM_dt,'from',(t-dt)/CPFEM_dt,'element:',cp_en,'IP:',CPFEM_in,'grain:',grain
write(6,*) 'cutback limit --> '//msg
call IO_error(600)
return ! byebye
else
t = t-dt ! rewind time
Fg(:,:,i_then) = Fg(:,:,i_then)-deltaFg ! rewind Fg
dt = 0.5_pReal*dt ! cut time-step in half
deltaFg = 0.5_pReal*deltaFg ! cut Fg-step in half
endif
endif
enddo ! crystallite integration (cutback loop)
debug_cutbackDistribution(max_cutbacks+1) = debug_cutbackDistribution(max_cutbacks+1)+1
!
! update crystallite matrices at t = t1
CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en) = Fp(:,:,i_then)
constitutive_state_new(:,grain,CPFEM_in,cp_en) = state(:,i_then)
!
! contribute to IP result
volfrac = constitutive_matVolFrac(grain,CPFEM_in,cp_en)*constitutive_texVolFrac(grain,CPFEM_in,cp_en)
CPFEM_PK1_bar(:,:,CPFEM_in,cp_en) = CPFEM_PK1_bar(:,:,CPFEM_in,cp_en)+volfrac*PK1 ! average Cauchy stress
if (updateJaco) CPFEM_dPdF_bar(:,:,:,:,CPFEM_in,cp_en) = CPFEM_dPdF_bar(:,:,:,:,CPFEM_in,cp_en)+volfrac*dPdF ! consistent tangent
!
! update results plotted in MENTAT
call math_pDecomposition(Fe,U,R,error) ! polar decomposition
if (error) then
write(6,*) Fe
write(6,*) 'polar decomposition'
write(6,*) 'Grain: ',grain
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',mesh_element(1,cp_en)
call IO_error(650)
return
endif
CPFEM_results(1:3,grain,CPFEM_in,cp_en) = math_RtoEuler(transpose(R))*inDeg ! orientation
CPFEM_results(4 ,grain,CPFEM_in,cp_en) = volfrac ! volume fraction of orientation
CPFEM_results(5:4+constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en) = post_results
!
deallocate(post_results)
enddo ! grain loop
!
return
!
END SUBROUTINE
!
!********************************************************************
! Calculates the stress for a single component
!********************************************************************
subroutine CPFEM_Crystallite(&
msg,& ! return message
P,& ! first PK stress
dPdF,& ! consistent tangent
post_results,& ! plot results from constitutive model
post_flag,& ! its flag
Lp,& ! guess of plastic velocity gradient
Fp_new,& ! new plastic deformation gradient
Fe_new,& ! new "elastic" deformation gradient
state_new,& ! new state variable array
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
updateJaco,& ! boolean to calculate Jacobi matrix
Fg_new,& ! new global deformation gradient
Fp_old,& ! old plastic deformation gradient
state_old) ! old state variable array
!
use prec, only: pReal,pInt,pert_Fg
use debug
use constitutive, only: constitutive_Nstatevars,constitutive_Nresults
use mesh, only: mesh_element
use math, only: math_Mandel6to33,math_Mandel33to6,math_Mandel3333to66,&
math_I3,math_det3x3,math_invert3x3
implicit none
!
character(len=*) msg
logical updateJaco,error,post_flag
integer(pInt) cp_en,CPFEM_in,grain,i,j,k,l,m,n
real(pReal) dt,invJ,det
real(pReal), dimension(3,3) :: Lp,Lp_pert,Fg_old,Fg_new,Fg_pert,Fp_old,Fp_new,invFp_new,Fp_pert,invFp_pert
real(pReal), dimension(3,3) :: Fe_new,Fe_pert,Tstar,tau,P,P_pert,E_pert
real(pReal), dimension(3,3,3,3) :: dPdF
real(pReal), dimension(constitutive_Nstatevars(grain,CPFEM_in,cp_en)) :: state_old,state_new,state_pert
real(pReal), dimension(constitutive_Nresults(grain,CPFEM_in,cp_en)) :: post_results
!
call CPFEM_timeIntegration(msg,Lp,Fp_new,Fe_new,P,state_new,post_results,post_flag, & ! def gradients and PK2 at end of time step
dt,cp_en,CPFEM_in,grain,Fg_new,Fp_old,state_old)
if (msg /= 'ok') return ! solution not reached --> report back
if (updateJaco) then ! consistent tangent using
! numerical perturbation of Fg (D. Tjahjanto Diss p.106)
call math_invert3x3(Fp_new,invFp_new,det,error)
if (error) then
msg = 'inversion of Fp_new'
return
endif
do k=1,3
do l=1,3
Fg_pert = Fg_new ! initialize perturbed Fg
Fg_pert(k,l) = Fg_pert(k,l) + pert_Fg ! perturb single component
Lp_pert = Lp
state_pert = state_new ! initial guess from end of time step
call CPFEM_timeIntegration(msg,Lp_pert,Fp_pert,Fe_pert,P_pert,state_pert,post_results,.false., &
dt,cp_en,CPFEM_in,grain,Fg_pert,Fp_old,state_old)
if (msg /= 'ok') then
msg = 'consistent tangent --> '//msg
return
endif
!
call math_invert3x3(Fp_pert,invFp_pert,det,error)
if (error) then
msg = 'inversion of Fp_pert'
return
endif
!
dPdF(:,:,k,l) = (P_pert-P)/pert_Fg ! constructin the tangent dP_ij/dFg_kl
enddo
enddo
endif
!
return
!
END SUBROUTINE
!
!***********************************************************************
!*** fully-implicit two-level time integration ***
!*** based on a residuum in Lp and intermediate ***
!*** acceleration of the Newton-Raphson correction ***
!***********************************************************************
SUBROUTINE CPFEM_timeIntegration(&
msg,& ! return message
Lpguess,& ! guess of plastic velocity gradient
Fp_new,& ! new plastic deformation gradient
Fe_new,& ! new "elastic" deformation gradient
P,& ! 1nd PK stress (taken as initial guess if /= 0)
state,& ! current microstructure at end of time inc (taken as guess if /= 0)
results,& ! post results from constitutive
wantsConstitutiveResults,& ! its flag
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
Fg_new,& ! new total def gradient
Fp_old,& ! former plastic def gradient
state_old) ! former microstructure
!
use prec
use debug
use mesh, only: mesh_element
use constitutive, only: constitutive_Nstatevars,&
constitutive_homogenizedC,constitutive_dotState,constitutive_LpAndItsTangent,&
constitutive_Nresults,constitutive_Microstructure,constitutive_post_results
use math
implicit none
!
character(len=*) msg
logical failed,wantsConstitutiveResults
integer(pInt) cp_en, CPFEM_in, grain
integer(pInt) iOuter,iInner,dummy, i,j,k,l,m,n
real(pReal) dt, det, p_hydro, leapfrog,maxleap
real(pReal), dimension(6) :: Tstar_v
real(pReal), dimension(9,9) :: dLp,dTdLp,dRdLp,invdRdLp,eye2
real(pReal), dimension(6,6) :: C_66
real(pReal), dimension(3,3) :: Fg_new,invFg_new,Fp_new,invFp_new,Fp_old,invFp_old,Fe_new,Fe_old
real(pReal), dimension(3,3) :: P,Tstar
real(pReal), dimension(3,3) :: Lp,Lpguess,Lpguess_old,Rinner,Rinner_old,A,B,BT,AB,BTA
real(pReal), dimension(3,3,3,3) :: C
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state,ROuter
real(pReal), dimension(constitutive_Nresults(grain,CPFEM_in,cp_en)) :: results
!
msg = 'ok' ! error-free so far
eye2 = math_identity2nd(9)
call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp_old
if (failed) then
msg = 'inversion Fp_old'
return
endif
call math_invert3x3(Fg_new,invFg_new,det,failed) ! inversion of Fg_new
if (failed) then
msg = 'inversion Fg_new'
return
endif
!
Fe_old = matmul(Fg_new,invFp_old)
A = matmul(transpose(Fe_old), Fe_old)
!
if (all(state == 0.0_pReal)) state = state_old ! former state guessed, if none specified
iOuter = 0_pInt ! outer counter
!
!
Outer: do ! outer iteration: State
iOuter = iOuter+1
if (iOuter > nOuter) then
msg = 'limit Outer iteration'
debug_OuterLoopDistribution(nOuter) = debug_OuterLoopDistribution(nOuter)+1
return
endif
call constitutive_Microstructure(state,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
C_66 = constitutive_HomogenizedC(state, grain, CPFEM_in, cp_en)
C = math_Mandel66to3333(C_66) ! 4th rank elasticity tensor
!
iInner = 0_pInt
leapfrog = 1.0_pReal ! correction as suggested by invdRdLp-step
maxleap = 1024.0_pReal ! preassign maximum acceleration level
!
Inner: do ! inner iteration: Lp
iInner = iInner+1
if (iInner > nInner) then ! too many loops required
msg = 'limit Inner iteration'
debug_InnerLoopDistribution(nInner) = debug_InnerLoopDistribution(nInner)+1
return
endif
B = math_i3 - dt*Lpguess
BT = transpose(B)
AB = matmul(A,B)
BTA = matmul(BT,A)
Tstar_v = 0.5_pReal*matmul(C_66,math_mandel33to6(matmul(BT,AB)-math_I3))
Tstar = math_Mandel6to33(Tstar_v)
p_hydro=(Tstar_v(1)+Tstar_v(2)+Tstar_v(3))/3.0_pReal
forall(i=1:3) Tstar_v(i) = Tstar_v(i)-p_hydro ! subtract hydrostatic pressure
call constitutive_LpAndItsTangent(Lp,dLp, &
Tstar_v,state,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
Rinner = Lpguess - Lp ! update current residuum
if ((maxval(abs(Rinner)) < abstol_Inner) .or. &
(any(abs(dt*Lpguess) > relevantStrain) .and. &
maxval(abs(Rinner/Lpguess),abs(dt*Lpguess) > relevantStrain) < reltol_Inner)) &
exit Inner
!
! check for acceleration/deceleration in Newton--Raphson correction
if (leapfrog > 1.0_pReal .and. &
(sum(Rinner*Rinner) > sum(Rinner_old*Rinner_old) .or. & ! worse residuum
sum(Rinner*Rinner_old) < 0.0_pReal)) then ! residuum changed sign (overshoot)
maxleap = 0.5_pReal * leapfrog ! limit next acceleration
leapfrog = 1.0_pReal ! grinding halt
else ! better residuum
dTdLp = 0.0_pReal ! calc dT/dLp
forall (i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) &
dTdLp(3*(i-1)+j,3*(k-1)+l) = dTdLp(3*(i-1)+j,3*(k-1)+l) + &
C(i,j,l,n)*AB(k,n)+C(i,j,m,l)*BTA(m,k)
dTdLp = -0.5_pReal*dt*dTdLp
dRdLp = eye2 - matmul(dLp,dTdLp) ! calc dR/dLp
invdRdLp = 0.0_pReal
call math_invert(9,dRdLp,invdRdLp,dummy,failed) ! invert dR/dLp --> dLp/dR
if (failed) then
msg = 'inversion dR/dLp'
if (debugger) then
write (6,*) msg
write (6,*) 'dRdLp',dRdLp
write (6,*) 'state',state
write (6,*) 'Lpguess',Lpguess
write (6,*) 'Tstar',Tstar_v
endif
return
endif
!
Rinner_old = Rinner ! remember current residuum
Lpguess_old = Lpguess ! remember current Lp guess
if (iInner > 1 .and. leapfrog < maxleap) leapfrog = 2.0_pReal * leapfrog ! accelerate
endif
!
Lpguess = Lpguess_old ! start from current guess
Rinner = Rinner_old ! use current residuum
forall (i=1:3,j=1:3,k=1:3,l=1:3) & ! leapfrog to updated Lpguess
Lpguess(i,j) = Lpguess(i,j) - leapfrog*invdRdLp(3*(i-1)+j,3*(k-1)+l)*Rinner(k,l)
enddo Inner
!
debug_InnerLoopDistribution(iInner) = debug_InnerLoopDistribution(iInner)+1
ROuter = state - state_old - &
dt*constitutive_dotState(Tstar_v,state,CPFEM_Temperature(CPFEM_in,cp_en),&
grain,CPFEM_in,cp_en) ! residuum from evolution of microstructure
state = state - ROuter ! update of microstructure
if (maxval(abs(Router/state),state /= 0.0_pReal) < reltol_Outer) exit Outer
enddo Outer
!
debug_OuterLoopDistribution(iOuter) = debug_OuterLoopDistribution(iOuter)+1
invFp_new = matmul(invFp_old,B)
call math_invert3x3(invFp_new,Fp_new,det,failed)
if (failed) then
msg = 'inversion Fp_new'
return
endif
!
if (wantsConstitutiveResults) then ! get the post_results upon request
results = 0.0_pReal
results = constitutive_post_results(Tstar_v,state,dt,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
endif
!
Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! regularize Fp by det = det(InvFp_new) !!
Fe_new = matmul(Fg_new,invFp_new) ! calc resulting Fe
forall (i=1:3) Tstar_v(i) = Tstar_v(i)+p_hydro ! add hydrostatic component back
P = matmul(Fe_new,matmul(Tstar,transpose(invFp_new))) ! first PK stress
!
return
!
END SUBROUTINE
!
END MODULE
!##############################################################