1350 lines
52 KiB
Python
1350 lines
52 KiB
Python
import multiprocessing as mp
|
||
import re
|
||
import glob
|
||
import os
|
||
import datetime
|
||
import xml.etree.ElementTree as ET
|
||
import xml.dom.minidom
|
||
from pathlib import Path
|
||
from functools import partial
|
||
|
||
import h5py
|
||
import numpy as np
|
||
from numpy.lib import recfunctions as rfn
|
||
|
||
import damask
|
||
from . import VTK
|
||
from . import Table
|
||
from . import Orientation
|
||
from . import grid_filters
|
||
from . import mechanics
|
||
from . import tensor
|
||
from . import util
|
||
|
||
h5py3 = h5py.__version__[0] == '3'
|
||
|
||
class Result:
|
||
"""
|
||
Read and write to DADF5 files.
|
||
|
||
DADF5 (DAMASK HDF5) files contain DAMASK results.
|
||
"""
|
||
|
||
def __init__(self,fname):
|
||
"""
|
||
Open an existing DADF5 file.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or pathlib.Path
|
||
Name of the DADF5 file to be opened.
|
||
|
||
"""
|
||
with h5py.File(fname,'r') as f:
|
||
|
||
self.version_major = f.attrs['DADF5_version_major']
|
||
self.version_minor = f.attrs['DADF5_version_minor']
|
||
|
||
if self.version_major != 0 or not 7 <= self.version_minor <= 8:
|
||
raise TypeError(f'Unsupported DADF5 version {self.version_major}.{self.version_minor}')
|
||
|
||
self.structured = 'grid' in f['geometry'].attrs.keys()
|
||
|
||
if self.structured:
|
||
self.grid = f['geometry'].attrs['grid']
|
||
self.size = f['geometry'].attrs['size']
|
||
self.origin = f['geometry'].attrs['origin']
|
||
|
||
r=re.compile('inc[0-9]+')
|
||
increments_unsorted = {int(i[3:]):i for i in f.keys() if r.match(i)}
|
||
self.increments = [increments_unsorted[i] for i in sorted(increments_unsorted)]
|
||
self.times = [round(f[i].attrs['time/s'],12) for i in self.increments]
|
||
|
||
self.N_materialpoints, self.N_constituents = np.shape(f['mapping/phase'])
|
||
|
||
self.homogenizations = [m.decode() for m in np.unique(f['mapping/homogenization']['Name'])]
|
||
self.phases = [c.decode() for c in np.unique(f['mapping/phase']['Name'])]
|
||
|
||
self.out_type_ph = []
|
||
for c in self.phases:
|
||
self.out_type_ph += f['/'.join([self.increments[0],'phase',c])].keys()
|
||
self.out_type_ph = list(set(self.out_type_ph)) # make unique
|
||
|
||
self.out_type_ho = []
|
||
for m in self.homogenizations:
|
||
self.out_type_ho += f['/'.join([self.increments[0],'homogenization',m])].keys()
|
||
self.out_type_ho = list(set(self.out_type_ho)) # make unique
|
||
|
||
self.selection = {'increments': self.increments,
|
||
'phases': self.phases,
|
||
'homogenizations': self.homogenizations,
|
||
'out_type_ph': self.out_type_ph,
|
||
'out_type_ho': self.out_type_ho
|
||
}
|
||
|
||
self.fname = Path(fname).absolute()
|
||
|
||
self._allow_modification = False
|
||
|
||
|
||
def __repr__(self):
|
||
"""Show summary of file content."""
|
||
all_selected_increments = self.selection['increments']
|
||
|
||
self.pick('increments',all_selected_increments[0:1])
|
||
first = self.list_data()
|
||
|
||
self.pick('increments',all_selected_increments[-1:])
|
||
last = '' if len(all_selected_increments) < 2 else self.list_data()
|
||
|
||
self.pick('increments',all_selected_increments)
|
||
|
||
in_between = '' if len(all_selected_increments) < 3 else \
|
||
''.join([f'\n{inc}\n ...\n' for inc in all_selected_increments[1:-2]])
|
||
|
||
return util.srepr(first + in_between + last)
|
||
|
||
|
||
def _manage_selection(self,action,what,datasets):
|
||
"""
|
||
Manages the visibility of the groups.
|
||
|
||
Parameters
|
||
----------
|
||
action : str
|
||
Select from 'set', 'add', and 'del'.
|
||
what : str
|
||
Attribute to change (must be from self.selection).
|
||
datasets : list of str or bool
|
||
Name of datasets as list, supports ? and * wildcards.
|
||
True is equivalent to [*], False is equivalent to []
|
||
|
||
"""
|
||
# allow True/False and string arguments
|
||
if datasets is True:
|
||
datasets = ['*']
|
||
elif datasets is False:
|
||
datasets = []
|
||
choice = datasets if hasattr(datasets,'__iter__') and not isinstance(datasets,str) else \
|
||
[datasets]
|
||
|
||
if what == 'increments':
|
||
choice = [c if isinstance(c,str) and c.startswith('inc') else
|
||
f'inc{c}' for c in choice]
|
||
elif what == 'times':
|
||
what = 'increments'
|
||
if choice == ['*']:
|
||
choice = self.increments
|
||
else:
|
||
iterator = map(float,choice)
|
||
choice = []
|
||
for c in iterator:
|
||
idx = np.searchsorted(self.times,c)
|
||
if idx >= len(self.times): continue
|
||
if np.isclose(c,self.times[idx]):
|
||
choice.append(self.increments[idx])
|
||
elif np.isclose(c,self.times[idx+1]):
|
||
choice.append(self.increments[idx+1])
|
||
|
||
valid = [e for e_ in [glob.fnmatch.filter(getattr(self,what),s) for s in choice] for e in e_]
|
||
existing = set(self.selection[what])
|
||
|
||
if action == 'set':
|
||
self.selection[what] = valid
|
||
elif action == 'add':
|
||
add = existing.union(valid)
|
||
add_sorted = sorted(add, key=lambda x: int("".join([i for i in x if i.isdigit()])))
|
||
self.selection[what] = add_sorted
|
||
elif action == 'del':
|
||
diff = existing.difference(valid)
|
||
diff_sorted = sorted(diff, key=lambda x: int("".join([i for i in x if i.isdigit()])))
|
||
self.selection[what] = diff_sorted
|
||
|
||
|
||
def _get_attribute(self,path,attr):
|
||
"""
|
||
Get the attribute of a dataset.
|
||
|
||
Parameters
|
||
----------
|
||
Path : str
|
||
Path to the dataset.
|
||
attr : str
|
||
Name of the attribute to get.
|
||
|
||
Returns
|
||
-------
|
||
attr at path, str or None.
|
||
The requested attribute, None if not found.
|
||
|
||
"""
|
||
with h5py.File(self.fname,'r') as f:
|
||
try:
|
||
return f[path].attrs[attr] if h5py3 else f[path].attrs[attr].decode()
|
||
except KeyError:
|
||
return None
|
||
|
||
|
||
def allow_modification(self):
|
||
"""Allow to overwrite existing data."""
|
||
print(util.warn('Warning: Modification of existing datasets allowed!'))
|
||
self._allow_modification = True
|
||
|
||
def disallow_modification(self):
|
||
"""Disllow to overwrite existing data (default case)."""
|
||
self._allow_modification = False
|
||
|
||
|
||
def incs_in_range(self,start,end):
|
||
"""
|
||
Select all increments within a given range.
|
||
|
||
Parameters
|
||
----------
|
||
start : int or str
|
||
Start increment.
|
||
end : int or str
|
||
End increment.
|
||
|
||
"""
|
||
selected = []
|
||
for i,inc in enumerate([int(i[3:]) for i in self.increments]):
|
||
s,e = map(lambda x: int(x[3:] if isinstance(x,str) and x.startswith('inc') else x), (start,end))
|
||
if s <= inc <= e:
|
||
selected.append(self.increments[i])
|
||
return selected
|
||
|
||
|
||
def times_in_range(self,start,end):
|
||
"""
|
||
Select all increments within a given time range.
|
||
|
||
Parameters
|
||
----------
|
||
start : float
|
||
Time of start increment.
|
||
end : float
|
||
Time of end increment.
|
||
|
||
"""
|
||
selected = []
|
||
for i,time in enumerate(self.times):
|
||
if start <= time <= end:
|
||
selected.append(self.times[i])
|
||
return selected
|
||
|
||
|
||
def iterate(self,what):
|
||
"""
|
||
Iterate over selection items by setting each one selected.
|
||
|
||
Parameters
|
||
----------
|
||
what : str
|
||
Attribute to change (must be from self.selection).
|
||
|
||
"""
|
||
datasets = self.selection[what]
|
||
last_selection = datasets.copy()
|
||
for dataset in datasets:
|
||
if last_selection != self.selection[what]:
|
||
self._manage_selection('set',what,datasets)
|
||
raise Exception
|
||
self._manage_selection('set',what,dataset)
|
||
last_selection = self.selection[what]
|
||
yield dataset
|
||
self._manage_selection('set',what,datasets)
|
||
|
||
|
||
def pick(self,what,datasets):
|
||
"""
|
||
Set selection.
|
||
|
||
Parameters
|
||
----------
|
||
what : str
|
||
attribute to change (must be from self.selection)
|
||
datasets : list of str or bool
|
||
name of datasets as list, supports ? and * wildcards.
|
||
True is equivalent to [*], False is equivalent to []
|
||
|
||
"""
|
||
self._manage_selection('set',what,datasets)
|
||
|
||
|
||
def pick_more(self,what,datasets):
|
||
"""
|
||
Add to selection.
|
||
|
||
Parameters
|
||
----------
|
||
what : str
|
||
attribute to change (must be from self.selection)
|
||
datasets : list of str or bool
|
||
name of datasets as list, supports ? and * wildcards.
|
||
True is equivalent to [*], False is equivalent to []
|
||
|
||
"""
|
||
self._manage_selection('add',what,datasets)
|
||
|
||
|
||
def pick_less(self,what,datasets):
|
||
"""
|
||
Delete from selection.
|
||
|
||
Parameters
|
||
----------
|
||
what : str
|
||
attribute to change (must be from self.selection)
|
||
datasets : list of str or bool
|
||
name of datasets as list, supports ? and * wildcards.
|
||
True is equivalent to [*], False is equivalent to []
|
||
|
||
"""
|
||
self._manage_selection('del',what,datasets)
|
||
|
||
|
||
def rename(self,name_old,name_new):
|
||
"""
|
||
Rename datasets.
|
||
|
||
Parameters
|
||
----------
|
||
name_old : str
|
||
name of the datasets to be renamed
|
||
name_new : str
|
||
new name of the datasets
|
||
|
||
"""
|
||
if self._allow_modification:
|
||
with h5py.File(self.fname,'a') as f:
|
||
for path_old in self.get_dataset_location(name_old):
|
||
path_new = os.path.join(os.path.dirname(path_old),name_new)
|
||
f[path_new] = f[path_old]
|
||
f[path_new].attrs['Renamed'] = f'Original name: {name_old}' if h5py3 else \
|
||
f'Original name: {name_old}'.encode()
|
||
del f[path_old]
|
||
else:
|
||
raise PermissionError('Rename operation not permitted')
|
||
|
||
|
||
# def datamerger(regular expression to filter groups into one copy)
|
||
|
||
|
||
def place(self,datasets,constituent=0,tagged=False,split=True):
|
||
"""
|
||
Distribute datasets onto geometry and return Table or (split) dictionary of Tables.
|
||
|
||
Must not mix nodal end cell data.
|
||
|
||
Only data within
|
||
- inc*/phase/*/*
|
||
- inc*/homogenization/*/*
|
||
- inc*/geometry/*
|
||
are considered.
|
||
|
||
Parameters
|
||
----------
|
||
datasets : iterable or str
|
||
constituent : int
|
||
Constituent to consider for phase data
|
||
tagged : bool
|
||
tag Table.column name with '#constituent'
|
||
defaults to False
|
||
split : bool
|
||
split Table by increment and return dictionary of Tables
|
||
defaults to True
|
||
|
||
"""
|
||
sets = datasets if hasattr(datasets,'__iter__') and not isinstance(datasets,str) else \
|
||
[datasets]
|
||
tag = f'#{constituent}' if tagged else ''
|
||
tbl = {} if split else None
|
||
inGeom = {}
|
||
inData = {}
|
||
with h5py.File(self.fname,'r') as f:
|
||
for dataset in sets:
|
||
for group in self.groups_with_datasets(dataset):
|
||
path = os.path.join(group,dataset)
|
||
inc,prop,name,cat,item = (path.split('/') + ['']*5)[:5]
|
||
key = '/'.join([prop,name+tag])
|
||
if key not in inGeom:
|
||
if prop == 'geometry':
|
||
inGeom[key] = inData[key] = np.arange(self.N_materialpoints)
|
||
elif prop == 'phase':
|
||
inGeom[key] = np.where(f['mapping/phase'][:,constituent]['Name'] == str.encode(name))[0]
|
||
inData[key] = f['mapping/phase'][inGeom[key],constituent]['Position']
|
||
elif prop == 'homogenization':
|
||
inGeom[key] = np.where(f['mapping/homogenization']['Name'] == str.encode(name))[0]
|
||
inData[key] = f['mapping/homogenization'][inGeom[key].tolist()]['Position']
|
||
shape = np.shape(f[path])
|
||
data = np.full((self.N_materialpoints,) + (shape[1:] if len(shape)>1 else (1,)),
|
||
np.nan,
|
||
dtype=np.dtype(f[path]))
|
||
data[inGeom[key]] = (f[path] if len(shape)>1 else np.expand_dims(f[path],1))[inData[key]]
|
||
path = (os.path.join(*([prop,name]+([cat] if cat else [])+([item] if item else []))) if split else path)+tag
|
||
if split:
|
||
try:
|
||
tbl[inc].add(path,data)
|
||
except KeyError:
|
||
tbl[inc] = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
|
||
else:
|
||
try:
|
||
tbl.add(path,data)
|
||
except AttributeError:
|
||
tbl = Table(data.reshape(self.N_materialpoints,-1),{path:data.shape[1:]})
|
||
|
||
return tbl
|
||
|
||
|
||
def groups_with_datasets(self,datasets):
|
||
"""
|
||
Return groups that contain all requested datasets.
|
||
|
||
Only groups within
|
||
- inc*/phase/*/*
|
||
- inc*/homogenization/*/*
|
||
- inc*/geometry/*
|
||
|
||
are considered as they contain user-relevant data.
|
||
Single strings will be treated as list with one entry.
|
||
|
||
Wild card matching is allowed, but the number of arguments need to fit.
|
||
|
||
Parameters
|
||
----------
|
||
datasets : iterable or str or bool
|
||
|
||
Examples
|
||
--------
|
||
datasets = False matches no group
|
||
datasets = True matches all groups
|
||
datasets = ['F','P'] matches a group with ['F','P','sigma']
|
||
datasets = ['*','P'] matches a group with ['F','P']
|
||
datasets = ['*'] does not match a group with ['F','P','sigma']
|
||
datasets = ['*','*'] does not match a group with ['F','P','sigma']
|
||
datasets = ['*','*','*'] matches a group with ['F','P','sigma']
|
||
|
||
"""
|
||
if datasets is False: return []
|
||
|
||
sets = datasets if isinstance(datasets,bool) or (hasattr(datasets,'__iter__') and not isinstance(datasets,str)) else \
|
||
[datasets]
|
||
|
||
groups = []
|
||
|
||
with h5py.File(self.fname,'r') as f:
|
||
for i in self.iterate('increments'):
|
||
for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']):
|
||
for oo in self.iterate(o):
|
||
for pp in self.iterate(p):
|
||
group = '/'.join([i,o[:-1],oo,pp]) # o[:-1]: plural/singular issue
|
||
if sets is True:
|
||
groups.append(group)
|
||
else:
|
||
if group in f.keys():
|
||
match = [e for e_ in [glob.fnmatch.filter(f[group].keys(),s) for s in sets] for e in e_]
|
||
if len(set(match)) == len(sets): groups.append(group)
|
||
return groups
|
||
|
||
|
||
def list_data(self):
|
||
"""Return information on all active datasets in the file."""
|
||
message = ''
|
||
with h5py.File(self.fname,'r') as f:
|
||
for i in self.iterate('increments'):
|
||
message += f'\n{i} ({self.times[self.increments.index(i)]}s)\n'
|
||
for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']):
|
||
message += f' {o[:-1]}\n'
|
||
for oo in self.iterate(o):
|
||
message += f' {oo}\n'
|
||
for pp in self.iterate(p):
|
||
message += f' {pp}\n'
|
||
group = '/'.join([i,o[:-1],oo,pp]) # o[:-1]: plural/singular issue
|
||
for d in f[group].keys():
|
||
try:
|
||
dataset = f['/'.join([group,d])]
|
||
if 'Unit' in dataset.attrs:
|
||
unit = f" / {dataset.attrs['Unit']}" if h5py3 else \
|
||
f" / {dataset.attrs['Unit'].decode()}"
|
||
else:
|
||
unit = ''
|
||
description = dataset.attrs['Description'] if h5py3 else \
|
||
dataset.attrs['Description'].decode()
|
||
message += f' {d}{unit}: {description}\n'
|
||
except KeyError:
|
||
pass
|
||
return message
|
||
|
||
|
||
def get_dataset_location(self,label):
|
||
"""Return the location of all active datasets with given label."""
|
||
path = []
|
||
with h5py.File(self.fname,'r') as f:
|
||
for i in self.iterate('increments'):
|
||
k = '/'.join([i,'geometry',label])
|
||
try:
|
||
f[k]
|
||
path.append(k)
|
||
except KeyError:
|
||
pass
|
||
for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']):
|
||
for oo in self.iterate(o):
|
||
for pp in self.iterate(p):
|
||
k = '/'.join([i,o[:-1],oo,pp,label])
|
||
try:
|
||
f[k]
|
||
path.append(k)
|
||
except KeyError:
|
||
pass
|
||
return path
|
||
|
||
|
||
def get_constituent_ID(self,c=0):
|
||
"""Pointwise constituent ID."""
|
||
with h5py.File(self.fname,'r') as f:
|
||
names = f['/mapping/phase']['Name'][:,c].astype('str')
|
||
return np.array([int(n.split('_')[0]) for n in names.tolist()],dtype=np.int32)
|
||
|
||
|
||
def get_crystal_structure(self): # ToDo: extension to multi constituents/phase
|
||
"""Info about the crystal structure."""
|
||
with h5py.File(self.fname,'r') as f:
|
||
return f[self.get_dataset_location('O')[0]].attrs['Lattice'] if h5py3 else \
|
||
f[self.get_dataset_location('O')[0]].attrs['Lattice'].decode()
|
||
|
||
|
||
def enable_user_function(self,func):
|
||
globals()[func.__name__]=func
|
||
print(f'Function {func.__name__} enabled in add_calculation.')
|
||
|
||
|
||
def read_dataset(self,path,c=0,plain=False):
|
||
"""
|
||
Dataset for all points/cells.
|
||
|
||
If more than one path is given, the dataset is composed of the individual contributions.
|
||
|
||
Parameters
|
||
----------
|
||
path : list of strings
|
||
The name of the datasets to consider.
|
||
c : int, optional
|
||
The constituent to consider. Defaults to 0.
|
||
plain: boolean, optional
|
||
Convert into plain numpy datatype.
|
||
Only relevant for compound datatype, e.g. the orientation.
|
||
Defaults to False.
|
||
|
||
"""
|
||
with h5py.File(self.fname,'r') as f:
|
||
shape = (self.N_materialpoints,) + np.shape(f[path[0]])[1:]
|
||
if len(shape) == 1: shape = shape +(1,)
|
||
dataset = np.full(shape,np.nan,dtype=np.dtype(f[path[0]]))
|
||
for pa in path:
|
||
label = pa.split('/')[2]
|
||
|
||
if pa.split('/')[1] == 'geometry':
|
||
dataset = np.array(f[pa])
|
||
continue
|
||
|
||
p = np.where(f['mapping/phase'][:,c]['Name'] == str.encode(label))[0]
|
||
if len(p)>0:
|
||
u = (f['mapping/phase']['Position'][p,c])
|
||
a = np.array(f[pa])
|
||
if len(a.shape) == 1:
|
||
a=a.reshape([a.shape[0],1])
|
||
dataset[p,:] = a[u,:]
|
||
|
||
p = np.where(f['mapping/homogenization']['Name'] == str.encode(label))[0]
|
||
if len(p)>0:
|
||
u = (f['mapping/homogenization']['Position'][p.tolist()])
|
||
a = np.array(f[pa])
|
||
if len(a.shape) == 1:
|
||
a=a.reshape([a.shape[0],1])
|
||
dataset[p,:] = a[u,:]
|
||
|
||
if plain and dataset.dtype.names is not None:
|
||
return dataset.view(('float64',len(dataset.dtype.names)))
|
||
else:
|
||
return dataset
|
||
|
||
@property
|
||
def cell_coordinates(self):
|
||
"""Return initial coordinates of the cell centers."""
|
||
if self.structured:
|
||
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
|
||
else:
|
||
with h5py.File(self.fname,'r') as f:
|
||
return f['geometry/x_c'][()]
|
||
|
||
@property
|
||
def node_coordinates(self):
|
||
"""Return initial coordinates of the cell centers."""
|
||
if self.structured:
|
||
return grid_filters.node_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
|
||
else:
|
||
with h5py.File(self.fname,'r') as f:
|
||
return f['geometry/x_n'][()]
|
||
|
||
|
||
@staticmethod
|
||
def _add_absolute(x):
|
||
return {
|
||
'data': np.abs(x['data']),
|
||
'label': f'|{x["label"]}|',
|
||
'meta': {
|
||
'Unit': x['meta']['Unit'],
|
||
'Description': f"Absolute value of {x['label']} ({x['meta']['Description']})",
|
||
'Creator': 'add_absolute'
|
||
}
|
||
}
|
||
def add_absolute(self,x):
|
||
"""
|
||
Add absolute value.
|
||
|
||
Parameters
|
||
----------
|
||
x : str
|
||
Label of scalar, vector, or tensor dataset to take absolute value of.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_absolute,{'x':x})
|
||
|
||
|
||
@staticmethod
|
||
def _add_calculation(**kwargs):
|
||
formula = kwargs['formula']
|
||
for d in re.findall(r'#(.*?)#',formula):
|
||
formula = formula.replace(f'#{d}#',f"kwargs['{d}']['data']")
|
||
|
||
return {
|
||
'data': eval(formula),
|
||
'label': kwargs['label'],
|
||
'meta': {
|
||
'Unit': kwargs['unit'],
|
||
'Description': f"{kwargs['description']} (formula: {kwargs['formula']})",
|
||
'Creator': 'add_calculation'
|
||
}
|
||
}
|
||
def add_calculation(self,label,formula,unit='n/a',description=None):
|
||
"""
|
||
Add result of a general formula.
|
||
|
||
Parameters
|
||
----------
|
||
label : str
|
||
Label of resulting dataset.
|
||
formula : str
|
||
Formula to calculate resulting dataset. Existing datasets are referenced by ‘#TheirLabel#‘.
|
||
unit : str, optional
|
||
Physical unit of the result.
|
||
description : str, optional
|
||
Human-readable description of the result.
|
||
|
||
"""
|
||
dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula
|
||
args = {'formula':formula,'label':label,'unit':unit,'description':description}
|
||
self._add_generic_pointwise(self._add_calculation,dataset_mapping,args)
|
||
|
||
|
||
@staticmethod
|
||
def _add_stress_Cauchy(P,F):
|
||
return {
|
||
'data': mechanics.stress_Cauchy(P['data'],F['data']),
|
||
'label': 'sigma',
|
||
'meta': {
|
||
'Unit': P['meta']['Unit'],
|
||
'Description': "Cauchy stress calculated "
|
||
f"from {P['label']} ({P['meta']['Description']})"
|
||
f" and {F['label']} ({F['meta']['Description']})",
|
||
'Creator': 'add_stress_Cauchy'
|
||
}
|
||
}
|
||
def add_stress_Cauchy(self,P='P',F='F'):
|
||
"""
|
||
Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||
|
||
Parameters
|
||
----------
|
||
P : str, optional
|
||
Label of the dataset containing the first Piola-Kirchhoff stress. Defaults to ‘P’.
|
||
F : str, optional
|
||
Label of the dataset containing the deformation gradient. Defaults to ‘F’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_stress_Cauchy,{'P':P,'F':F})
|
||
|
||
|
||
@staticmethod
|
||
def _add_determinant(T):
|
||
return {
|
||
'data': np.linalg.det(T['data']),
|
||
'label': f"det({T['label']})",
|
||
'meta': {
|
||
'Unit': T['meta']['Unit'],
|
||
'Description': f"Determinant of tensor {T['label']} ({T['meta']['Description']})",
|
||
'Creator': 'add_determinant'
|
||
}
|
||
}
|
||
def add_determinant(self,T):
|
||
"""
|
||
Add the determinant of a tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T : str
|
||
Label of tensor dataset.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_determinant,{'T':T})
|
||
|
||
|
||
@staticmethod
|
||
def _add_deviator(T):
|
||
return {
|
||
'data': tensor.deviatoric(T['data']),
|
||
'label': f"s_{T['label']}",
|
||
'meta': {
|
||
'Unit': T['meta']['Unit'],
|
||
'Description': f"Deviator of tensor {T['label']} ({T['meta']['Description']})",
|
||
'Creator': 'add_deviator'
|
||
}
|
||
}
|
||
def add_deviator(self,T):
|
||
"""
|
||
Add the deviatoric part of a tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T : str
|
||
Label of tensor dataset.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_deviator,{'T':T})
|
||
|
||
|
||
@staticmethod
|
||
def _add_eigenvalue(T_sym,eigenvalue):
|
||
if eigenvalue == 'max':
|
||
label,p = 'Maximum',2
|
||
elif eigenvalue == 'mid':
|
||
label,p = 'Intermediate',1
|
||
elif eigenvalue == 'min':
|
||
label,p = 'Minimum',0
|
||
|
||
return {
|
||
'data': tensor.eigenvalues(T_sym['data'])[:,p],
|
||
'label': f"lambda_{eigenvalue}({T_sym['label']})",
|
||
'meta' : {
|
||
'Unit': T_sym['meta']['Unit'],
|
||
'Description': f"{label} eigenvalue of {T_sym['label']} ({T_sym['meta']['Description']})",
|
||
'Creator': 'add_eigenvalue'
|
||
}
|
||
}
|
||
def add_eigenvalue(self,T_sym,eigenvalue='max'):
|
||
"""
|
||
Add eigenvalues of symmetric tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T_sym : str
|
||
Label of symmetric tensor dataset.
|
||
eigenvalue : str, optional
|
||
Eigenvalue. Select from ‘max’, ‘mid’, ‘min’. Defaults to ‘max’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_eigenvalue,{'T_sym':T_sym},{'eigenvalue':eigenvalue})
|
||
|
||
|
||
@staticmethod
|
||
def _add_eigenvector(T_sym,eigenvalue):
|
||
if eigenvalue == 'max':
|
||
label,p = 'maximum',2
|
||
elif eigenvalue == 'mid':
|
||
label,p = 'intermediate',1
|
||
elif eigenvalue == 'min':
|
||
label,p = 'minimum',0
|
||
return {
|
||
'data': tensor.eigenvectors(T_sym['data'])[:,p],
|
||
'label': f"v_{eigenvalue}({T_sym['label']})",
|
||
'meta' : {
|
||
'Unit': '1',
|
||
'Description': f"Eigenvector corresponding to {label} eigenvalue"
|
||
f" of {T_sym['label']} ({T_sym['meta']['Description']})",
|
||
'Creator': 'add_eigenvector'
|
||
}
|
||
}
|
||
def add_eigenvector(self,T_sym,eigenvalue='max'):
|
||
"""
|
||
Add eigenvector of symmetric tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T_sym : str
|
||
Label of symmetric tensor dataset.
|
||
eigenvalue : str, optional
|
||
Eigenvalue to which the eigenvector corresponds. Select from
|
||
‘max’, ‘mid’, ‘min’. Defaults to ‘max’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_eigenvector,{'T_sym':T_sym},{'eigenvalue':eigenvalue})
|
||
|
||
|
||
@staticmethod
|
||
def _add_IPF_color(q,l):
|
||
m = util.scale_to_coprime(np.array(l))
|
||
|
||
o = Orientation(rotation = (rfn.structured_to_unstructured(q['data'])),
|
||
lattice = {'fcc':'cF',
|
||
'bcc':'cI',
|
||
'hex':'hP'}[q['meta']['Lattice']])
|
||
|
||
return {
|
||
'data': np.uint8(o.IPF_color(l)*255),
|
||
'label': 'IPFcolor_[{} {} {}]'.format(*m),
|
||
'meta' : {
|
||
'Unit': '8-bit RGB',
|
||
'Lattice': q['meta']['Lattice'],
|
||
'Description': 'Inverse Pole Figure (IPF) colors along sample direction [{} {} {}]'.format(*m),
|
||
'Creator': 'add_IPF_color'
|
||
}
|
||
}
|
||
def add_IPF_color(self,q,l):
|
||
"""
|
||
Add RGB color tuple of inverse pole figure (IPF) color.
|
||
|
||
Parameters
|
||
----------
|
||
q : str
|
||
Label of the dataset containing the crystallographic orientation as quaternions.
|
||
l : numpy.array of shape (3)
|
||
Lab frame direction for inverse pole figure.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_IPF_color,{'q':q},{'l':l})
|
||
|
||
|
||
@staticmethod
|
||
def _add_maximum_shear(T_sym):
|
||
return {
|
||
'data': mechanics.maximum_shear(T_sym['data']),
|
||
'label': f"max_shear({T_sym['label']})",
|
||
'meta': {
|
||
'Unit': T_sym['meta']['Unit'],
|
||
'Description': f"Maximum shear component of {T_sym['label']} ({T_sym['meta']['Description']})",
|
||
'Creator': 'add_maximum_shear'
|
||
}
|
||
}
|
||
def add_maximum_shear(self,T_sym):
|
||
"""
|
||
Add maximum shear components of symmetric tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T_sym : str
|
||
Label of symmetric tensor dataset.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_maximum_shear,{'T_sym':T_sym})
|
||
|
||
|
||
@staticmethod
|
||
def _add_equivalent_Mises(T_sym,kind):
|
||
k = kind
|
||
if k is None:
|
||
if T_sym['meta']['Unit'] == '1':
|
||
k = 'strain'
|
||
elif T_sym['meta']['Unit'] == 'Pa':
|
||
k = 'stress'
|
||
if k not in ['stress', 'strain']:
|
||
raise ValueError('invalid von Mises kind {kind}')
|
||
|
||
return {
|
||
'data': (mechanics.equivalent_strain_Mises if k=='strain' else \
|
||
mechanics.equivalent_stress_Mises)(T_sym['data']),
|
||
'label': f"{T_sym['label']}_vM",
|
||
'meta': {
|
||
'Unit': T_sym['meta']['Unit'],
|
||
'Description': f"Mises equivalent {k} of {T_sym['label']} ({T_sym['meta']['Description']})",
|
||
'Creator': 'add_Mises'
|
||
}
|
||
}
|
||
def add_equivalent_Mises(self,T_sym,kind=None):
|
||
"""
|
||
Add the equivalent Mises stress or strain of a symmetric tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T_sym : str
|
||
Label of symmetric tensorial stress or strain dataset.
|
||
kind : {'stress', 'strain', None}, optional
|
||
Kind of the von Mises equivalent. Defaults to None, in which case
|
||
it is selected based on the unit of the dataset ('1' -> strain, 'Pa' -> stress').
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_equivalent_Mises,{'T_sym':T_sym},{'kind':kind})
|
||
|
||
|
||
@staticmethod
|
||
def _add_norm(x,ord):
|
||
o = ord
|
||
if len(x['data'].shape) == 2:
|
||
axis = 1
|
||
t = 'vector'
|
||
if o is None: o = 2
|
||
elif len(x['data'].shape) == 3:
|
||
axis = (1,2)
|
||
t = 'tensor'
|
||
if o is None: o = 'fro'
|
||
else:
|
||
raise ValueError
|
||
|
||
return {
|
||
'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
|
||
'label': f"|{x['label']}|_{o}",
|
||
'meta': {
|
||
'Unit': x['meta']['Unit'],
|
||
'Description': f"{o}-norm of {t} {x['label']} ({x['meta']['Description']})",
|
||
'Creator': 'add_norm'
|
||
}
|
||
}
|
||
def add_norm(self,x,ord=None):
|
||
"""
|
||
Add the norm of vector or tensor.
|
||
|
||
Parameters
|
||
----------
|
||
x : str
|
||
Label of vector or tensor dataset.
|
||
ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
|
||
Order of the norm. inf means NumPy’s inf object. For details refer to numpy.linalg.norm.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_norm,{'x':x},{'ord':ord})
|
||
|
||
|
||
@staticmethod
|
||
def _add_stress_second_Piola_Kirchhoff(P,F):
|
||
return {
|
||
'data': mechanics.stress_second_Piola_Kirchhoff(P['data'],F['data']),
|
||
'label': 'S',
|
||
'meta': {
|
||
'Unit': P['meta']['Unit'],
|
||
'Description': "2. Piola-Kirchhoff stress calculated "
|
||
f"from {P['label']} ({P['meta']['Description']})"
|
||
f" and {F['label']} ({F['meta']['Description']})",
|
||
'Creator': 'add_stress_second_Piola_Kirchhoff'
|
||
}
|
||
}
|
||
def add_stress_second_Piola_Kirchhoff(self,P='P',F='F'):
|
||
"""
|
||
Add second Piola-Kirchhoff stress calculated from first Piola-Kirchhoff stress and deformation gradient.
|
||
|
||
Parameters
|
||
----------
|
||
P : str, optional
|
||
Label of first Piola-Kirchhoff stress dataset. Defaults to ‘P’.
|
||
F : str, optional
|
||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_stress_second_Piola_Kirchhoff,{'P':P,'F':F})
|
||
|
||
|
||
# The add_pole functionality needs discussion.
|
||
# The new Crystal object can perform such a calculation but the outcome depends on the lattice parameters
|
||
# as well as on whether a direction or plane is concerned (see the DAMASK_examples/pole_figure notebook).
|
||
# Below code appears to be too simplistic.
|
||
|
||
# @staticmethod
|
||
# def _add_pole(q,p,polar):
|
||
# pole = np.array(p)
|
||
# unit_pole = pole/np.linalg.norm(pole)
|
||
# m = util.scale_to_coprime(pole)
|
||
# rot = Rotation(q['data'].view(np.double).reshape(-1,4))
|
||
#
|
||
# rotatedPole = rot @ np.broadcast_to(unit_pole,rot.shape+(3,)) # rotate pole according to crystal orientation
|
||
# xy = rotatedPole[:,0:2]/(1.+abs(unit_pole[2])) # stereographic projection
|
||
# coords = xy if not polar else \
|
||
# np.block([np.sqrt(xy[:,0:1]*xy[:,0:1]+xy[:,1:2]*xy[:,1:2]),np.arctan2(xy[:,1:2],xy[:,0:1])])
|
||
# return {
|
||
# 'data': coords,
|
||
# 'label': 'p^{}_[{} {} {})'.format(u'rφ' if polar else 'xy',*m),
|
||
# 'meta' : {
|
||
# 'Unit': '1',
|
||
# 'Description': '{} coordinates of stereographic projection of pole (direction/plane) in crystal frame'\
|
||
# .format('Polar' if polar else 'Cartesian'),
|
||
# 'Creator': 'add_pole'
|
||
# }
|
||
# }
|
||
# def add_pole(self,q,p,polar=False):
|
||
# """
|
||
# Add coordinates of stereographic projection of given pole in crystal frame.
|
||
#
|
||
# Parameters
|
||
# ----------
|
||
# q : str
|
||
# Label of the dataset containing the crystallographic orientation as quaternions.
|
||
# p : numpy.array of shape (3)
|
||
# Crystallographic direction or plane.
|
||
# polar : bool, optional
|
||
# Give pole in polar coordinates. Defaults to False.
|
||
#
|
||
# """
|
||
# self._add_generic_pointwise(self._add_pole,{'q':q},{'p':p,'polar':polar})
|
||
|
||
|
||
@staticmethod
|
||
def _add_rotation(F):
|
||
return {
|
||
'data': mechanics.rotation(F['data']).as_matrix(),
|
||
'label': f"R({F['label']})",
|
||
'meta': {
|
||
'Unit': F['meta']['Unit'],
|
||
'Description': f"Rotational part of {F['label']} ({F['meta']['Description']})",
|
||
'Creator': 'add_rotation'
|
||
}
|
||
}
|
||
def add_rotation(self,F):
|
||
"""
|
||
Add rotational part of a deformation gradient.
|
||
|
||
Parameters
|
||
----------
|
||
F : str, optional
|
||
Label of deformation gradient dataset.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_rotation,{'F':F})
|
||
|
||
|
||
@staticmethod
|
||
def _add_spherical(T):
|
||
return {
|
||
'data': tensor.spherical(T['data'],False),
|
||
'label': f"p_{T['label']}",
|
||
'meta': {
|
||
'Unit': T['meta']['Unit'],
|
||
'Description': f"Spherical component of tensor {T['label']} ({T['meta']['Description']})",
|
||
'Creator': 'add_spherical'
|
||
}
|
||
}
|
||
def add_spherical(self,T):
|
||
"""
|
||
Add the spherical (hydrostatic) part of a tensor.
|
||
|
||
Parameters
|
||
----------
|
||
T : str
|
||
Label of tensor dataset.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_spherical,{'T':T})
|
||
|
||
|
||
@staticmethod
|
||
def _add_strain(F,t,m):
|
||
return {
|
||
'data': mechanics.strain(F['data'],t,m),
|
||
'label': f"epsilon_{t}^{m}({F['label']})",
|
||
'meta': {
|
||
'Unit': F['meta']['Unit'],
|
||
'Description': f"Strain tensor of {F['label']} ({F['meta']['Description']})",
|
||
'Creator': 'add_strain'
|
||
}
|
||
}
|
||
def add_strain(self,F='F',t='V',m=0.0):
|
||
"""
|
||
Add strain tensor of a deformation gradient.
|
||
|
||
For details refer to damask.mechanics.strain
|
||
|
||
Parameters
|
||
----------
|
||
F : str, optional
|
||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||
t : {‘V’, ‘U’}, optional
|
||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||
Defaults to ‘V’.
|
||
m : float, optional
|
||
Order of the strain calculation. Defaults to ‘0.0’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_strain,{'F':F},{'t':t,'m':m})
|
||
|
||
|
||
@staticmethod
|
||
def _add_stretch_tensor(F,t):
|
||
return {
|
||
'data': (mechanics.stretch_left if t.upper() == 'V' else mechanics.stretch_right)(F['data']),
|
||
'label': f"{t}({F['label']})",
|
||
'meta': {
|
||
'Unit': F['meta']['Unit'],
|
||
'Description': '{} stretch tensor of {} ({})'.format('Left' if t.upper() == 'V' else 'Right',
|
||
F['label'],F['meta']['Description']),
|
||
'Creator': 'add_stretch_tensor'
|
||
}
|
||
}
|
||
def add_stretch_tensor(self,F='F',t='V'):
|
||
"""
|
||
Add stretch tensor of a deformation gradient.
|
||
|
||
Parameters
|
||
----------
|
||
F : str, optional
|
||
Label of deformation gradient dataset. Defaults to ‘F’.
|
||
t : {‘V’, ‘U’}, optional
|
||
Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||
Defaults to ‘V’.
|
||
|
||
"""
|
||
self._add_generic_pointwise(self._add_stretch_tensor,{'F':F},{'t':t})
|
||
|
||
|
||
def _job(self,group,func,datasets,args,lock):
|
||
"""Execute job for _add_generic_pointwise."""
|
||
try:
|
||
datasets_in = {}
|
||
lock.acquire()
|
||
with h5py.File(self.fname,'r') as f:
|
||
for arg,label in datasets.items():
|
||
loc = f[group+'/'+label]
|
||
datasets_in[arg]={'data' :loc[()],
|
||
'label':label,
|
||
'meta': {k:(v if h5py3 else v.decode()) for k,v in loc.attrs.items()}}
|
||
lock.release()
|
||
r = func(**datasets_in,**args)
|
||
return [group,r]
|
||
except Exception as err:
|
||
print(f'Error during calculation: {err}.')
|
||
return None
|
||
|
||
|
||
def _add_generic_pointwise(self,func,datasets,args={}):
|
||
"""
|
||
General function to add pointwise data.
|
||
|
||
Parameters
|
||
----------
|
||
func : function
|
||
Callback function that calculates a new dataset from one or
|
||
more datasets per HDF5 group.
|
||
datasets : dictionary
|
||
Details of the datasets to be used: label (in HDF5 file) and
|
||
arg (argument to which the data is parsed in func).
|
||
args : dictionary, optional
|
||
Arguments parsed to func.
|
||
|
||
"""
|
||
num_threads = damask.environment.options['DAMASK_NUM_THREADS']
|
||
pool = mp.Pool(int(num_threads) if num_threads is not None else None)
|
||
lock = mp.Manager().Lock()
|
||
|
||
groups = self.groups_with_datasets(datasets.values())
|
||
if len(groups) == 0:
|
||
print('No matching dataset found, no data was added.')
|
||
return
|
||
|
||
default_arg = partial(self._job,func=func,datasets=datasets,args=args,lock=lock)
|
||
|
||
for result in util.show_progress(pool.imap_unordered(default_arg,groups),len(groups)):
|
||
if not result:
|
||
continue
|
||
lock.acquire()
|
||
with h5py.File(self.fname, 'a') as f:
|
||
try:
|
||
if self._allow_modification and result[0]+'/'+result[1]['label'] in f:
|
||
dataset = f[result[0]+'/'+result[1]['label']]
|
||
dataset[...] = result[1]['data']
|
||
dataset.attrs['Overwritten'] = 'Yes' if h5py3 else \
|
||
'Yes'.encode()
|
||
else:
|
||
dataset = f[result[0]].create_dataset(result[1]['label'],data=result[1]['data'])
|
||
|
||
now = datetime.datetime.now().astimezone()
|
||
dataset.attrs['Created'] = now.strftime('%Y-%m-%d %H:%M:%S%z') if h5py3 else \
|
||
now.strftime('%Y-%m-%d %H:%M:%S%z').encode()
|
||
|
||
for l,v in result[1]['meta'].items():
|
||
dataset.attrs[l]=v if h5py3 else v.encode()
|
||
creator = dataset.attrs['Creator'] if h5py3 else \
|
||
dataset.attrs['Creator'].decode()
|
||
dataset.attrs['Creator'] = f"damask.Result.{creator} v{damask.version}" if h5py3 else \
|
||
f"damask.Result.{creator} v{damask.version}".encode()
|
||
|
||
except (OSError,RuntimeError) as err:
|
||
print(f'Could not add dataset: {err}.')
|
||
lock.release()
|
||
|
||
pool.close()
|
||
pool.join()
|
||
|
||
|
||
def save_XDMF(self):
|
||
"""
|
||
Write XDMF file to directly visualize data in DADF5 file.
|
||
|
||
This works only for scalar, 3-vector and 3x3-tensor data.
|
||
Selection is not taken into account.
|
||
"""
|
||
if self.N_constituents != 1 or not self.structured:
|
||
raise NotImplementedError('XDMF only available for grid results with 1 constituent.')
|
||
|
||
xdmf=ET.Element('Xdmf')
|
||
xdmf.attrib={'Version': '2.0',
|
||
'xmlns:xi': 'http://www.w3.org/2001/XInclude'}
|
||
|
||
domain=ET.SubElement(xdmf, 'Domain')
|
||
|
||
collection = ET.SubElement(domain, 'Grid')
|
||
collection.attrib={'GridType': 'Collection',
|
||
'CollectionType': 'Temporal'}
|
||
|
||
time = ET.SubElement(collection, 'Time')
|
||
time.attrib={'TimeType': 'List'}
|
||
|
||
time_data = ET.SubElement(time, 'DataItem')
|
||
time_data.attrib={'Format': 'XML',
|
||
'NumberType': 'Float',
|
||
'Dimensions': f'{len(self.times)}'}
|
||
time_data.text = ' '.join(map(str,self.times))
|
||
|
||
attributes = []
|
||
data_items = []
|
||
|
||
for inc in self.increments:
|
||
|
||
grid=ET.SubElement(collection,'Grid')
|
||
grid.attrib = {'GridType': 'Uniform',
|
||
'Name': inc}
|
||
|
||
topology=ET.SubElement(grid, 'Topology')
|
||
topology.attrib={'TopologyType': '3DCoRectMesh',
|
||
'Dimensions': '{} {} {}'.format(*self.grid+1)}
|
||
|
||
geometry=ET.SubElement(grid, 'Geometry')
|
||
geometry.attrib={'GeometryType':'Origin_DxDyDz'}
|
||
|
||
origin=ET.SubElement(geometry, 'DataItem')
|
||
origin.attrib={'Format': 'XML',
|
||
'NumberType': 'Float',
|
||
'Dimensions': '3'}
|
||
origin.text="{} {} {}".format(*self.origin)
|
||
|
||
delta=ET.SubElement(geometry, 'DataItem')
|
||
delta.attrib={'Format': 'XML',
|
||
'NumberType': 'Float',
|
||
'Dimensions': '3'}
|
||
delta.text="{} {} {}".format(*(self.size/self.grid))
|
||
|
||
|
||
with h5py.File(self.fname,'r') as f:
|
||
attributes.append(ET.SubElement(grid, 'Attribute'))
|
||
attributes[-1].attrib={'Name': 'u / m',
|
||
'Center': 'Node',
|
||
'AttributeType': 'Vector'}
|
||
data_items.append(ET.SubElement(attributes[-1], 'DataItem'))
|
||
data_items[-1].attrib={'Format': 'HDF',
|
||
'Precision': '8',
|
||
'Dimensions': '{} {} {} 3'.format(*(self.grid+1))}
|
||
data_items[-1].text=f'{os.path.split(self.fname)[1]}:/{inc}/geometry/u_n'
|
||
|
||
for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']):
|
||
for oo in getattr(self,o):
|
||
for pp in getattr(self,p):
|
||
g = '/'.join([inc,o[:-1],oo,pp])
|
||
for l in f[g]:
|
||
name = '/'.join([g,l])
|
||
shape = f[name].shape[1:]
|
||
dtype = f[name].dtype
|
||
|
||
if (shape not in [(), (3,), (3,3)]) or dtype != np.float64: continue
|
||
prec = f[name].dtype.itemsize
|
||
unit = f[name].attrs['Unit'] if h5py3 else f[name].attrs['Unit'].decode()
|
||
|
||
attributes.append(ET.SubElement(grid, 'Attribute'))
|
||
attributes[-1].attrib={'Name': name.split('/',2)[2]+f' / {unit}',
|
||
'Center': 'Cell',
|
||
'AttributeType': {():'Scalar',(3):'Vector',(3,3):'Tensor'}[shape]}
|
||
data_items.append(ET.SubElement(attributes[-1], 'DataItem'))
|
||
data_items[-1].attrib={'Format': 'HDF',
|
||
'NumberType': 'Float',
|
||
'Precision': f'{prec}',
|
||
'Dimensions': '{} {} {} {}'.format(*self.grid,1 if shape == () else
|
||
np.prod(shape))}
|
||
data_items[-1].text=f'{os.path.split(self.fname)[1]}:{name}'
|
||
|
||
with open(self.fname.with_suffix('.xdmf').name,'w') as f:
|
||
f.write(xml.dom.minidom.parseString(ET.tostring(xdmf).decode()).toprettyxml())
|
||
|
||
|
||
def save_vtk(self,labels=[],mode='cell'):
|
||
"""
|
||
Export to vtk cell/point data.
|
||
|
||
Parameters
|
||
----------
|
||
labels : str or list of, optional
|
||
Labels of the datasets to be exported.
|
||
mode : str, either 'cell' or 'point'
|
||
Export in cell format or point format.
|
||
Defaults to 'cell'.
|
||
|
||
"""
|
||
if mode.lower()=='cell':
|
||
|
||
if self.structured:
|
||
v = VTK.from_rectilinear_grid(self.grid,self.size,self.origin)
|
||
else:
|
||
with h5py.File(self.fname,'r') as f:
|
||
v = VTK.from_unstructured_grid(f['/geometry/x_n'][()],
|
||
f['/geometry/T_c'][()]-1,
|
||
f['/geometry/T_c'].attrs['VTK_TYPE'] if h5py3 else \
|
||
f['/geometry/T_c'].attrs['VTK_TYPE'].decode())
|
||
elif mode.lower()=='point':
|
||
v = VTK.from_poly_data(self.cell_coordinates)
|
||
|
||
N_digits = int(np.floor(np.log10(max(1,int(self.increments[-1][3:])))))+1
|
||
|
||
for inc in util.show_progress(self.iterate('increments'),len(self.selection['increments'])):
|
||
|
||
picked_backup_ho = self.selection['homogenizations'].copy()
|
||
self.pick('homogenizations',False)
|
||
for label in (labels if isinstance(labels,list) else [labels]):
|
||
for o in self.iterate('out_type_ph'):
|
||
for c in range(self.N_constituents):
|
||
prefix = '' if self.N_constituents == 1 else f'constituent{c}/'
|
||
if o != 'mechanics':
|
||
for _ in self.iterate('phases'):
|
||
path = self.get_dataset_location(label)
|
||
if len(path) == 0:
|
||
continue
|
||
array = self.read_dataset(path,c)
|
||
v.add(array,prefix+path[0].split('/',1)[1]+f' / {self._get_attribute(path[0],"Unit")}')
|
||
else:
|
||
paths = self.get_dataset_location(label)
|
||
if len(paths) == 0:
|
||
continue
|
||
array = self.read_dataset(paths,c)
|
||
ph_name = re.compile(r'(?<=(phase\/))(.*?)(?=(mechanics))') # identify phase name
|
||
dset_name = prefix+re.sub(ph_name,r'',paths[0].split('/',1)[1]) # remove phase name
|
||
v.add(array,dset_name+f' / {self._get_attribute(paths[0],"Unit")}')
|
||
self.pick('homogenizations',picked_backup_ho)
|
||
|
||
picked_backup_ph = self.selection['phases'].copy()
|
||
self.pick('phases',False)
|
||
for label in (labels if isinstance(labels,list) else [labels]):
|
||
for _ in self.iterate('out_type_ho'):
|
||
paths = self.get_dataset_location(label)
|
||
if len(paths) == 0:
|
||
continue
|
||
array = self.read_dataset(paths)
|
||
v.add(array,paths[0].split('/',1)[1]+f' / {self._get_attribute(paths[0],"Unit")}')
|
||
self.pick('phases',picked_backup_ph)
|
||
|
||
u = self.read_dataset(self.get_dataset_location('u_n' if mode.lower() == 'cell' else 'u_p'))
|
||
v.add(u,'u')
|
||
|
||
v.save(f'{self.fname.stem}_inc{inc[3:].zfill(N_digits)}')
|