DAMASK_EICMD/code/constitutive_j2.f90

528 lines
28 KiB
Fortran

! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (J2) plasticity
!> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module constitutive_j2
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
constitutive_j2_sizeDotState, & !< number of dotStates
constitutive_j2_sizeState, & !< total number of microstructural variables
constitutive_j2_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_j2_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_j2_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
constitutive_j2_Noutput !< number of outputs per instance
real(pReal), dimension(:), allocatable, private :: &
constitutive_j2_fTaylor, & !< Taylor factor
constitutive_j2_tau0, & !< initial plastic stress
constitutive_j2_gdot0, & !< reference velocity
constitutive_j2_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
constitutive_j2_h0, &
constitutive_j2_h0_slopeLnRate, &
constitutive_j2_tausat, & !< final plastic stress
constitutive_j2_a, &
constitutive_j2_aTolResistance, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
constitutive_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
constitutive_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
constitutive_j2_outputID !< ID of each post result output
public :: &
constitutive_j2_init, &
constitutive_j2_stateInit, &
constitutive_j2_aTolState, &
constitutive_j2_LpAndItsTangent, &
constitutive_j2_dotState, &
constitutive_j2_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine constitutive_j2_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
homogenization_maxNgrains, &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_J2_label, &
PLASTICITY_J2_ID, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt) :: phase, maxNinstance, instance,o, mySize
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_J2_label//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_plasticity == PLASTICITY_J2_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(constitutive_j2_sizeDotState(maxNinstance), source=1_pInt)
allocate(constitutive_j2_sizeState(maxNinstance), source=1_pInt)
allocate(constitutive_j2_sizePostResults(maxNinstance), source=0_pInt)
allocate(constitutive_j2_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(constitutive_j2_output(maxval(phase_Noutput), maxNinstance))
constitutive_j2_output = ''
allocate(constitutive_j2_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(constitutive_j2_Noutput(maxNinstance), source=0_pInt)
allocate(constitutive_j2_fTaylor(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tau0(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_gdot0(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_n(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_h0(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tausat(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_a(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(constitutive_j2_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_J2_ID) then
instance = phase_plasticityInstance(phase)
endif
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_J2_ID) then ! one of my sections. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('plasticity','elasticity','lattice_structure', &
'covera_ratio','c/a_ratio','c/a', &
'c11','c12','c13','c22','c23','c33','c44','c55','c66')
case ('(output)')
constitutive_j2_Noutput(instance) = constitutive_j2_Noutput(instance) + 1_pInt
constitutive_j2_output(constitutive_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('flowstress')
constitutive_j2_outputID(constitutive_j2_Noutput(instance),instance) = flowstress_ID
case ('strainrate')
constitutive_j2_outputID(constitutive_j2_Noutput(instance),instance) = strainrate_ID
case default
call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' ('//PLASTICITY_J2_label//')')
end select
case ('tau0')
constitutive_j2_tau0(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_tau0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('gdot0')
constitutive_j2_gdot0(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_gdot0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('n')
constitutive_j2_n(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_n(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('h0')
constitutive_j2_h0(instance) = IO_floatValue(line,positions,2_pInt)
case ('h0_slope','slopelnrate')
constitutive_j2_h0_slopeLnRate(instance) = IO_floatValue(line,positions,2_pInt)
case ('tausat')
constitutive_j2_tausat(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_tausat(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('tausat_sinhfita')
constitutive_j2_tausat_SinhFitA(instance) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitb')
constitutive_j2_tausat_SinhFitB(instance) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitc')
constitutive_j2_tausat_SinhFitC(instance) = IO_floatValue(line,positions,2_pInt)
case ('tausat_sinhfitd')
constitutive_j2_tausat_SinhFitD(instance) = IO_floatValue(line,positions,2_pInt)
case ('a', 'w0')
constitutive_j2_a(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_a(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('taylorfactor')
constitutive_j2_fTaylor(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_fTaylor(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('atol_resistance')
constitutive_j2_aTolResistance(instance) = IO_floatValue(line,positions,2_pInt)
if (constitutive_j2_aTolResistance(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case default
call IO_error(210_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
end select
endif; endif
enddo parsingFile
instancesLoop: do instance = 1_pInt,maxNinstance
outputsLoop: do o = 1_pInt,constitutive_j2_Noutput(instance)
select case(constitutive_j2_outputID(o,instance))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_j2_sizePostResult(o,instance) = mySize
constitutive_j2_sizePostResults(instance) = &
constitutive_j2_sizePostResults(instance) + mySize
endif
enddo outputsLoop
enddo instancesLoop
end subroutine constitutive_j2_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial microstructural state for a given instance of this plasticity
!> @details initial microstructural state is set to the value specified by tau0
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_stateInit(instance)
implicit none
real(pReal), dimension(1) :: constitutive_j2_stateInit
integer(pInt), intent(in) :: instance !< number specifying the instance of the plasticity
constitutive_j2_stateInit = constitutive_j2_tau0(instance)
end function constitutive_j2_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_aTolState(instance)
implicit none
real(pReal), dimension(1) :: constitutive_j2_aTolState
integer(pInt), intent(in) :: instance !< number specifying the instance of the plasticity
constitutive_j2_aTolState = constitutive_j2_aTolResistance(instance)
end function constitutive_j2_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
pure subroutine constitutive_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), intent(in) :: &
state !< microstructure state
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = constitutive_j2_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_dev / constitutive_j2_fTaylor(instance) / state%p(1)) &
**constitutive_j2_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/constitutive_j2_fTaylor(instance)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (constitutive_j2_n(instance)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / constitutive_j2_fTaylor(instance) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine constitutive_j2_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_dotState(Tstar_v,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(1) :: &
constitutive_j2_dotState
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), intent(in) :: &
state !< microstructure state
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_dev !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of deviatoric part of 2nd Piola-Kirchhoff stress
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = constitutive_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!-----------------------------------------------------------------------------------
(constitutive_j2_fTaylor(instance) * state%p(1)) ) ** constitutive_j2_n(instance)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (constitutive_j2_tausat_SinhFitA(instance) == 0.0_pReal) then
saturation = constitutive_j2_tausat(instance)
else
saturation = ( constitutive_j2_tausat(instance) &
+ ( log( ( gamma_dot / constitutive_j2_tausat_SinhFitA(instance)&
)**(1.0_pReal / constitutive_j2_tausat_SinhFitD(instance))&
+ sqrt( ( gamma_dot / constitutive_j2_tausat_SinhFitA(instance) &
)**(2.0_pReal / constitutive_j2_tausat_SinhFitD(instance)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / constitutive_j2_tausat_SinhFitC(instance)) &
/ ( constitutive_j2_tausat_SinhFitB(instance) &
* (gamma_dot / constitutive_j2_gdot0(instance))**(1.0_pReal / constitutive_j2_n(instance)) &
) &
)
endif
hardening = ( constitutive_j2_h0(instance) + constitutive_j2_h0_slopeLnRate(instance) * log(gamma_dot) ) &
* abs( 1.0_pReal - state%p(1)/saturation )**constitutive_j2_a(instance) &
* sign(1.0_pReal, 1.0_pReal - state%p(1)/saturation)
else
hardening = 0.0_pReal
endif
constitutive_j2_dotState = hardening * gamma_dot
end function constitutive_j2_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
pure function constitutive_j2_postResults(Tstar_v,state,ipc,ip,el)
use prec, only: &
p_vec
use math, only: &
math_mul6x6
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_Noutput
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
type(p_vec), intent(in) :: &
state !< microstructure state
real(pReal), dimension(constitutive_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_j2_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_dev ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
o, &
c
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
c = 0_pInt
constitutive_j2_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_j2_outputID(o,instance))
case (flowstress_ID)
constitutive_j2_postResults(c+1_pInt) = state%p(1)
c = c + 1_pInt
case (strainrate_ID)
constitutive_j2_postResults(c+1_pInt) = &
constitutive_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!----------------------------------------------------------------------------------
(constitutive_j2_fTaylor(instance) * state%p(1)) ) ** constitutive_j2_n(instance)
c = c + 1_pInt
end select
enddo outputsLoop
end function constitutive_j2_postResults
end module constitutive_j2