928 lines
36 KiB
Python
928 lines
36 KiB
Python
import inspect
|
||
import copy
|
||
from typing import Union, Callable, Dict, Any, Tuple, TypeVar
|
||
|
||
import numpy as np
|
||
|
||
from ._typehints import FloatSequence, IntSequence, CrystalFamily, CrystalLattice
|
||
from . import Rotation
|
||
from . import Crystal
|
||
from . import util
|
||
from . import tensor
|
||
|
||
|
||
_parameter_doc = \
|
||
"""
|
||
family : {'triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic'}, optional.
|
||
Name of the crystal family.
|
||
Family will be inferred if 'lattice' is given.
|
||
lattice : {'aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF'}, optional.
|
||
Name of the Bravais lattice in Pearson notation.
|
||
a : float, optional
|
||
Length of lattice parameter 'a'.
|
||
b : float, optional
|
||
Length of lattice parameter 'b'.
|
||
c : float, optional
|
||
Length of lattice parameter 'c'.
|
||
alpha : float, optional
|
||
Angle between b and c lattice basis.
|
||
beta : float, optional
|
||
Angle between c and a lattice basis.
|
||
gamma : float, optional
|
||
Angle between a and b lattice basis.
|
||
degrees : bool, optional
|
||
Angles are given in degrees. Defaults to False.
|
||
|
||
"""
|
||
|
||
MyType = TypeVar('MyType', bound='Orientation')
|
||
|
||
class Orientation(Rotation,Crystal):
|
||
"""
|
||
Representation of crystallographic orientation as combination of rotation and either crystal family or Bravais lattice.
|
||
|
||
The crystal family is one of:
|
||
|
||
- triclinic
|
||
- monoclinic
|
||
- orthorhombic
|
||
- tetragonal
|
||
- hexagonal
|
||
- cubic
|
||
|
||
and enables symmetry-related operations such as
|
||
"equivalent", "reduced", "disorientation", "IPF_color", or "to_SST".
|
||
|
||
The Bravais lattice is given in the Pearson notation:
|
||
|
||
- triclinic
|
||
- aP : primitive
|
||
|
||
- monoclinic
|
||
- mP : primitive
|
||
- mS : base-centered
|
||
|
||
- orthorhombic
|
||
- oP : primitive
|
||
- oS : base-centered
|
||
- oI : body-centered
|
||
- oF : face-centered
|
||
|
||
- tetragonal
|
||
- tP : primitive
|
||
- tI : body-centered
|
||
|
||
- hexagonal
|
||
- hP : primitive
|
||
|
||
- cubic
|
||
- cP : primitive
|
||
- cI : body-centered
|
||
- cF : face-centered
|
||
|
||
and inherits the corresponding crystal family.
|
||
Specifying a Bravais lattice, compared to just the crystal family,
|
||
extends the functionality of Orientation objects to include operations such as
|
||
"Schmid", "related", or "to_pole" that require a lattice type and its parameters.
|
||
|
||
Examples
|
||
--------
|
||
An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:
|
||
|
||
>>> import damask
|
||
>>> o=damask.Orientation.from_random(shape=(3,5),family='tetragonal').reduced
|
||
|
||
"""
|
||
|
||
@util.extend_docstring(_parameter_doc)
|
||
def __init__(self,
|
||
rotation: Union[FloatSequence, Rotation] = np.array([1.,0.,0.,0.]),
|
||
*,
|
||
family: CrystalFamily = None,
|
||
lattice: CrystalLattice = None,
|
||
a: float = None, b: float = None, c: float = None,
|
||
alpha: float = None, beta: float = None, gamma: float = None,
|
||
degrees: bool = False):
|
||
"""
|
||
New orientation.
|
||
|
||
Parameters
|
||
----------
|
||
rotation : list, numpy.ndarray, Rotation, optional
|
||
Unit quaternion in positive real hemisphere.
|
||
Use .from_quaternion to perform a sanity check.
|
||
Defaults to no rotation.
|
||
|
||
"""
|
||
Rotation.__init__(self,rotation)
|
||
Crystal.__init__(self,family=family, lattice=lattice,
|
||
a=a,b=b,c=c, alpha=alpha,beta=beta,gamma=gamma, degrees=degrees)
|
||
|
||
|
||
def __repr__(self) -> str:
|
||
"""Give short human-readable summary."""
|
||
return util.srepr([Crystal.__repr__(self),
|
||
Rotation.__repr__(self)])
|
||
|
||
|
||
def __copy__(self: MyType,
|
||
rotation: Union[FloatSequence, Rotation] = None) -> MyType:
|
||
"""Create deep copy."""
|
||
dup = copy.deepcopy(self)
|
||
if rotation is not None:
|
||
dup.quaternion = Rotation(rotation).quaternion
|
||
return dup
|
||
|
||
copy = __copy__
|
||
|
||
|
||
|
||
def __eq__(self,
|
||
other: object) -> bool:
|
||
"""
|
||
Equal to other.
|
||
|
||
Parameters
|
||
----------
|
||
other : Orientation
|
||
Orientation to check for equality.
|
||
|
||
"""
|
||
if not isinstance(other, Orientation):
|
||
return NotImplemented
|
||
matching_type = self.family == other.family and \
|
||
self.lattice == other.lattice and \
|
||
self.parameters == other.parameters
|
||
return np.logical_and(matching_type,super(self.__class__,self.reduced).__eq__(other.reduced))
|
||
|
||
def __ne__(self,
|
||
other: object) -> bool:
|
||
"""
|
||
Not equal to other.
|
||
|
||
Parameters
|
||
----------
|
||
other : Orientation
|
||
Orientation to check for equality.
|
||
|
||
"""
|
||
return np.logical_not(self==other) if isinstance(other, Orientation) else NotImplemented
|
||
|
||
|
||
def isclose(self: MyType,
|
||
other: MyType,
|
||
rtol: float = 1e-5,
|
||
atol: float = 1e-8,
|
||
equal_nan: bool = True) -> bool:
|
||
"""
|
||
Report where values are approximately equal to corresponding ones of other Orientation.
|
||
|
||
Parameters
|
||
----------
|
||
other : Orientation
|
||
Orientation to compare against.
|
||
rtol : float, optional
|
||
Relative tolerance of equality.
|
||
atol : float, optional
|
||
Absolute tolerance of equality.
|
||
equal_nan : bool, optional
|
||
Consider matching NaN values as equal. Defaults to True.
|
||
|
||
Returns
|
||
-------
|
||
mask : numpy.ndarray of bool, shape (self.shape)
|
||
Mask indicating where corresponding orientations are close.
|
||
|
||
"""
|
||
matching_type = self.family == other.family and \
|
||
self.lattice == other.lattice and \
|
||
self.parameters == other.parameters
|
||
return np.logical_and(matching_type,super(self.__class__,self.reduced).isclose(other.reduced))
|
||
|
||
|
||
|
||
def allclose(self: MyType,
|
||
other: MyType,
|
||
rtol: float = 1e-5,
|
||
atol: float = 1e-8,
|
||
equal_nan: bool = True) -> bool:
|
||
"""
|
||
Test whether all values are approximately equal to corresponding ones of other Orientation.
|
||
|
||
Parameters
|
||
----------
|
||
other : Orientation
|
||
Orientation to compare against.
|
||
rtol : float, optional
|
||
Relative tolerance of equality.
|
||
atol : float, optional
|
||
Absolute tolerance of equality.
|
||
equal_nan : bool, optional
|
||
Consider matching NaN values as equal. Defaults to True.
|
||
|
||
Returns
|
||
-------
|
||
answer : bool
|
||
Whether all values are close between both orientations.
|
||
|
||
"""
|
||
return bool(np.all(self.isclose(other,rtol,atol,equal_nan)))
|
||
|
||
|
||
def __mul__(self: MyType,
|
||
other: Union[Rotation, 'Orientation']) -> MyType:
|
||
"""
|
||
Compose this orientation with other.
|
||
|
||
Parameters
|
||
----------
|
||
other : Rotation or Orientation
|
||
Object for composition.
|
||
|
||
Returns
|
||
-------
|
||
composition : Orientation
|
||
Compound rotation self*other, i.e. first other then self rotation.
|
||
|
||
"""
|
||
if isinstance(other, (Orientation,Rotation)):
|
||
return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion))
|
||
else:
|
||
raise TypeError('use "O@b", i.e. matmul, to apply Orientation "O" to object "b"')
|
||
|
||
|
||
@staticmethod
|
||
def _split_kwargs(kwargs: Dict[str, Any],
|
||
target: Callable) -> Tuple[Dict[str, Any], ...]:
|
||
"""
|
||
Separate keyword arguments in 'kwargs' targeted at 'target' from general keyword arguments of Orientation objects.
|
||
|
||
Parameters
|
||
----------
|
||
kwargs : dictionary
|
||
Contains all **kwargs.
|
||
target: method
|
||
Function to scan for kwarg signature.
|
||
|
||
Returns
|
||
-------
|
||
rot_kwargs: dictionary
|
||
Valid keyword arguments of 'target' function of Rotation class.
|
||
ori_kwargs: dictionary
|
||
Valid keyword arguments of Orientation object.
|
||
|
||
"""
|
||
kws: Tuple[Dict[str, Any], ...] = ()
|
||
for t in (target,Orientation.__init__):
|
||
kws += ({key: kwargs[key] for key in set(inspect.signature(t).parameters) & set(kwargs)},)
|
||
|
||
invalid_keys = set(kwargs)-(set(kws[0])|set(kws[1]))
|
||
if invalid_keys:
|
||
raise TypeError(f"{inspect.stack()[1][3]}() got an unexpected keyword argument '{invalid_keys.pop()}'")
|
||
|
||
return kws
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_random, _parameter_doc)
|
||
def from_random(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_random)
|
||
return cls(rotation=Rotation.from_random(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_quaternion,_parameter_doc)
|
||
def from_quaternion(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_quaternion)
|
||
return cls(rotation=Rotation.from_quaternion(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_Euler_angles,_parameter_doc)
|
||
def from_Euler_angles(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_Euler_angles)
|
||
return cls(rotation=Rotation.from_Euler_angles(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_axis_angle,_parameter_doc)
|
||
def from_axis_angle(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_axis_angle)
|
||
return cls(rotation=Rotation.from_axis_angle(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_basis,_parameter_doc)
|
||
def from_basis(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_basis)
|
||
return cls(rotation=Rotation.from_basis(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_matrix,_parameter_doc)
|
||
def from_matrix(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_matrix)
|
||
return cls(rotation=Rotation.from_matrix(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_Rodrigues_vector,_parameter_doc)
|
||
def from_Rodrigues_vector(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_Rodrigues_vector)
|
||
return cls(rotation=Rotation.from_Rodrigues_vector(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_homochoric,_parameter_doc)
|
||
def from_homochoric(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_homochoric)
|
||
return cls(rotation=Rotation.from_homochoric(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_cubochoric,_parameter_doc)
|
||
def from_cubochoric(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_cubochoric)
|
||
return cls(rotation=Rotation.from_cubochoric(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_spherical_component,_parameter_doc)
|
||
def from_spherical_component(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_spherical_component)
|
||
return cls(rotation=Rotation.from_spherical_component(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extended_docstring(Rotation.from_fiber_component,_parameter_doc)
|
||
def from_fiber_component(cls, **kwargs) -> 'Orientation':
|
||
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_fiber_component)
|
||
return cls(rotation=Rotation.from_fiber_component(**kwargs_rot),**kwargs_ori)
|
||
|
||
|
||
@classmethod
|
||
@util.extend_docstring(_parameter_doc)
|
||
def from_directions(cls,
|
||
uvw: FloatSequence,
|
||
hkl: FloatSequence,
|
||
**kwargs) -> 'Orientation':
|
||
"""
|
||
Initialize orientation object from two crystallographic directions.
|
||
|
||
Parameters
|
||
----------
|
||
uvw : numpy.ndarray, shape (...,3)
|
||
Lattice direction aligned with lab frame x-direction.
|
||
hkl : numpy.ndarray, shape (...,3)
|
||
Lattice plane normal aligned with lab frame z-direction.
|
||
|
||
"""
|
||
o = cls(**kwargs)
|
||
x = o.to_frame(uvw=uvw)
|
||
z = o.to_frame(hkl=hkl)
|
||
om = np.stack([x,np.cross(z,x),z],axis=-2)
|
||
return o.copy(Rotation.from_matrix(tensor.transpose(om/np.linalg.norm(om,axis=-1,keepdims=True))))
|
||
|
||
|
||
@property
|
||
def equivalent(self: MyType) -> MyType:
|
||
"""
|
||
Orientations that are symmetrically equivalent.
|
||
|
||
One dimension (length corresponds to number of symmetrically equivalent orientations)
|
||
is added to the left of the Rotation array.
|
||
|
||
"""
|
||
sym_ops = self.symmetry_operations
|
||
o = sym_ops.broadcast_to(sym_ops.shape+self.shape,mode='right')
|
||
return self.copy(o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'))
|
||
|
||
|
||
@property
|
||
def reduced(self: MyType) -> MyType:
|
||
"""Select symmetrically equivalent orientation that falls into fundamental zone according to symmetry."""
|
||
eq = self.equivalent
|
||
ok = eq.in_FZ
|
||
ok &= np.cumsum(ok,axis=0) == 1
|
||
loc = np.where(ok)
|
||
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
|
||
return eq[ok][sort].reshape(self.shape)
|
||
|
||
|
||
@property
|
||
def in_FZ(self) -> Union[np.bool_, np.ndarray]:
|
||
"""
|
||
Check whether orientation falls into fundamental zone of own symmetry.
|
||
|
||
Returns
|
||
-------
|
||
in : numpy.ndarray of bool, shape (self.shape)
|
||
Whether Rodrigues-Frank vector falls into fundamental zone.
|
||
|
||
Notes
|
||
-----
|
||
Fundamental zones in Rodrigues space are point-symmetric around origin.
|
||
|
||
References
|
||
----------
|
||
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
|
||
https://doi.org/10.1107/S0108767391006864
|
||
|
||
"""
|
||
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))*(1.-1.e-9)
|
||
|
||
with np.errstate(invalid='ignore'):
|
||
# using '*'/prod for 'and'
|
||
if self.family == 'cubic':
|
||
return (np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) *
|
||
(1. >= np.sum(rho_abs,axis=-1))).astype(bool)
|
||
elif self.family == 'hexagonal':
|
||
return (np.prod(1. >= rho_abs,axis=-1) *
|
||
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) *
|
||
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) *
|
||
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(bool)
|
||
elif self.family == 'tetragonal':
|
||
return (np.prod(1. >= rho_abs[...,:2],axis=-1) *
|
||
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) *
|
||
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(bool)
|
||
elif self.family == 'orthorhombic':
|
||
return (np.prod(1. >= rho_abs,axis=-1)).astype(bool)
|
||
elif self.family == 'monoclinic':
|
||
return np.logical_or( 1. >= rho_abs[...,1],
|
||
np.isnan(rho_abs[...,1]))
|
||
elif self.family == 'triclinic':
|
||
return np.ones(rho_abs.shape[:-1]).astype(bool)
|
||
else:
|
||
raise TypeError(f'unknown symmetry "{self.family}"')
|
||
|
||
|
||
@property
|
||
def in_disorientation_FZ(self) -> np.ndarray:
|
||
"""
|
||
Check whether orientation falls into fundamental zone of disorientations.
|
||
|
||
Returns
|
||
-------
|
||
in : numpy.ndarray of bool, shape (self.shape)
|
||
Whether Rodrigues-Frank vector falls into disorientation FZ.
|
||
|
||
References
|
||
----------
|
||
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
|
||
https://doi.org/10.1107/S0108767391006864
|
||
|
||
"""
|
||
rho = self.as_Rodrigues_vector(compact=True)*(1.0-1.0e-9)
|
||
|
||
with np.errstate(invalid='ignore'):
|
||
if self.family == 'cubic':
|
||
return ((rho[...,0] >= rho[...,1]) &
|
||
(rho[...,1] >= rho[...,2]) &
|
||
(rho[...,2] >= 0)).astype(bool)
|
||
elif self.family == 'hexagonal':
|
||
return ((rho[...,0] >= rho[...,1]*np.sqrt(3)) &
|
||
(rho[...,1] >= 0) &
|
||
(rho[...,2] >= 0)).astype(bool)
|
||
elif self.family == 'tetragonal':
|
||
return ((rho[...,0] >= rho[...,1]) &
|
||
(rho[...,1] >= 0) &
|
||
(rho[...,2] >= 0)).astype(bool)
|
||
elif self.family == 'orthorhombic':
|
||
return ((rho[...,0] >= 0) &
|
||
(rho[...,1] >= 0) &
|
||
(rho[...,2] >= 0)).astype(bool)
|
||
elif self.family == 'monoclinic':
|
||
return ((rho[...,1] >= 0) &
|
||
(rho[...,2] >= 0)).astype(bool)
|
||
else:
|
||
return np.ones_like(rho[...,0],dtype=bool)
|
||
|
||
def disorientation(self,
|
||
other: 'Orientation',
|
||
return_operators: bool = False) -> object:
|
||
"""
|
||
Calculate disorientation between myself and given other orientation.
|
||
|
||
Parameters
|
||
----------
|
||
other : Orientation
|
||
Orientation to calculate disorientation for.
|
||
Shape of other blends with shape of own rotation array.
|
||
For example, shapes of (2,3) for own rotations and (3,2) for other's result in (2,3,2) disorientations.
|
||
return_operators : bool, optional
|
||
Return index pair of symmetrically equivalent orientations that result in disorientation axis falling into FZ.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
disorientation : Orientation
|
||
Disorientation between self and other.
|
||
operators : numpy.ndarray of int, shape (...,2), conditional
|
||
Index of symmetrically equivalent orientation that rotated vector to the SST.
|
||
|
||
Notes
|
||
-----
|
||
Currently requires same crystal family for both orientations.
|
||
For extension to cases with differing symmetry see A. Heinz and P. Neumann 1991 and 10.1107/S0021889808016373.
|
||
|
||
Examples
|
||
--------
|
||
Disorientation between two specific orientations of hexagonal symmetry:
|
||
|
||
>>> import damask
|
||
>>> a = damask.Orientation.from_Euler_angles(phi=[123,32,21],degrees=True,family='hexagonal')
|
||
>>> b = damask.Orientation.from_Euler_angles(phi=[104,11,87],degrees=True,family='hexagonal')
|
||
>>> a.disorientation(b)
|
||
Crystal family hexagonal
|
||
Quaternion: (real=0.976, imag=<+0.189, +0.018, +0.103>)
|
||
Matrix:
|
||
[[ 0.97831006 0.20710935 0.00389135]
|
||
[-0.19363288 0.90765544 0.37238141]
|
||
[ 0.07359167 -0.36505797 0.92807163]]
|
||
Bunge Eulers / deg: (11.40, 21.86, 0.60)
|
||
|
||
Plot a sample from the Mackenzie distribution.
|
||
|
||
>>> import matplotlib.pyplot as plt
|
||
>>> import damask
|
||
>>> N = 10000
|
||
>>> a = damask.Orientation.from_random(shape=N,family='cubic')
|
||
>>> b = damask.Orientation.from_random(shape=N,family='cubic')
|
||
>>> d = a.disorientation(b).as_axis_angle(degrees=True,pair=True)[1]
|
||
>>> plt.hist(d,25)
|
||
>>> plt.show()
|
||
|
||
"""
|
||
if self.family != other.family:
|
||
raise NotImplementedError('disorientation between different crystal families')
|
||
|
||
blend = util.shapeblender(self.shape,other.shape)
|
||
s = self.equivalent
|
||
o = other.equivalent
|
||
|
||
s_ = s.reshape((s.shape[0],1)+ self.shape).broadcast_to((s.shape[0],o.shape[0])+blend,mode='right')
|
||
o_ = o.reshape((1,o.shape[0])+other.shape).broadcast_to((s.shape[0],o.shape[0])+blend,mode='right')
|
||
r_ = s_.misorientation(o_)
|
||
_r = ~r_
|
||
|
||
forward = r_.in_FZ & r_.in_disorientation_FZ
|
||
reverse = _r.in_FZ & _r.in_disorientation_FZ
|
||
ok = forward | reverse
|
||
ok &= (np.cumsum(ok.reshape((-1,)+ok.shape[2:]),axis=0) == 1).reshape(ok.shape)
|
||
r = np.where(np.any(forward[...,np.newaxis],axis=(0,1),keepdims=True),
|
||
r_.quaternion,
|
||
_r.quaternion)
|
||
loc = np.where(ok)
|
||
sort = 0 if len(loc) == 2 else np.lexsort(loc[:1:-1])
|
||
quat = r[ok][sort].reshape(blend+(4,))
|
||
|
||
return (
|
||
(self.copy(rotation=quat),
|
||
(np.vstack(loc[:2]).T)[sort].reshape(blend+(2,)))
|
||
if return_operators else
|
||
self.copy(rotation=quat)
|
||
)
|
||
|
||
|
||
def average(self,
|
||
weights: FloatSequence = None,
|
||
return_cloud: bool = False):
|
||
"""
|
||
Return orientation average over last dimension.
|
||
|
||
Parameters
|
||
----------
|
||
weights : numpy.ndarray, shape (self.shape), optional
|
||
Relative weights of orientations.
|
||
return_cloud : bool, optional
|
||
Return the set of symmetrically equivalent orientations that was used in averaging.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
average : Orientation
|
||
Weighted average of original Orientation field.
|
||
cloud : Orientations, conditional
|
||
Set of symmetrically equivalent orientations that were used in averaging.
|
||
|
||
References
|
||
----------
|
||
J.C. Glez and J. Driver, Journal of Applied Crystallography 34:280-288, 2001
|
||
https://doi.org/10.1107/S0021889801003077
|
||
|
||
"""
|
||
eq = self.equivalent
|
||
m = eq.misorientation(self[...,0].reshape((1,)+self.shape[:-1]+(1,)) # type: ignore
|
||
.broadcast_to(eq.shape)).as_axis_angle()[...,3] # type: ignore
|
||
r = Rotation(np.squeeze(np.take_along_axis(eq.quaternion,
|
||
np.argmin(m,axis=0)[np.newaxis,...,np.newaxis],
|
||
axis=0),
|
||
axis=0))
|
||
return ((self.copy(Rotation(r).average(weights)),self.copy(Rotation(r))) if return_cloud else
|
||
self.copy(Rotation(r).average(weights))
|
||
)
|
||
|
||
|
||
def to_SST(self,
|
||
vector: FloatSequence,
|
||
proper: bool = False,
|
||
return_operators: bool = False) -> np.ndarray:
|
||
"""
|
||
Rotate vector to ensure it falls into (improper or proper) standard stereographic triangle of crystal symmetry.
|
||
|
||
Parameters
|
||
----------
|
||
vector : numpy.ndarray, shape (...,3)
|
||
Lab frame vector to align with crystal frame direction.
|
||
Shape of vector blends with shape of own rotation array.
|
||
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
|
||
proper : bool, optional
|
||
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
|
||
Defaults to False.
|
||
return_operators : bool, optional
|
||
Return the symmetrically equivalent orientation that rotated vector to SST.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
vector_SST : numpy.ndarray, shape (...,3)
|
||
Rotated vector falling into SST.
|
||
operators : numpy.ndarray of int, shape (...), conditional
|
||
Index of symmetrically equivalent orientation that rotated vector to SST.
|
||
|
||
"""
|
||
vector_ = np.array(vector,float)
|
||
if vector_.shape[-1] != 3:
|
||
raise ValueError('input is not a field of three-dimensional vectors')
|
||
eq = self.equivalent
|
||
blend = util.shapeblender(eq.shape,vector_.shape[:-1])
|
||
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(vector_,blend+(3,))
|
||
ok = self.in_SST(poles,proper=proper)
|
||
ok &= np.cumsum(ok,axis=0) == 1
|
||
loc = np.where(ok)
|
||
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
|
||
return (
|
||
(poles[ok][sort].reshape(blend[1:]+(3,)), (np.vstack(loc[:1]).T)[sort].reshape(blend[1:]))
|
||
if return_operators else
|
||
poles[ok][sort].reshape(blend[1:]+(3,))
|
||
)
|
||
|
||
|
||
def in_SST(self,
|
||
vector: FloatSequence,
|
||
proper: bool = False) -> Union[np.bool_, np.ndarray]:
|
||
"""
|
||
Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.
|
||
|
||
Parameters
|
||
----------
|
||
vector : numpy.ndarray, shape (...,3)
|
||
Vector to check.
|
||
proper : bool, optional
|
||
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
in : numpy.ndarray, shape (...)
|
||
Whether vector falls into SST.
|
||
|
||
"""
|
||
vector_ = np.array(vector,float)
|
||
if vector_.shape[-1] != 3:
|
||
raise ValueError('input is not a field of three-dimensional vectors')
|
||
|
||
if self.standard_triangle is None: # direct exit for no symmetry
|
||
return np.ones_like(vector_[...,0],bool)
|
||
|
||
if proper:
|
||
components_proper = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
|
||
vector_), 12)
|
||
components_improper = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
|
||
vector_), 12)
|
||
return np.all(components_proper >= 0.0,axis=-1) \
|
||
| np.all(components_improper >= 0.0,axis=-1)
|
||
else:
|
||
components = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
|
||
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
|
||
|
||
return np.all(components >= 0.0,axis=-1)
|
||
|
||
|
||
def IPF_color(self,
|
||
vector: FloatSequence,
|
||
in_SST: bool = True,
|
||
proper: bool = False) -> np.ndarray:
|
||
"""
|
||
Map vector to RGB color within standard stereographic triangle of own symmetry.
|
||
|
||
Parameters
|
||
----------
|
||
vector : numpy.ndarray, shape (...,3)
|
||
Vector to colorize.
|
||
Shape of vector blends with shape of own rotation array.
|
||
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
|
||
in_SST : bool, optional
|
||
Consider symmetrically equivalent orientations such that poles are located in SST.
|
||
Defaults to True.
|
||
proper : bool, optional
|
||
Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors).
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
rgb : numpy.ndarray, shape (...,3)
|
||
RGB array of IPF colors.
|
||
|
||
Examples
|
||
--------
|
||
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
|
||
|
||
>>> import damask
|
||
>>> o = damask.Orientation(family='cubic')
|
||
>>> o.IPF_color([0,0,1])
|
||
array([1., 0., 0.])
|
||
|
||
"""
|
||
if np.array(vector).shape[-1] != 3:
|
||
raise ValueError('input is not a field of three-dimensional vectors')
|
||
|
||
vector_ = self.to_SST(vector,proper) if in_SST else \
|
||
self @ np.broadcast_to(vector,self.shape+(3,))
|
||
|
||
if self.standard_triangle is None: # direct exit for no symmetry
|
||
return np.zeros_like(vector_)
|
||
|
||
if proper:
|
||
components_proper = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
|
||
vector_), 12)
|
||
components_improper = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
|
||
vector_), 12)
|
||
in_SST_ = np.all(components_proper >= 0.0,axis=-1) \
|
||
| np.all(components_improper >= 0.0,axis=-1)
|
||
components = np.where((in_SST_ & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
|
||
components_proper,components_improper)
|
||
else:
|
||
components = np.around(np.einsum('...ji,...i',
|
||
np.broadcast_to(self .standard_triangle['improper'], vector_.shape+(3,)),
|
||
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
|
||
|
||
in_SST_ = np.all(components >= 0.0,axis=-1)
|
||
|
||
with np.errstate(invalid='ignore',divide='ignore'):
|
||
rgb = (components/np.linalg.norm(components,axis=-1,keepdims=True))**0.5 # smoothen color ramps
|
||
rgb = np.clip(rgb,0.,1.) # clip intensity
|
||
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
|
||
rgb[np.broadcast_to(~in_SST_[...,np.newaxis],rgb.shape)] = 0.0
|
||
|
||
return rgb
|
||
|
||
|
||
####################################################################################################
|
||
# functions that require lattice, not just family
|
||
|
||
def to_pole(self, *,
|
||
uvw: FloatSequence = None,
|
||
hkl: FloatSequence = None,
|
||
with_symmetry: bool = False,
|
||
normalize: bool = True) -> np.ndarray:
|
||
"""
|
||
Calculate lab frame vector along lattice direction [uvw] or plane normal (hkl).
|
||
|
||
Parameters
|
||
----------
|
||
uvw|hkl : numpy.ndarray, shape (...,3)
|
||
Miller indices of crystallographic direction or plane normal.
|
||
Shape of vector blends with shape of own rotation array.
|
||
For example, a rotation array of shape (3,2) and a vector
|
||
array of shape (2,4) result in (3,2,4) outputs.
|
||
with_symmetry : bool, optional
|
||
Calculate all N symmetrically equivalent vectors.
|
||
Defaults to False.
|
||
normalize : bool, optional
|
||
Normalize output vector.
|
||
Defaults to True.
|
||
|
||
Returns
|
||
-------
|
||
vector : numpy.ndarray, shape (...,3) or (...,N,3)
|
||
Lab frame vector (or vectors if with_symmetry) along
|
||
[uvw] direction or (hkl) plane normal.
|
||
|
||
"""
|
||
v = self.to_frame(uvw=uvw,hkl=hkl)
|
||
blend = util.shapeblender(self.shape,v.shape[:-1])
|
||
if normalize:
|
||
v /= np.linalg.norm(v,axis=-1,keepdims=len(v.shape)>1)
|
||
if with_symmetry:
|
||
sym_ops = self.symmetry_operations
|
||
shape = v.shape[:-1]+sym_ops.shape
|
||
blend += sym_ops.shape
|
||
v = sym_ops.broadcast_to(shape) \
|
||
@ np.broadcast_to(v.reshape(util.shapeshifter(v.shape,shape+(3,))),shape+(3,))
|
||
return ~(self.broadcast_to(blend))@ np.broadcast_to(v,blend+(3,))
|
||
|
||
|
||
def Schmid(self, *,
|
||
N_slip: IntSequence = None,
|
||
N_twin: IntSequence = None) -> np.ndarray:
|
||
u"""
|
||
Calculate Schmid matrix P = d ⨂ n in the lab frame for selected deformation systems.
|
||
|
||
Parameters
|
||
----------
|
||
N_slip|N_twin : '*' or sequence of int
|
||
Number of deformation systems per family of the deformation system.
|
||
Use '*' to select all.
|
||
|
||
Returns
|
||
-------
|
||
P : numpy.ndarray, shape (N,...,3,3)
|
||
Schmid matrix for each of the N deformation systems.
|
||
|
||
Examples
|
||
--------
|
||
Schmid matrix (in lab frame) of first octahedral slip system of a face-centered
|
||
cubic crystal in "Goss" orientation.
|
||
|
||
>>> import damask
|
||
>>> import numpy as np
|
||
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
|
||
>>> O = damask.Orientation.from_Euler_angles(phi=[0,45,0],degrees=True,lattice='cF')
|
||
>>> O.Schmid(N_slip=[1])
|
||
array([[ 0.000, 0.000, 0.000],
|
||
[ 0.577, -0.000, 0.816],
|
||
[ 0.000, 0.000, 0.000]])
|
||
|
||
"""
|
||
if (N_slip is not None) ^ (N_twin is None):
|
||
raise KeyError('specify either "N_slip" or "N_twin"')
|
||
|
||
kinematics,active = (self.kinematics('slip'),N_slip) if N_twin is None else \
|
||
(self.kinematics('twin'),N_twin)
|
||
if active == '*': active = [len(a) for a in kinematics['direction']]
|
||
|
||
if not active:
|
||
raise ValueError('Schmid matrix not defined')
|
||
d = self.to_frame(uvw=np.vstack([kinematics['direction'][i][:n] for i,n in enumerate(active)]))
|
||
p = self.to_frame(hkl=np.vstack([kinematics['plane'][i][:n] for i,n in enumerate(active)]))
|
||
P = np.einsum('...i,...j',d/np.linalg.norm(d,axis=1,keepdims=True),
|
||
p/np.linalg.norm(p,axis=1,keepdims=True))
|
||
|
||
shape = P.shape[0:1]+self.shape+(3,3)
|
||
return ~self.broadcast_to(shape[:-2]) \
|
||
@ np.broadcast_to(P.reshape(util.shapeshifter(P.shape,shape)),shape)
|
||
|
||
|
||
def related(self: MyType,
|
||
model: str) -> MyType:
|
||
"""
|
||
All orientations related to self by given relationship model.
|
||
|
||
Parameters
|
||
----------
|
||
model : str
|
||
Orientation relationship model selected from self.orientation_relationships.
|
||
|
||
Returns
|
||
-------
|
||
Orientations related to self following the selected
|
||
model for the orientation relationship.
|
||
|
||
Examples
|
||
--------
|
||
Face-centered cubic orientations following from a
|
||
body-centered cubic crystal in "Cube" orientation according
|
||
to the Bain orientation relationship (cI -> cF).
|
||
|
||
>>> import numpy as np
|
||
>>> import damask
|
||
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
|
||
>>> damask.Orientation(lattice='cI').related('Bain')
|
||
Crystal family: cubic
|
||
Bravais lattice: cF
|
||
a=1 m, b=1 m, c=1 m
|
||
α=90°, β=90°, γ=90°
|
||
Quaternions of shape (3,)
|
||
[[0.924 0.383 0.000 0.000]
|
||
[0.924 0.000 0.383 0.000]
|
||
[0.924 0.000 0.000 0.383]]
|
||
|
||
"""
|
||
lattice,o = self.relation_operations(model)
|
||
target = Crystal(lattice=lattice)
|
||
o = o.broadcast_to(o.shape+self.shape,mode='right')
|
||
return Orientation(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'),
|
||
lattice=lattice,
|
||
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
|
||
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],
|
||
alpha = None if 'alpha' in target.immutable else self.alpha,
|
||
beta = None if 'beta' in target.immutable else self.beta,
|
||
gamma = None if 'gamma' in target.immutable else self.gamma,
|
||
)
|